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1. Introduction

The supplementary material consists of ablation studies
and attention analysis of the proposed method:

1. We report ablation studies of different hyperparame-
ters used in the proposed method (Section 2).

2. We analyze the significance of external knowledge
by comparing the attention distribution over different
types of entity nodes in the enriched scene graph (Sec-
tion 3).

2. Ablation Studies of Hyperparameters

In this section, we present ablation studies on the hyper-
parameter selection for the proposed method.
Hyperparameters for Knowledge Inference Network
(KI-Net). The Kl-net depends on two hyperparameters:
K, controls the number of the highest relevance scores in
the relevance matrix M to consider in the semantic refine-
ment of the scene graph, and ¢, is the threshold that deter-
mines whether to discard a candidate entity with low rel-
evance scores. In particular, a smaller K, or a larger €,
indicate a more strict standard to keep the most relevant en-
tities, thus there is a risk to exclude relevant entities; on the
other hand, a larger K, or a smaller ¢, indicate a higher
tolerance to low-relevance entities, thus less relevant nodes
may be included. We evaluate how different combinations
of K, and €, collaboratively decide the relevance between
the incorporated external knowledge and the originally ob-
served scene graph. With the other hyperparameters fixed
to their optimal values, we optimize the combination of K,
and ¢, by conducting a grid search on the VQAv2 validation
set. Tab. 1 presents the results of this ablation study. As can
be seen, for both scene graph recall and answer accuracy,
our KI-Net performs the best when K;, = 3 and ¢, = 0.8,
by maintaining a good trade-off between semantic richness
and relevance.

*These authors contributed equally.

K, ¢ | Accuracy | mMR@50 mR@100 R@50 R@100
3 08| 6132 | 62 7.3 257 30.6
1 08| 6447 5.7 6.4 251 278
2 08| 6683 6.1 6.9 255 304
4 08| 6719 5.9 7.1 254 306
306 67.14 5.9 7.2 254 302
3 07| 6721 5.9 7.1 256 305
309| 6727 6.1 7.2 256 304

Table 1. Experimental results of our method with different settings
of the hyperparameters used in the KI-Net.

T dn, L Accuracy
2 300 3 62.54
3 300 3 64.93
4 300 3 67.32
5 300 3 66.77
6 300 3 66.39
4 100 3 64.14
4 200 3 66.80
4 300 3 67.32
4 500 3 66.95
4 300 1 64.57
4 300 2 66.41
4 300 3 67.32
4 300 4 65.94

Table 2. Experimental results of our method with different settings
of the hyperparameters used in the neural modules.

Hyperparameters for Neural Modules. We evaluate how
the number of reasoning steps 7, the feature dimension dy,
and the max length of path L collaboratively impact the rea-
soning process. With the other hyperparameters fixed to
their optimal values, the combination of 7', dyand L by con-
ducting a grid search on the VQAv2 validation set. Tab. 2
shows that our model performs the best with the combina-
tion T' = 4, dj, = 300, L = 3. Degenerated results with the



Initial Entities  Incorporated Entities

Method Question
Before After Before After
Yes/No 0.29 0.28 0.34 0.37
G-Relate Number 0.28 0.28 0.31 0.32
) Other 0.29 0.28 0.31 0.33
Overall 0.29 0.28 0.32 0.34
Yes/No 0.30 0.29 0.32 0.33
Number 0.29 0.29 0.31 0.31
XNM [7] Other 0.29 0.29 0.31 0.32
Overall 0.29 0.29 0.31 0.32

Table 3. Attention distribution over the enriched scene graph based
on KI-Net and different Relate modules: G-Relate (high-order)
vs. XNM (first-order). Initial Entities are from the original scene
graph and Incorporated Entities are incorporated from the external
knowledge graph using the KI-Net. Before and After suggest the
attention weights computed before and after executing the Relate
module, respectively.

other combinations indicate that while a smaller 7' is insuf-
ficient to reason over the rich semantics, a larger 7" may in-
troduce extra complexities to the model, increasing the dif-
ficulty of parameter optimization. Similarly, a lower feature
dimension dy, is insufficient to fully represent the necessary
information while larger dj, may store redundant informa-
tion, which is inefficient. Lastly, the number of paths L used
in G-Relate cannot be too small or too large, since a small L
neglects the high-order node-wise relation, and a large L is
also unnecessary since the composite relevance along long
paths becomes weaker.

3. Analysis of Attention Distribution

Where a visual reasoning method attends and how it
shifts its attention during the execution of neural modules
can explain the correctness of its reasoning process. To
demonstrate the roles of the KI-Net and the G-Relate in
directing attention for visual reasoning, we analyze the at-
tention distribution over the enriched scene graph. In par-
ticular, we analyze and compare the following three aspects
among different questions: (1) the average attention weights
that suggest the need for focused attention in answering the
questions, (2) the difference in attention weights between
initial entities and incorporated entities that show the use-
fulness of the incorporated knowledge, and (3) the differ-
ence in attention weights before and after executing the G-
Relate that indicate the significance of high-order inference.
We conduct comparative studies on a selected subset of
questions from the VQAV2 validation dataset [1]. The ques-
tions are selected following two criteria: first, the question
contains an object that is undetected from the image, and
second, the generated program contains a G-Relate module.
This subset allows us to focus our analysis on the signifi-
cance of the proposed KI-Net and G-Relate.

In Tab. 3, we compare the average attention weights be-
tween the initial entities and incorporated entities, both be-
fore and after executing the high-order G-Relate module or
the first-order Relate module (XNM), and across different
question types.

Attention Analysis for KI-Net. First, we compare the at-
tention weights between the two sets of entity nodes: all
initial entities detected from the scene (i.e., in the original
scene graph), and all new entities from the external knowl-
edge graph. As shown in Tab. 3, the attention weights of the
incorporated entities are higher than those of the initial en-
tities. Although neither the initial scene graph generation
nor the knowledge incorporation is specifically based on
the question, we can still observe significant differences be-
tween their average attention weights. The higher weights
of the incorporated entities demonstrate the usefulness of
these entities, thus the usefulness of the external knowledge
to complement the visual information from the initial scene
graph.

Attention Analysis for G-Relate. Next, to analyze how
the proposed G-Relate module transfers attention through
high-order relations, we compare the attention weights be-
fore and after executing the G-Relate module. As shown in
Tab. 3 (top panel), the attention weights of the initial entities
are decreased after the G-Relate operation, but those of the
incorporated entities are increased. This observation sug-
gests that the G-Relate module can transfer attention from
the initially attended entities to the incorporated entities
based on the external knowledge graph. Differently, when
we replace the proposed G-Relate with a first-order Re-
late module (implemented following the XNM model [2]),
the shift of attention weights becomes less significant. As
shown in Tab. 3 (bottom panel), after executing the first-
order Relate module, the overall attention weights on the
initial entities remain the same, while the attention weights
on the incorporated entities only have a mild improvement,
not as significant as we observe during the experiment with
G-Relate. This comparison confirms the finding that trans-
ferring attention along high-order relations is important for
the neural modules to access external knowledge and per-
form effective reasoning.

Attention Analysis for Different Question Types. To
evaluate the generalizability of our model, we look into
the attention distribution across different question types
(Yes/No, Number, and Other). As shown in Tab. 3, the
aforementioned observations apply to all three question
types. We further observe that among the various ques-
tion types, Yes/No questions have both the highest aver-
age attention weights of the incorporated entities, and the
biggest attention difference before and after executing the
G-Relate. The more significant role of KI-Net and G-Relate
in Yes/No questions is likely because these questions de-
pend heavily on the focused attention to the correct entities,
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