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Abstract—A key challenge for machine intelligence is to learn
new visual concepts without forgetting the previously acquired
knowledge. Continual learning is aimed towards addressing this
challenge. However, there still exists a gap between continual
learning and human learning. In particular, humans are able
to continually learn from the samples associated with known
or unknown labels in their daily life, whereas existing continual
learning and semi-supervised continual learning methods assume
that the training samples are associated with known labels.
Specifically, we are interested in two questions: 1) how to
utilize unrelated unlabeled data for the semi-supervised continual
learning task, and 2) how unlabeled data affect learning and
catastrophic forgetting in the continual learning task. To explore
these issues, we formulate a new semi-supervised continual
learning method, which can be generically applied to existing
continual learning models. Furthermore, we propose a novel
gradient learner to learn from labeled data to predict gradients
on unlabeled data. In this way, the unlabeled data can fit into
the supervised continual learning framework. We extensively
evaluate the proposed method on mainstream continual learning
methods, adversarial continual learning, and semi-supervised
learning tasks. The proposed method achieves state-of-the-art
performance on classification accuracy and backward transfer
in the continual learning setting while achieving desired perfor-
mance on classification accuracy in the semi-supervised learning
setting. This implies that the unlabeled images can enhance the
generalizability of continual learning models on the predictive
ability on unseen data and significantly alleviate catastrophic
forgetting. The code is available at https://github.com/luoyan407/
grad prediction.git.

Index Terms—Continual learning, semi-supervised learning,
gradient prediction.

I. INTRODUCTION

Continual learning (CL) models observe sets of labeled data
through a sequence of tasks [1], [2]. The tasks may vary over
time, e.g. images with novel visual concepts (i.e. classes) or
addressing different problems from the previous tasks [3].
CL is analogous to human learning. Humans are able to
continually acquire, adjust, and transfer knowledge and expe-
riences throughout their lifespan. The key challenges are two-
fold. First, the learning models can abruptly forget previously
absorbed knowledge while learning new information in novel
tasks, i.e. suffer from catastrophic forgetting [4]. Second,
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Figure 1: Conceptual comparison between the challenge in the
novel semi-supervised continual learning (SSCL) problem and
the one in the semi-supervised learning (SSL) problem. The
key difference is that the underlying classes w.r.t. the unlabeled
data could be unknown in the SSCL problem, while the ones
in SSL are assumed to be from the known classes. To suitably
adapt to the continual learning paradigm, we do not impose
such a constraint in the novel SSCL problem. Instead, the
underlying labels of unlabeled data can be from either known
classes or unknown classes. The faded-out samples in the task
2 indicate that the samples in the task 1 are not available in
the task 2 according to the protocol.

how to employ the knowledge learned from previous tasks
to quickly adapt to novel tasks.

Previous CL methods presume that the labels associated
with the data are known [5]–[11]. This assumption may be
divergent from human learning, where a considerable amount
of labels associated with the unlabeled data could be novel
and unrelated to the known labels. Furthermore, large-scale
labeled data may not always be available due to the limits
of labor-intensive and expensive human annotations. More-
over, the classes of a task are distinct from the ones in the
other tasks, or the task’s labels may be of a different form,
e.g. category vs. bounding box. Therefore, we do not presume
any constraint that restricts the correlation between the labels
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associated with unlabeled data and the ones associated with
labeled data. Instead, the unlabeled data could have either
the same or different class labels as the labeled data, which
is shown in Fig. 1. As a result, the fundamental challenge
lies in the generalizability of learning in this semi-supervised
continual learning (SSCL) setting. The CL models do not only
generalize the knowledge learned from preceding tasks to the
current task, but also should leverage unlabeled data that are
associated with unknown labels to boost the learning process.

The labels that are known to the learning process play an
important role in an end-to-end learning paradigm, even in
the semi-supervised learning setting. Through the labels and
the pre-defined loss functions, the gradients are computed
to back-propagate to neurons in each layer. This gradient-
based learning process is key to updating the models to
make more precise predictions [5]–[10], [12]–[15]. However,
when the underlying labels of unlabeled data are unknown,
it is a challenge to generate the gradients that improve the
generalizability of models in the SSCL setting.

