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Abstract

While most visual attention studies focus on bottom-up

attention with restricted field-of-view, real-life situations

are filled with embodied vision tasks. The role of attention

is more significant in the latter due to the information over-

load, and attention to the most important regions is critical

to the success of tasks. The effects of visual attention on task

performance in this context have also been widely ignored.

This research addresses a number of challenges to bridge

this research gap, on both the data and model aspects.

Specifically, we introduce the first dataset of top-down

attention in immersive scenes. The Immersive Question-

directed Visual Attention (IQVA) dataset features visual at-

tention and corresponding task performance (i.e., answer

correctness). It consists of 975 questions and answers col-

lected from people viewing 360° videos in a head-mounted

display. Analyses of the data demonstrate a significant cor-

relation between people’s task performance and their eye

movements, suggesting the role of attention in task perfor-

mance. With that, a neural network is developed to encode

the differences of correct and incorrect attention and jointly

predict the two. The proposed attention model for the first

time takes into account answer correctness, whose outputs

naturally distinguish important regions from distractions.

This study with new data and features may enable new tasks

that leverage attention and answer correctness, and inspire

new research that reveals the process behind decision mak-

ing in performing various tasks.

1. Introduction

Visual attention provides humans and machines with the

ability to rapidly understand a scene by selectively process-

ing the incoming information. Understanding the roles of

attention is of significant importance for many applications.

*Equal contribution.

Q: Is there a clock in the room?

A: Yes.

Q: What color is the helmet?

A:  Yellow.

✓

✗

Figure 1: Visual attention is driven by tasks. The correct

attention (row 1) provides essential information for answer-

ing the question, while the incorrect attention (row 2) helps

identify the distracting features to be avoided when design-

ing intelligent visual systems. Contours represent different

fixation densities (0.25, 0.5, and 0.75), and brighter con-

tours indicate higher fixation densities.

In the past decades, many eye-tracking datasets and atten-

tion prediction models have been developed to study atten-

tion in regular images and videos. Due to the limited field of

view (FOV) and the passive viewing (PV) paradigm, how-

ever, these studies are difficult to be transferred to solve

real-world problems. Furthermore, despite the popularity of

aggregating all human attention patterns for attention mod-

eling, the effects of different patterns on task performances

have been mostly unstudied (see Figure 1 for an example).

Such differences reveal important visual features to focus

on or to avoid, providing insights for the understanding and

modeling of attention for tasks of interest. To push forward

the research frontier of visual attention, we aim at inves-

tigating two unstudied problems in computer vision: task-

driven attention in immersive scenes, and the relationship

between attention and task performance.

In this work, we introduce Immersive Question-directed

Visual Attention (IQVA), a new dataset of eye-tracking data
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collected from humans answering questions in immersive

scenes. It consists of 975 questions on 360° video clips,

each annotated with 14 answers (either correct or incor-

rect) and the corresponding eye-tracking data. Different

from previous eye-tracking datasets, IQVA is built upon

a more general and realistic paradigm where people ac-

tively explore the immersive scenes with time limits and

answer questions. It highlights the importance of attention

to the task outcomes and enables a fine-grained compari-

son between the attention patterns associated with different

task performances. To the best of our knowledge, IQVA

is the first attention dataset that explicitly verifies the cor-

rectness of ground-truth labels and differentiates between

correct and incorrect ones. It demonstrates the significant

impacts of attention on task performance, which can bene-

fit the modeling of both human and machine vision systems.

Based on the new dataset and analyses, we further introduce

a novel attention model to predict the correct and incorrect

attention maps with an emphasis on their differences. Con-

sidering the incorrect attention as a hard negative sample,

we show that jointly predicting correct and incorrect atten-

tion can increase the accuracy of both. In sum, the main

contributions of this work are three-fold:

First, we introduce and highlight a new research prob-

lem: Immersive Question-directed Visual Attention. To

study this problem, we propose the IQVA dataset with an

emphasis on the differences between attention patterns of

correct and incorrect answers.

Second, with extensive data analyses, we demonstrate

correlations between visual attention and task performance.