Conventionally, pseudo labeling, i.e. predicting labels by a
teacher network for the unlabeled data and taking them as the
ground-truth labels for training a student network, is widely
used for semi-supervised learning (SSL) [16]–[19]. However,
it may not work in the SSCL setting as the classes of a task
are distinct from the ones in the other tasks or the task’s labels
may be of a different form. In contrast to the pseudo labeling
methods, learning to predict pseudo gradients on unlabeled
samples is straightforward and effective as predicting labels
is skipped. Moreover, the pseudo gradients are aligned with
the knowledge learned from samples in various categories,
while the gradients generated by pseudo labeling methods are
aligned with a specific category as an unlabeled sample is
conventionally labeled as a category in the CL setting.

To utilize unlabeled data into the supervised CL frame-
work, we propose a novel gradient-based learning method
that learns from the labeled data to predict pseudo gradients
for the unlabeled data, as shown in Fig. 2. Specifically, a
novel gradient learner learns the mapping between features
and the corresponding gradients generated with labels. We
follow [5], [14] to conduct extensive experiments on CL
benchmarks, i.e. MNIST-R, MNIST-P, iCIFAR-100, CIFAR-
100, and miniImageNet. To verify the generalization ability of
the proposed method, we follow [20] to evaluate the proposed
method on SVHN, CIFAR-10, and CIFAR-100. The main
contributions of this work are summarized as follows.

• We propose a novel semi-supervised continual learning
method that leverages the rich information from unlabeled
data to improve the generalizability of CL models.

• We propose a learning method that learns to predict gradi-
ents for unlabeled data. To the best of our knowledge, this
is the first work that generates pseudo gradients without
ground-truth labels.

• Extensive experiments and ablation study show that the
proposed method improves the generalization perfor-
mance on all metrics. This implies that learning with un-
labeled data is helpful for improving the predictive ability
and alleviating catastrophic forgetting of CL models.
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Figure 2: Problem of semi-supervised continual learning.
Conventional supervised continual learning requires labels
to compute gradients for model update (see blue flows). In
contrast, this work proposes to predict gradients so that the
unlabeled images can be incorporated in the continual learning
paradigm for better generalizability (see red flows).

• We provide empirical evidence to show that the proposed
method can generalize to the SSL task.

II. RELATED WORK

A. Continual Learning

Continual learning (CL) is a learning paradigm where a
model learns through a sequence of tasks [1], [2], [21]. CL is
a branch of online learning [22], [23], where the challenge is
to balance the retention of knowledge from preceding tasks
with the acquisition of new information for future tasks.
However, catastrophic forgetting is a common issue in this
paradigm [4]. There are three types of CL, namely task-
incremental learning, domain-incremental learning, and class-
incremental learning [24]. Task-incremental learning solves a
sequence of distinct tasks, when the task ID is provided along
the process. Domain-incremental learning adapts to changing
input data distributions while maintaining performance on the
original task. Class-incremental learning solves a sequence of
distinct tasks and infers the task ID. Compared to domain-
incremental learning, task-incremental learning and class-
incremental learning emphasize recognizing and classifying
new classes without forgetting previous knowledge, which are
closely related to the proposed method.

There are a number of works that can be cast into the
category of task-incremental learning [5], [7], [8], [12], [14],
[15], [25]–[27]. Specifically, Lopez-Paz and Ranzato propose a
memory-based method, namely GEM, to impose a constraint
on the gradients w.r.t to the training samples and the mem-
ory [5]. Along the same line, Luo et al. introduce a gradient
alignment method DCL that enhances the correlation between
the gradient and the accumulated gradient [15]. Recently,
Ebrahimi et al. propose an adversarial continual learning
(ACL) approach that aims to factorize task-specific and task-
invariant features simultaneously [14]. Unlike GEM, where
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the training samples are observed one by one, the training
process of ACL would repeat multiple times on every task. All
the aforementioned works follow supervised continual learning
paradigm that requires the ground-truth labels. However, how
unlabeled data may influence the continual learning problem
remain unclear. In this work, we propose the SSCL paradigm,
where the model occasionally observes unlabeled data. The
class-incremental learning problem aims to learn visual con-
cepts in new tasks while retaining the visual concepts learned
in the previous tasks [11], [26]. Correspondingly, the samples
in the coresets would be repeatedly observed in this problem,
whereas CL only observes each sample once. In this setting,
Carvalho et al. introduce a catastrophic forgetting solution
based on knowledge amalgamation (CFA) that learns a student
network from multiple heterogeneous teacher models. Lee
et al. leverage unlabeled data with a knowledge distillation
method to boost the class-incremental learning [11]. Notably,
the experimental protocol in [11] is different from that of
SSCL. The class-incremental learning with unlabeled data
maintains three sets of samples through the learning process,
i.e. the samples that have been seen in the previous tasks,
the samples that are related to the current task and have not
been seen before, and the unlabeled samples are selected by
a confidence-based strategy from a data pool. In contrast,
SSCL only observes the samples that are related to the current
task and the unlabeled samples randomly selected from the
data pool. For a fair comparison, we utilize the knowledge
distillation method in [11] to generate pseudo labels for
unlabeled samples as the baselines. This work follows the
experimental protocols used in GEM [5] and ACL [14], which
are widely-adopted task-incremental learning schemes.