People who answer correctly exhibit consistent attention

patterns, while those who answer incorrectly are affected

by diverse factors.

Finally, we propose a neural network model to jointly

predict the correct and incorrect attentions. A semantic

working memory and a fine-grained difference loss are pro-

posed to model the top-down task guidance and to learn fea-

tures that distinguish both attentions.

2. Related Work

Visual attention datasets. For decades, visual attention

has been extensively studied in the fields of computer vi-

sion [4, 5, 23, 38] and cognitive vision [1, 32, 50]. Datasets

have been built using eye-tracking [21, 48] or simulated

alternatives [20] to facilitate the development of attention

models [4, 5, 45, 50]. While much research has focused

on the bottom-up attention driven by stimulus [4, 5, 49, 50],

top-down attention driven by tasks is less studied [2, 23, 47].

Moreover, the highly controlled settings and the rectangular

limited FOV in conventional image of video viewing pre-

vent eye-tracking data from accurately representing human

attention in everyday tasks. To collect attention data in a

natural FOV, several works [10, 27, 28] use wearable eye-

trackers to record attention in daily activities (e.g., cooking),

where people can move and act freely in the environment.

Another line of research utilizes omnidirectional cameras

and head-mounted displays (HMDs) to study how people

explore virtual environments. Attention data in this type

of immersive scenes are captured by tracking people’s head

movements [18, 44] or eye movements [17, 43]. While en-

abling the tracking of more natural gaze behaviors, exist-

ing datasets either have insufficient variability in scenes, or

ignore the impact from top-down tasks. As a result, under-

standing and modeling task-driven attention remain an open

challenge. To address these issues, our dataset places an

emphasis on the variety of attention for question answering

in immersive scenes, and the correctness of answers. The

dataset enables the study of how people’s attention is driven

by tasks and subsequently determines task performance.

Human and machine attention in top-down tasks. Many

computer vision models use model attention to prioritize in-

formation in vision tasks. Despite their widespread accep-

tance and contributions to task performance, model atten-

tion does not always agree with humans in where to look at

given the same tasks [4, 8, 49]. For example, in visual ques-

tion answering (VQA) [3, 15], where attention plays an im-

portant role, analysis [12] has shown a low correlation be-

tween model and human attention. Such misalignment may

be caused by the dataset bias that directs the model attention

to certain priors [15, 31, 40], or the insufficient correctness

verification of the ground-truth annotations [22, 30]. In this

work, we study human attention under general top-down

tasks, such as counting objects, identifying object charac-

teristics, or finding inter-object relationships. To reduce the

data bias, we increase the task difficulty by asking more

challenging questions and providing broad-FOV visual in-

puts (i.e., immersive scenes). Thus, both humans and ma-

chines need to attend correctly in order to answer the ques-

tions. Furthermore, we explicitly verify the correctness of

ground-truth answers, so the proposed dataset and model

can provide insights into how correct and incorrect atten-

tions affect the task performance.

3. Data Collection

In this section, we introduce the procedure of data collec-

tion and post-processing. Featuring task-driven attention in

immersive viewing of 360° videos, our IQVA dataset con-

tains a total of 975 video clips and eye-tracking data of 14

participants each. Table 1 compares IQVA with other re-

lated datasets. Our dataset will be publicly available.

3.1. Stimuli and Annotations

Our stimuli are 360° YouTube videos. We manually se-

lect 392 videos with a wide variety of 360° scenes and rich

contexts. Most videos depict human activities such as tour-

ing, gathering, driving, and sports activities, while others
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Dataset Modality Scenes Scanpaths Task TPA

Corbillon et al. [11] Head 5 0.3k PV ✗

Wu et al. [46] Head 9 0.4k PV ✗

Lo et al. [29] Head 10 0.5k PV ✗

Nguyen&Yan [34] Head 24 1k PV ✗

David et al. [13] Eye 19 1k PV ✗

Sitzmann et al. [43] Head/Eye 22I 2k PV ✗

Zhang et al. [51] Eye 104 2k PV ✗

Rai et al. [39] Eye 98I 4k PV ✗

IQVA Eye 975 14k VQA ✓

Table 1: A comparison between IQVA and related immer-

sive visual attention datasets. TPA: with task performance

annotation. I: image datasets. PV: passive viewing.

Questions Answers

What is the woman playing with

How many lions are there drinking

Is the white car passing by after the green motorcycle

What shape are the red sunglasses worn by the boy

Does the man in gray walk before the woman walks

What color is the leftmost bucket on the truck

Is there a plant in front of the black painting

Who puts the first chair under a table

What animals are swimming

How many different people have kicked the ball

Table 2: Examples of questions and common words.

present animals or natural landscapes. All of the videos are

in 4K equirectangular format (3840×1920 pixels) with var-

ious frame rates between 24 and 60 fps.

A total of 975 clips are cropped from these videos, where

each clip is annotated with a question. The questions are

proposed by the authors and two trained graduate assistents.

All questions are reviewed by the first author to make sure

they have little to no ambiguity, and be reasonably diffi-

cult (i.e., an active observer can answer correctly given the

time limit). The level of difficulty is determined by the

time limit, complexity of the scene, number and size of re-

lated objects, etc.While the questions represent a wide va-

riety of general tasks, to better structure the data collection

and analyses, we group the questions into three categories:

query (e.g., ‘What ...’ and ‘Who ...’) , count (e.g., ‘How

many ...’), and verify (e.g., ‘Is ...’ and ‘Does ...’ ). Many

of the questions require exhaustive search, spatial and tem-

poral reasoning, or fine-grained recognition. Depending

on their requirement of attention and reasoning skills, the

difficulty of each question is rated on a scale of 0 to 2.

Table 2 presents examples of the questions, and common

words used in questions and answers.

While the VQA datasets consider the most frequent an-

swers from annotators to be correct, this hypothesis does

not always hold true [16, 22, 30]. To differentiate correct

and incorrect attentions, we annotate each question with a

correct answer by exhaustively examining all videos with at

least two authors. If the authors do not agree on the answers

due to ambiguity, the questions are revised or deleted.

Figure 2 presents statistics of videos and questions, in-
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Figure 2: Distribution of data annotations regarding ques-

tion type, video length (in seconds), question length (in

words), and difficulty level.

cluding the length of video clips (4-15 seconds, 5.26±1.56),

the length of questions (3-17 words, 7.94±2.98), and the

difficulty level (0-2, 0.70±0.72). The three general question

types make up 40.78% (query), 35.76% (count) and 23.46%

(verify) of the data, respectively.

3.2. Eye Tracking

Apparatus. The 360° videos are displayed in an HMD

(HTC VIVE Pro Eye, HTC, Valve corporation). This HMD

allows sampling of scenes by approximately 110° horizon-

tal FOV (2880×1600 pixels) at 90 frames per second. An

integrated eye-tracker in the HMD samples gaze data at 120

Hz with a precision of 0.5°-1.1°. The experiment is running

on a computer with an NVIDIA GTX 2070 GPU. A custom

Unity3D (Unity Engine, CA, USA) scene is created to dis-

play the equirectangular videos in 360° and record the pixel

coordinates of the eye-fixations.

Participants. A total of 18 males and 10 females, aged 19

to 38, participate in the eye-tracking experiment under the

approval of the Institutional Review Board (IRB). All par-

ticipants receive monetary compensation. The videos and

questions are randomly grouped into 10 blocks for an one-

hour session each. On average, each participant observes

around 500 video clips and answers the corresponding ques-

tions. Each question is answered by 14 participants.

Procedure. The eye-tracker is 5-point calibrated before

each session. The order of trials and the starting longitu-

dinal position of each video are randomly initialized. Each

trial begins with a question displayed on an empty back-

ground. Having completely understood the question, the

participants push a controller button to start playing the cor-

responding video. All videos are played without sound. The

participants actively explore the scenes and search for the

correct answer. When the video ends, the question is dis-

played again. The participants either respond with their an-

swer, or say “I don’t know” to indicate a failure. The exper-

imenter records the responses in a spreadsheet. Finally, the

participants press another controller button to proceed to the

next trial. To avoid HMD hazards (e.g., dizziness, collision,

falling), the participants or the experimenter can interrupt
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Figure 3: The average fixation map of the dataset demon-

strates a skewed equator bias.

or terminate the experiment at any time.