Except for the aforementioned methods, the task incremen-
tal learning problem and class incremental learning problem
can be solved by Dark Experience Replay (DER) [28] and
eXtended-DER (X-DER) [29] simultaneously. DER exploits a
buffer (i.e. dark experience) storing data from previous tasks
to train a student model. X-DER leverages memory update
and future preparation to improve DER.

From the perspective of the strategies, the common strate-
gies tackling the continual problem can be divided into
three categories: rehearsal-based, regularization-based, and
knowledge distillation-based methods. Rehearsal-based meth-
ods address catastrophic forgetting by replaying training
samples stored in a memory buffer [28], [30]. In contrast,
regularization-based methods prevent catastrophic forgetting
by regularizing the model’s parameters so that they do not
change much when new data is presented [28]. Moreover,
knowledge distillation can be used to prevent catastrophic
forgetting by transferring knowledge from a previous model
(teacher) to a new model (student) [28], [30].

B. Semi-supervised Learning (SSL)

Semi-supervised learning, a machine learning technique, in-
volves training a model using both labeled and unlabeled data
[31]–[34]. This task aims to utilize a small set of labeled data
along with a larger set of unlabeled data, enabling the model
to establish connections and make predictions on unseen data.

For example, Fierimonte et al. propose a fully decentralized
approach to semi-supervised learning using privacy-preserving
matrix completion, specifically addressing the challenge of
distributed learning [31]. Duan et al. introduce a novel method
that incorporates low-confidence samples into semi-supervised
learning through mutex-based consistency regularization [32].
Another approach by Yang et al. leverage a contrastive
learning-based loss function and augmented samples generated
via an interpolation-based approach to guide training [35].

Existing methods are mainly based on pseudo-labeling or
self-training, i.e. leveraging the labeled data to predict artificial
labels for the unlabeled data [36], [37]. Most modern deep
learning based models follow this line of research [17], [20],
[38]–[40]. Particularly, the noisy student model [19] employs
the teacher-student method to train on ImageNet [41] with
unlabeled images from JFT [42], which is an in-house dataset
at Google and has 100 million labeled images with 15,000
labels, to achieve state-of-the-art performance. In addition,
Zhang et al. propose a meta-objective to alternatingly optimize
the weights and the pseudo labels such that the learning pro-
cess can leverage unlabeled data [20]. To utilize the abundant
unlabeled data, these semi-supervised learning models assign
predicted labels to unlabeled data to generate gradients for
back-propagation. In contrast, the proposed method instead
predict pseudo gradients for back-propagation, bypassing the
need for a loss function with pseudo-labeled data. Different
from conventional (semi-)supervised learning, where visual
concepts are unchanging during the learning process, the
visual concepts of a task in CL are different from that of the
other tasks through the whole learning process. As a result,
unlabeled data that are labeled as known classes would break
the protocol of the split of classes in various tasks of CL
[5]. Instead, CL is in favor of a more generic hypothesis of
unlabeled data, that is, the underlying labels of unlabeled data
could be unknown. A natural choice is to sample unlabeled
images from external datasets, rather than treating training
images as unlabeled images. In conventional semi-supervised
continual leanring (SSCL) [20], the visual concepts that are
related to the unlabeled samples are presumed to be known
for computing gradients. Different from SSCL, the proposed
SSCL in this work does not require this hypothesis. As a result,
without known labels, it is unable to compute the gradients
for back-propagating the errors. Instead of computing the
gradients with the labels, we study how to predict the pseudo
gradients by measuring the suitability between unlabeled sam-
ples and predicted pseudo gradients in learning a certain visual
concept.