3.3. Post­Experiment Processing

Answer verification. The authors review the responses

from the participants, and compare them with the previously

annotated answers. Since question ambiguity has been ei-

ther reduced or eliminated, all responses can be classified to

be either correct or incorrect. Cases where the participants

fail to provide an answer are also classified to be incorrect.

Fixation map computation. The experiments produce a

set of visual scanpaths for each video and question. A fix-

ation map is generated for each video frame from raw gaze

positions of all participants. The fixation map for a frame at

time t is computed by accumulating gaze points in a tempo-

ral sliding window of 400 ms centered in t. The fixation

maps are further smoothed using a spherical convolution

with a Gaussian kernel (σ=9°) to obtain the final fixation

maps {Ft}. For computational efficiency, we compute the

maps at the reduced resolution of 256×128 following [52].

4. Data Analysis

In this section, we conduct and report statistical analyses

to gather insights from the eye-tracking data and annota-

tions. We present observations about human attention and

VQA performances in immersive scenes.

4.1. Human gaze is biased towards the equator

Similar to previous literature in eye tracking that report

different types of spatial bias [7, 35, 36, 42] in perceptive

images or 360° scenes, we observe a strong equator bias in

our data as shown in Figure 3. In terms of latitude, 95%

of the gaze points are between -43° and 18.5°, and 80% are

between -24° and 6.5°. This bias is jointly caused by the

positioning of camera (i.e., always in an upright position

with the camera facing forward), the participants’ motor

bias (i.e., turning around horizontally), as well as their view-

ing strategy (i.e., expecting interesting objects to be placed

near the ground). The downward skew is likely caused by

the camera position, as the cameras are usually mounted at

a relatively higher altitude (e.g., on top of a car or a pole,

etc.). Because of the random longitude initialization, no

significant horizontal bias is introduced by the experiment.

Further, by separating correct and incorrect attentions, we
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Figure 4: Distribution of human answer accuracy over dif-

ferent video lengths, question lengths, and difficulty levels.
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Figure 5: Human answer accuracy over different question

types and difficulty levels. Error bars indicate the standard

error of the mean.

observe that their equator biases are highly similar (Pear-

son’s r=0.95, p≈0), so the equator bias does not affect the

task performance of humans.

4.2. Human answers have a broad range of accuracy

The overall accuracy of the participants’ answers is

68.45%. Due to the unique characteristics of our ques-

tions and videos, only 15.78% of the questions have all

correct answers, and 50.51% questions have an accuracy

between 20% and 80%. As shown in Figure 4, the accu-

racy of the participants’ answers decreases with increasing

video length and difficulty, while the answers become more

diverse as question length increases. Note that the video

length is correlated with the difficulty by design (i.e., more

difficult questions have longer time limit). Figure 5 shows a

decrease in accuracy with increased difficulty for different

question types. In general, it is easier to correctly answer a

query (77.03% accuracy) or verify question (69.84% accu-

racy) than a count question (57.76% accuracy). This may

be because both query and verify questions require fewer

targets to be observed, and targets tend to be provided with

additional descriptions (e.g., “woman in blue” instead of

“woman”), which also makes the search easier.

4.3. Correct attentions are alike

To study how attention influences task performance, we

measure the spatio-temporal distance between each pair of

visual scanpaths, and classify them into three groups based

on the correctness of the two answers: both correct, both in-

correct, and between correct and incorrect. The distance is

measured with a spherical Edit Distance on Real sequence
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types and difficulty levels. Error bars indicate the standard

error of the mean.

(EDR) [9] with a distance threshold at 9° (i.e., half fovea

size [14]), and lower EDR scores indicate more similar

scanpaths. For robustness, this comparison only includes

questions with accuracy between 20% and 80%.