C. Gradient-based Methods
Gradient-based methods refer to a family of optimization

algorithms used to find the parameters of a machine learning
model that minimize a certain objective function [43]. These
methods rely on computing the gradients of the objective
function with respect to the model parameters and using those
gradients to iteratively update the parameters until conver-
gence. The gradient is a measure of how the loss function
changes as a function of the model’s parameters [5], [15],
[39], [44].
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Figure 3: Overview of the proposed gradient learning and gradient prediction process with the gradient learner h(·;ω). The
backbone network is shared between the two processes.

The learning process is composed by the forward propaga-
tion and back-propagation. Jaderberg et al. propose a learning
framework with the synthetic gradients to allow layers to
be updated in an asynchronous fashion [45]. The proposed
pseudo gradients can be used as ground-truth gradients in
such a learning framework when the labels of training images
are missing. In particular, [5], [15] use the information of
gradients to form a constraint to improve the performance
of CL. [44] have a similar flavor, that is, they aim to learn
an optimizer to adaptively compute the step length for the
vanilla gradients. In contrast to these gradient-based methods
that rely on labeled data to compute gradients, the proposed
method predicts pseudo gradients by maximizing their fitness
within the loss function applied to labeled data.

Stochastic optimization methods often use gradients to
update a model’s parameters. In the literature, stochastic
gradient descent (SGD) [46] takes the anti-gradient as the
parameters’ update for the descent, using the first-order ap-
proximation [47]. In a similar manner, several first- and
second-order methods are devised to guarantee convergence to
local minima under certain conditions [48]–[50]. Nevertheless,
these methods are computationally expensive and may be not
feasible for learning settings with large-scale high-dimensional
data. In contrast, adaptive methods, such as Adam [51], RM-
SProp [52], and Adabound [53], show remarkable efficacy in
a broad range of machine learning tasks [52], [53]. Moreover,
Zhang et al. propose an optimization method that wraps an
arbitrary optimization method as a component to improve the
learning stability [54]. These methods are contingent on vanilla
gradients to update a model. In this work, we study how the
predicted gradients influence the learning process.

III. PROBLEM SET-UP

The training process of supervised learning methods gen-
erally requires a training dataset Dtr = {(xi, yi)}ii=1 that
consists of samples si = (xi, yi), where xi ∈ X represents
a sample and yi ∈ Y represents a target vector, where Y is
the target label space. The samples presumably are identically
and independently distributed variables that follow a fixed
underlying distribution D [5]. With all samples, supervised
learning methods attempt to find a model f : X θ−→ Y to map
feature vectors to the target vectors, where θ are the parameters

of f . In contrast to supervised learning, SCL is more human-
like and will observe the continuum of data

Dtr = {(xi, ti, yi)|(xi, yi) ∼ Dti , ti ∈ T },
where ti indicates the i-th task and T is a set of tasks. A
task is a specific learning problem. Different from supervised
learning, which has a fixed distribution, each task is associated
with an underlying distribution in the SCL setting. The SCL
models are defined as f : X × T θ−→ Y. Correspondingly, the
loss of SCL is defined as

L(fθ, Dtr) =
1

|Dtr|
∑

(xi,ti,yi)∈Dtr

ℓ(fθ(xi, ti), yi), (1)

where f(·; θ) is simplified as fθ(·). With the loss function
ℓ and a training sample (xi, ti, yi), the gradient can be
computed, i.e. ∂ℓ

∂zi

∂zi
∂θ

, where zi = fθ(xi, ti). Typically, ℓ is
the cross entropy loss in the classification task. Note that we
follow the convention of classification literature [55]–[57] to
define the input of ℓ as logits z and ground-truth labels y,
instead of predicted labels and ground-truth labels. Finally,
the model is updated with the computed gradient, that is,

θ ← θ − η
∂ℓ

∂zi

∂zi
∂θ

, (2)

where η is the learning rate for updating θ. Let Ω(X) be the
set of classes associated with all labeled data X , and Ω(X̃)
be the set of classes associated with all unlabeled data X̃ . We
assume that Ω(X) ⊂ Ω(X̃). In other words, the underlying
labels associated with unlabeled data are likely to be unknown
to the learning process.

In this study, we introduce the concept of semi-supervised
continual learning (SSCL), which involves the use of both
labeled and unlabeled data to train CL models. If the input
is unlabeled data, the model update shown in Eq. (2) cannot
be performed. This is because the underlying labels associated
with the unlabeled data are unknown to the learning process.
We assume that the set of classes associated with all labeled
data X is a subset of the set of classes associated with all
unlabeled data X̃ , denoted as Ω(X) ⊂ Ω(X̃). When training
with unlabeled data, there is no label available to feed into the
loss function, which makes it impossible to compute the update
shown in Eq. (2). Thus, it is crucial to use unlabeled samples
to predict pseudo gradients, represented as ∂g|x̃i

∂θ , which can
then be used to update the model through back-propagation.
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IV. METHODOLOGY

In this section, we introduce how to train a gradient learner
in a CL framework, and how to use the resulting gradient
learner to predict gradients of unlabeled data. We also discuss
the sampling policy for unlabeled data and the geometric in-
terpretation of the proposed gradient prediction. Fig. 3 shows
an overview of the proposed SSCL method, which includes
gradient learning and gradient prediction process.

A. Gradient Learning

In a continual learning framework, a model is designed to
learn the mapping from raw data to the logits that minimize
the pre-defined continual loss. During the training process,
at the i-th training step or episode, the generated logits zi
w.r.t. the input xi is passed to the continual loss ℓ. With the
corresponding yi, ℓ(zi, yi) is computed to yield the gradient
∂ℓ
∂zi

. We aim to compute the pseudo gradient ḡ and use it to
back-propagate the error and update the parameters θ by the
chain rule. They can be mathematically summarized as

Forward: zi = fθ(xi, ti), (3)

Backward:
∂ℓ

∂θ
=

∂ℓ

∂zi

∂zi
∂θ

, θ ← θ − η
∂ℓfit
∂ḡ|x̃i

∂ḡi
∂ω

. (4)

When the learning process is fed with unlabeled data x̃i,
it is desirable to have the logits and corresponding gradient
so that x̃i can straightforwardly fit into the SCL framework.
Therefore, we propose a gradient learner h that aims to learn
the mapping from the logits zi to the gradients ∂ℓ

∂zi
, that is,

gi = h(zi;ω), (5)

where ω is the parameters of h and gi is the predicted gradient
that is expected to work as ∂ℓ

∂zi
for back-propagation.

To guarantee that the predicted gradients can mimic the
gradients’ efficacy in the learning process, we formulate the
fitness of the predicted gradients w.r.t. the logits as a learning
problem. We define the fitness loss function to quantify the
effect of the predicted gradients by fitting them back in the
loss, i.e.

ℓfit(zi, gi, yi) = ℓ(zi − ηgi, yi). (6)

By observing triplet (zi, gi, yi) at each training step, the
minimization of ℓfit will iteratively update the proposed
gradient learner h(·;ω) through back-propagation. As depicted
in Eq. (6), the predicted gradients aim to minimize the fitness
loss, rather than mimicking the vanilla gradients ∂ℓ

∂z in terms
of direction and magnitude.

However, the gradients are sensitive in the learning process
and a small change in gradients could lead to a divergence
of training. To obtain robust predicted gradients, instead of
directly using the output of h(·;ω) in the fitness loss (6), we
reference the magnitude τi of the vanilla gradient. With τi, the
predicted gradient can be accordingly normalized, i.e.