According to Figure 6, people who answer correctly

have consistently similar attention patterns, whereas the at-

tention patterns leading to incorrect answers are less similar

to each other. The between-group similarity is also lower

than that within the correct group. This holds true across

difficulty levels for all question types. Given that the dis-

tance gap is evidently smaller for count questions, we hy-

pothesize that this is because the order of counting each tar-

get can be different for participants who all count correctly.

4.4. Incorrect attentions fail with different patterns

We further analyze qualitative examples of correct and

incorrect attentions to understand why their differences lead

to different answers. In particular, Figure 7 illustrates ex-

amples of typical cases of wrong answers. While all of the

correct fixation maps highlight the important regions where

the answer is grounded, incorrect attentions differ from the

correct attentions due to diverse reasons:

Missing important cues. Figures 7a-7c show typical exam-

ples of missing task-relevant cues. Causes of such misses

can be three-fold: first, the answer can be grounded in a

less salient region and difficult to find (e.g., Figure 7a, some

people are walking under the trees); second, people’s sub-

jective bias may lead to biased attention (e.g., Figure 7b,

some people answer “car” without looking to the back of

the vehicle); third, people’s attention can be distracted by

visually or semantically similar objects (e.g., Figure 7c, the

street lamp looks like a flag pole). All these different factors

can lead to the failure of finding the correct answers.

Looking, but not seeing. Many questions require paying

close attention to the visual cues. For example, in Figure 7d

there are two pandas in front of the camera and another

one behind. The two pandas are very close to each other,

and people can easily miscount them as one if not paying

enough attention to them. In these cases, the amount of

attention or time spent on observing the visual cues can in-

(a) Q: How many people are there? A: 4.

(b) Q: What is the man driving?  A: Truck.

(c) Q: Is there a flag in front of the police?  A: Yes.

(d) Q: How many animals are on the ground?  A: 3.

(e) Q: How many people are there?  A: 2.

Figure 7: Examples of correct (row 1) and incorrect (row 2)

attention patterns. Fixation maps overlaid as contour maps

are averaged across all frames (column 1) and every third of

the frames (columns 2-4). Column 5 shows the local regions

of interest for answering correctly.

fluence the correctness of an answer.

Wrong timing. Timing is also a critical factor. Since the

scene is changing, looking at the right places yet missing

the key moments will lead to incorrect answers. As shown

in Figure 7e, the second person only appears at the door for

a short interval of time (see column 3). People who answer

correctly consistently look at the door at the key moment,

while those with incorrect answers are either early or late.

Our analyses suggest strong correlations between atten-

tion and task performance, as well as fine-grained differ-

ences between correct and incorrect attentions. More ex-

amples are shown in the Supplementary Materials.

5. Predicting Correct and Incorrect Attentions

Understanding correct and incorrect attention patterns

can play an essential role on distinguishing the important

visual features from the hard-negative priors and distracters.

In this section, we present a new attention prediction model

with the awareness of answer correctness, to further demon-

strate the major impacts of our dataset.

Most attention prediction models simulate the bottom-

up pathway of human vision [19, 36, 45]. Though some

can be trained with gaze data recorded in top-down tasks,
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attention prediction model.

few efforts have been made to explicitly model the impact

of top-down factors or characterize fine-grained differences

between correct and incorrect attention patterns. In this sec-

tion, we propose a novel correctness-aware attention predic-

tion network to addresses both issues.

As shown in Figure 8, the proposed model consists of a

Visual Encoder (attentive VGG [45]) and a Language En-

coder (Skip-Thought model [25]) to extract visual features

Vt and language features u from the video and question in-

puts, and a new Gaze Prediction Network that predicts the

correct and incorrect attention maps. Different from con-

ventional models, our model simultaneously computes the

two attentions and enables knowledge sharing among them.

Moreover, the semantic working memory (SWM) takes into

account the question information and the visual semantics

attended over time, characterizing the role of top-down task

in affecting the spatial distributions as well as temporal or-

der of eye fixations. In addition to the model design, to

capture the differences between the correct and incorrect

attentions, we further propose a new fine-grained difference

(FGD) loss to better differentiate the two types of attention.