ḡi = ατigi/∥gi∥, τi = ∥
∂ℓ

∂zi
∥, (7)

where α ∈ [0, 1] is a hyperparameter that controls the pro-
portion of the magnitude of the predicted gradient to τi and

Algorithm 1 Gradient Learning & Prediction

1: Input: (xi, ti, yi) ∈ Dtr, x̃i, θ, ω, α, λ, η, η̂
2: zi = f(xi, ti; θ)
3: ℓi = ℓ(zi, yi)
4: Compute the gradient w.r.t. zi, i.e. ∂ℓi

∂zi

5: Update the model θ ← θ − η ∂ℓi
∂zi

∂zi
∂θi

6: gi = h(zi;ω)
7: ḡi = ατigi/∥gi∥, τi = ∥ ∂ℓ

∂zi
, ∥

8: ℓfit = λℓ(zi − ηḡ, yi)

9: Compute the gradient w.r.t ḡi, i.e. ∂ℓfit

∂ḡi

10: Update the gradient learner ω ← ω − η̂
∂ℓfit

∂ḡi

∂ḡi
∂ω

11: if x̃i is not equal to ∅ then
12: z|x̃i = f(x̃i, ti; θ), g|x̃i = h(z|x̃i ;ω)
13: ḡ|x̃i = ατig|x̃i/∥g|x̃i∥, τi = ∥ ∂ℓ

∂zi
∥

14: θ ← θ − ηḡ|x̃i

∂ḡ|x̃i

∂θ
15: end if

zi is generated by (xi, ti, yi). On the other hand, the output
of the proposed gradient learner is a gradient that is subtle
and crucial to the learning process. To properly update the
proposed gradient learner, we apply a simple yet practically
useful version of the loss scale technique [58]–[60] to the
fitness function. Specifically, the left hand side in Eq. (6) is
multiplied with a pre-defined coefficient λ. Finally, the fitness
loss is computed with more robust ḡi, that is

ℓfit(zi, ḡi, yi) = λℓ(zi − ηḡ, yi). (8)

Once the fitness loss is set, triplet (z, ḡ, y) at each training
step suffices to fit into the model learning. Specifically, the
proposed gradient learner would be updated with ∂ℓfit

∂ḡi
, i.e.

ω ← ω − η̂
∂ℓfit
∂ḡi

∂ḡi
∂ω

. (9)

where η̂ is the learning rate for updating ω. The model learning
formed by the fitness loss (6) and the update function (9)
is generic and any gradient-based methods, e.g. multilayer
perceptron (MLP) [61], deep networks [55]–[57], or trans-
former [62], can be used. Without loss of generality, we use
the baseline gradient-based method, i.e. MLP, in this work.

The process of learning to predict pseudo gradients is
described in lines 6–10 in Algorithm 1.

B. Gradient Prediction

To avail the additional unlabeled data in the learning process
for better generalizability, the proposed gradient learner h
will predict gradients when the learning process is fed with
unlabeled data x̃. Given x̃i, the predicted gradient is computed
in a similar way as Eq. (5) and (7) describe, but we use
τi−1 = ∥ ∂ℓ

∂zi−1
∥ (i.e. the last labeled sample prior to the n-

th step), rather than τi, as the label of x̃i is absent to produce
∥ ∂ℓ
∂zi
∥. Once the predicted gradient ḡ|x̃i is computed, the

model can be updated as

θ ← θ − ηḡ|x̃i

∂ḡ|x̃i

∂θ
. (10)
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TABLE I: Symbols and notations used in Algorithm 1.
Symbol Definition

xi the i-th training sample
yi the label of the i-th training sample
ti the task of the i-th training sample
x̃i the i-th unlabeled sample
ℓ the loss function
zi the logit of the i-th training sample
θ the parameters of the classification model f
ω the parameters of the gradient learner h
η the learning rate for updating θ
η̂ the learning rate for updating ω
α the hyperparameter controlling the proportion of

the magnitude
λ the coefficient w.r.t. the fitness loss

To maintain the flexibility in leveraging external unlabeled
data, we follow the basic idea of probability theory to presume
that unlabeled data are sampled from a distribution. In contrast
to the use of labeled data, where we assume all labeled data
will be used during the training process, it is possible that no
unlabeled data are sampled at some learning steps. In other
words, the training process will revert to supervised learning if
no unlabeled data is used. Mathematically, it can be formulated
as

x̃ =

{
x̃i ∼ Dx̃, if q < p

∅, otherwise
(11)

where q is a random variable following a distribution and p is
a pre-defined threshold. Without loss of generality, we assume
the distribution is a standard uniform distribution U(0, 1).
When p is set to 1, it indicates that the learning process will
always draw several unlabeled data from a set X̃ of unlabeled
data. When p is set to 0, it indicates that the learning process
will not draw any unlabeled data. In other words, p manages
the transition from SCL to SSCL.