5.1. Semantic Working Memory

Previous gaze prediction networks implicitly model tem-

poral dynamics [45] or rely on short-term correlation be-

tween consecutive frames [52]. Differently, the proposed

SWM explicitly and selectively memorizes the most task-

relevant semantics attended over time. Specifically, we de-

fine the SWM at time t as St = [s1, . . . , st] where st ∈ R
d

is the memorized visual semantics at time t. In order to

simultaneously predict both the correct and incorrect atten-

tions, two SWM blocks (S+
t and S−

t ) are used in the pro-

posed Gaze Prediction Network to memorize visual seman-

tics attended by correct and incorrect attentions.

Specifically, we first develop a selective mechanism to

recall the most relevant information σt from the previously

memorized semantics St−1. With the language features

u ∈ R
d to incorporate the task information, and the se-

mantics attended at the previous time step st−1 to cap-

ture the temporal dynamics, such selection is achieved via

σt = αtSt−1, where

αt = Wα(WSSt−1 +Wsst−1 +Wuu) (1)

is a temporal attention vector indicating the dynamic im-

portance of each historical time step t. It determines what

visual semantics to recall from the memory for the compu-

tation of σt. Here, WS , Ws and Wu are all trainable weights

of the corresponding factors, and Wα is trained to optimize

the temporal attention αt. The weights are shared between

the two SWM blocks to allow knowledge sharing between

both attentions.

The recalled semantics σ+
t and σ−

t (corresponding to

correct and incorrect attentions) are then combined with the

visual features Vt ∈ R
d×w×h and processed with a convo-

lutional LSTM, where w and h are the width and height of

the visual features respectively. They are used to adaptively

control the gate functions of the LSTM:

it = WviVt +Whi
ht−1 +Wcict−1

+W+
σi
σ+
t +W−

σi
σ−

t + bi
(2)

ft = WvfVt +Whf
ht−1 +Wcf ct−1

+W+
σf
σ+
t +W−

σf
σ−

t + bf
(3)

ot = WvoVt +Who
ht−1 +Wcoct−1

+W+
σo
σ+
t +W−

σo
σ−

t + bo
(4)

where it, ft, ot are the input, forget and output gates. The

ht−1 and ct−1 are the hidden states. Wvi
, Whi

, Wci , Wvf
,

Whf
, Wcf , Wvo

, Who
are the weights of the corresponding

factors in the gate functions, while W+
σi

, W+
σf

, W+
σo

, W−

σi
,

W−

σf
, W−

σo
are the weights for incorporating the recalled

semantics from the memory.

Finally, the predicted attention maps Mt = [M+
t ,M−

t ]
are computed as Mt = Woutht, where Wout indicates the

output-layer parameters. The memories for the two atten-

tions are updated with the newly attended semantics:

St[t]
+/− = Watt(M

+/−
t ⊙ Vt) (5)

where Watt are the learned weights to further encode the

attended semantics in the visual features Vt, and ◦ indicates

the Hadamard product.

By incorporating the SWM blocks, our model is able to

associate task information with the visual inputs, and adap-

tively aggregate important semantics over time to benefit

the attention prediction across all video frames.

5.2. Fine­Grained Difference Loss

We propose a fine-grained difference (FGD) loss to en-

courage the model to differentiate the two outputs. First, we

compute the difference between the two ground-truth fixa-

tion maps ∆Ft = F+
t − F−

t and those between the two
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outputs ∆Mt = M+
t −M−

t . The FGD loss is denoted as

LFGD =
∑

LCC(M
+
t ◦ |∆Ft|,M

−

t ◦ |∆Ft|)

+ γ
∑

[

(∆Mt −∆Ft)
2 ◦ |∆F

′

t |
] (6)

where LCC represents the Correlation Coefficient [33]).

The first term of the loss normalizes the attentions based

on the magnitude of differences in the ground truth, pay-

ing more attention to the positions where two ground truth

have larger differences, and then enforces the model to pre-

dict differently by minimizing their correlation. The second

term further minimizes the discrepancies between the dif-

ferences in the predicted and ground truth attentions. To

characterize the spatial distribution and accurate positions

of fixations, we follow ACLNet [45] and use both smoothed

∆Ft and unsmoothed fixation maps ∆F
′

t in our loss. The

hyperparameter γ balances the contributions of the two loss

terms.

Our final loss is defined as a linear combination of the

FGD loss and the loss terms that independently optimize

the two outputs:

L = L+ + L− + β · LFGD (7)

where L+/− are defined a combination of attention evalua-

tion metrics [45] to measure the distances between M+/−

and F+/−. The hyperparameter β balances the contribu-

tions of the loss terms.

6. Experiments and Results

Dataset. For our experiments, we split the dataset into 658

training samples, 96 validation samples, and 221 test sam-

ples. We train and evaluate models on the IQVA dataset

to perform two different tasks: correctness-aware attention

prediction and aggregated attention prediction regardless of

correctness. Given a video clip and a question, the goal of

the former is to predict both the correct and incorrect at-

tentions for each video frame, while the latter predicts an

aggregated fixation map. To reduce the bias caused by im-

balanced numbers of correct and incorrect answers, for the

first task we only consider samples with answer accuracy

between 20% and 80% (i.e., 50.51% of the samples). For

the second task, we use all of the available data. Follow-

ing [52], all videos are temporally downsampled by 5.

Evaluation Protocols. We use five popular attention

evaluation metrics in our experiments, including Correla-

tion Coefficient (CC) [33], Normalized Scanpath Saliency

(NSS) [37], Kullback–Leibler Divergence (KLD) [26],

Similarity (SIM) [41] and shuffled AUC [6]. The distor-

tions of equirectangular projections are corrected with a

sine weighting function following [13]. As existing state-

of-the-art models are designed only for bottom-up atten-

tion, to accommodate our dataset with top-down attention,

we slightly modify them to efficiently take into account the

question information similarly to our model. More details

are provided in the Supplementary Materials.

Training. We train our model with the proposed objec-

tive using Adam [24] optimizer with learning rate 10-4 and

weight decay 10-3. The hyperparameters β and γ are empir-

ically set to 0.5 and 2 respectively, based on the validation

set performance. Resolution of the visual input is set to

512×256. For the existing models, we follow their original

settings and train two independent models using correct or

incorrect data respectively. All of the models are initialized

with weights pre-trained on ImageNet classification. Batch

size 1 is used for training all models similar to [19], since

larger batch sizes require higher computational cost, and do

not result in obvious improvement. The best models are se-

lected based on their performance on the validation set.

6.1. Predicting Correct and Incorrect Attentions

We first evaluate our model on predicting correct and in-

correct attentions. Quantitatively, Table 3 shows that our

baseline model (i.e., Multi-Att) that predicts two attentions

without memory and the proposed loss significantly out-

performs the existing state-of-the-art, indicating the im-

portance of knowledge sharing in developing better under-

standing of the task. Moreover, the increased performance

achieved with the SWM (i.e., Multi-Att + SWM) demon-

strates the effectiveness of adaptively incorporating the vi-

sual semantics attended over time. Finally, our complete

model with both the SWM and the FGD loss (i.e., Multi-Att

+ SWM + FGD) achieves the best results on predicting both

attentions among all evaluation metrics.

Qualitatively, as shown in Figure 9, ground truth atten-

tions corresponding to correct and incorrect answers (the

rightmost column) show distinct differences, indicating that

attention plays a role in these cases (more details and dis-

cussions in Section 4 and the Supplementary Materials).

From the modeling aspect, while most existing models (see

columns 2-5) highlight regions of interest (i.e., people in

both examples) to some degree, they all fail to differentiate

attention patterns leading to correct and incorrect answers

(i.e., predicted attention patterns in both rows are similar).