The process of predicting gradients is described in lines 11–
14 in Algorithm 1, and the symbols used in the algorithm are
depicted in Table I.

C. Connection to Pseudo Labeling

Note that we do not assume that the underlying classes
that are associated with the unlabeled data are the same as
or similar to the known classes. As a result, the distributions
of the unlabeled samples could be very different from the
labeled samples. Hence, directly predicting pseudo label for
back-propagation may not be suitable in the SSCL setting.

When labels are unavailable, a common practice to utilize
unlabeled samples is by training a teacher model with labeled
samples and then predicting pseudo labels on unlabeled sam-
ples [11], [19], [63], [64]. Pseudo labeling [11], [19], [64] is
viewed as a teacher-student learning framework, i.e.

minimize
θ′

ℓ(f tch
θ′ (xi, ti), yi) (12)

ŷ = argmax
j

[f tch
θ′ (x̃, ti)]j (13)

minimize
θ

ℓ(fstn
θ (xi, ti), ŷ) (14)

Figure 4: Comparison between the predicted gradient ḡ and
the gradients ∂ℓ(z,ŷ)

∂θ generated with pseudo labels ŷ. Assume
the proposed gradient learner is trained with the samples
in categories cat and dog, given an unlabeled image x̃, the
proposed gradient learner would take all learned class-specific
knowledge (i.e. w.r.t categories cat and dog) into account,
instead of taking one category (i.e. cat or dog) into account in
pseudo labeling methods.

where tch (resp. stn) stands for teacher (resp. student), θ′ (resp.
θ) are the weights of the teacher (resp. student), ((xi, ti), yi)
is a labeled sample, and x̃ is a unlabeled sample. In short, the
teacher would be trained with labeled samples by Eq. (12).
When it comes across unlabeled sample x̃, the teacher first
predicts an one-hot pseudo label ŷ by Eq. (13) and then ŷ is
viewed as the label for training the student by Eq. (14). A
common alternative to one-hot pseudo labels in Eq. (13) is
the probabilities w.r.t. each class, which is used in leveraging
unlabeled data in the class-incremental learning [11]. To
generate probabilistic labels, the softmax function is usually
applied. We denote the one-hot pseudo labeling method and
the probabilistic pseudo labeling method as 1-PL and P-PL
for simplicity.

The difference between gradient prediction and pseudo
labeling is shown in Fig. 4. As teacher models have a chance
of generating incorrect labels, the resulting gradients would
vary with different pseudo labeling. Instead, the proposed gra-
dient learner is trained with labeled samples so the predicted
gradients are generated with implicit knowledge that maps
visual appearance to various visual concepts, rather than one.
For example, given training samples of cat and dog, when the
proposed gradient learner observes a fox image to predict the
pseudo gradient, the pseudo gradient would be aligned with
the learned knowledge of both cat and dog, instead of only
cat or only dog. Therefore, the pseudo gradients generated
by the proposed gradient learner have better generalizability
than the ones generated by pseudo labeling methods. Last but
not least, as indicated in Eq. (6), the predicted gradients are
generated to minimize the fitness loss, while the gradients
generated by pseudo labeling methods aim to reproduce the
gradients generated with ground-truth labels. Ideally, if the
pseudo labels are identical to the ground-truth labels, the
gradients generated with pseudo labels would be identical to
the gradients generated with ground-truth labels. However, this
rarely happens in practice as unlabeled data have no labels or
the underlying labels are unknown.

On the other hand, each task in SSCL has a limited number
of labeled samples and the visual concepts of any two tasks are



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, AUGUST 202X 7

S
ur
pe
rv
is
ed

S
em
i-
su
rp
er
vi
se
d

Cat

Dog

Figure 5: Geometric interpretation of supervised learning (top)
and semi-supervised learning (bottom). Through leveraging the
semantics of unlabeled images, the generalizability of models
is expected to be improved. Experimental results in Table III–
VII validate this finding.

different. With limited labeled samples, it is difficult to predict
correct pseudo labels. Thus, predicting pseudo gradients is
more straightforward and effective in this case.