In comparison, the proposed model (see column 6) not only

captures the regions of interest related to the question, but

also differentiates the regions crucial for correct answers

(i.e., the people skateboarding far from the camera and the

man with a mic on the right) from the others (i.e., people

not matching these descriptions). Note that predictions of

correct and incorrect attentions from existing models are

trained with the respective data. The lack of capability

in differentiating the difference demonstrates the needs in

model designs to close this gap.

Results above show the effectiveness of our model archi-

tecture, semantic memory, and loss in differentiating the at-
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Correct Incorrect

CC NSS KLD SIM sAUC CC NSS KLD SIM sAUC

SALICON [19] 0.407 2.010 1.645 0.350 0.429 0.389 1.914 1.689 0.326 0.431

SALNet [36] 0.412 2.028 1.560 0.347 0.451 0.380 1.946 1.703 0.329 0.397

ACLNet [45] 0.402 1.938 1.606 0.341 0.448 0.378 1.900 1.717 0.322 0.424

Spherical U-Net [52] 0.268 1.225 1.955 0.262 0.333 0.247 1.167 2.085 0.234 0.343

Multi-Att 0.426 2.293 1.479 0.365 0.446 0.411 2.225 1.570 0.344 0.447

Multi-Att + SWM 0.439 2.316 1.434 0.368 0.456 0.422 2.205 1.561 0.344 0.455

Multi-Att + SWM + FGD 0.441 2.375 1.429 0.371 0.462 0.424 2.267 1.524 0.345 0.469

Table 3: Comparison of attention prediction performances. Best results are highlighted in bold.

HumansSALICON ACLNet Ours

(a) How many people are
skateboarding?

(b) How many people are
holding a mic?

Spherical U-NetSALNet

Figure 9: Qualitative comparison of the predicted correct (row 1) and incorrect (row 2) fixation maps.

tentions that lead to different task performance. It opens up

a new paradigm in attention modeling by considering task

performance. In addition, the difference in output naturally

highlights regions to be fixated (e.g., visual cues relevant to

the task) or to be avoided (e.g., visual distractors), which

has direct benefits to a variety of applications.

6.2. Predicting Aggregated Attention

The proposed dataset can also be utilized for predicting

aggregated attention regardless of correctness. In this sec-

tion, we benchmark the existing models and the proposed

one for predicting the aggregated attention on our dataset.

For the proposed model, we adopt our pre-trained model in

the previous experiments and develop a Map Aggregation

module that adaptively integrates the predicted correct and

incorrect attention maps into an aggregated attention map.

As shown in Table 4, with an understanding of the correct

and incorrect attentions developed in the previous task, the

proposed model is able to consistently outperform the exist-

ing models on aggregated attention prediction. Please refer

to our Supplementary Materials for details.

7. Conclusion

We introduce a new dataset for task-driven attention in

immersive scenes. With the new paradigm featuring di-

verse immersive scenes and questions, as well as manual

annotations of answer correctness, the proposed dataset not

only serves as a new benchmark for top-down visual atten-

tion modeling, but also opens up new research opportuni-

CC NSS KLD SIM sAUC

SALICON [19] 0.514 2.098 1.103 0.449 0.483

SALNet [36] 0.498 2.083 1.128 0.439 0.463

ACLNet [45] 0.493 2.022 1.146 0.438 0.466

Spherical U-Net [52] 0.343 1.309 1.547 0.331 0.408

Ours 0.538 2.409 1.047 0.466 0.498

Table 4: Comparative results of predicting aggregated atten-

tion for 360° videos. Best results are highlighted in bold.

ties by taking into account task performance. Our analy-

ses demonstrate a strong correlation between attention and

task performance, opening a new avenue for research in

performance-aware human attention in real-life scenarios.

Furthermore, we propose a correctness-aware attention pre-

diction model together with a new loss for jointly predict-

ing the correct and incorrect attention patterns. Our model

highlights the importance of incorporating knowledge from

both types of attentions for capturing their fine-grained dif-

ferences as well as predicting the aggregated attention. Fu-

ture efforts will be made towards two research directions:

characterizing the attention patterns of individuals to un-

derstand and predict their task performances, and improv-

ing the performance and interpretability of neural networks

with improved attention mechanism.
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