Furthermore, pseudo labeling methods have many more
parameters than the proposed gradient learner. Although the
outputs of the teacher model and the proposed gradient learner
are supposed to be of the same dimension, the inputs are
different. The former takes images as input whereas the latter
takes CL models’ output as input. Thus, the teacher models
usually have the same as or more parameters (> 1M ) than the
student models [11], [17], [19], whereas the proposed gradient
learner is a small MLP with fewer parameters (< 10K)

D. Geometric Interpretation

Fig. 5 shows the geometric interpretation of gradient pre-
diction by comparing SSL (bottom) with supervised learning
(top). In this illustrative example, given two labeled images,
s1 and s2, and one unlabeled image, x̃1, the predicted gradient
−ḡ|x̃1

helps boost the convergence, i.e. θ′i+2 is closer to the
underlying local minimum θ∗ than θi+2. This also impacts on
the generalizability. Given an unseen labeled triplet (x, t, y),
we have inequality ℓ(f(x; θ′i+2), t, y) < ℓ(f(x; θi+2), t, y). This
implies that the CL model with pseudo gradients is likely to
be closer to a local minimum than the one that is not using it.

E. Trade-off: Overwhelming vs. Generalizing

It is desirable to use as many unlabeled data as possible,
as long as the data improve the generalizability of the CL
models. Unfortunately, this goal is difficult to achieve. The
reasons are two-fold. Firstly, as shown in Fig. 1, since the
underlying classes of the unlabeled images are unknown, the
distributions of unlabeled data could be considerably different
from the ones of the labeled data. Secondly, gradient learning

and prediction are challenging as it is a regression task in
a high-dimensional space and the values of gradients are
usually small but influential. Last but not least, in contrast
to classification task, where the labels are one-hot vectors that
are in [0, 1], the ranges of vanilla gradients are determined by
the labeled data and lie in (−∞,+∞). Therefore, gradient
learning task is by nature very challenging.

As a result, when more unlabeled data are used in the learn-
ing process, it is more prone to accumulate prediction errors
that harm the training quality. Specifically, predictive errors in
the back-propagation could overwhelm the knowledge learned
from the given labeled data. Therefore, achieving a good trade-
off between overwhelming and generalizing is important in the
SSCL problem. In this work, we use a probabilistic threshold
p to implement this trade-off.

V. EXPERIMENT

A. Experimental Set-up

We follow the experimental protocols used in GEM [5]
and ACL [14], which are cast into the category of task-
incremental learning. In the training scheme of [5], the models
will observe training samples and no training samples will be
observed for a second time. The training and test samples are
randomly assigned to n tasks according to classes and each
task has training and test samples with different classes from
the other tasks. Similarly, [14] randomly assigns the samples
into n tasks, but in each task, there are multiple epochs that
repeat the stochastic process over the training samples as the
conventional supervised learning. After the training on every
task is done, the trained models would be evaluated with all
the samples of all tasks, including the tasks that the CL process
has gone through and the tasks which have not been executed
yet. Furthermore, to understand the generalization ability of
the proposed method in SSL task, we follow the experimental
protocols used in [20] to evaluate the proposed method.

B. Datasets

In the GEM training scheme, we use the following
datasets. MNIST permutation (MNIST-P) [25] is a variant
of MNIST [65], which consists of 70k images of size 28×28.
Each image is transformed by a fixed permutation of pixels.
MNIST rotation (MNIST-R) [5] is similar to MNIST-P, but
each image is rotated by a fixed angle between 0 and 180
degrees. Incremental CIFAR-100 (iCIFAR-100) [26] is a
variant of the CIFAR-100 [66], which consists of 60k images
of size 32×32 that are split into multiple subsets by the classes.

In the ACL training scheme, we use CIFAR-100 [14] and
miniImageNet [67]. CIFAR-100 is also split into multiple
subsets like iCIFAR-100. Instead of being used once, the
images in each task are repeatedly used in every epoch.
miniImageNet is a variant of ImageNet [41], which consists
of 60k images of size 84×84 with 100 classes.

Following GEM and ACL, all training samples are split
into 20 tasks. Briefly, each task on iCIFAR-100, CIFAR-100,
and miniImageNet has 5 classes. For MNIST-P and MNIST-
R, each task has 10 classes and is performed with different
permutation or rotation from the other tasks.
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For the experiments on MNIST-R, MNIST-P, iCIFAR-100,
and CIFAR-100, we use Tiny ImageNet as unlabeled dataset.
For the experiments on miniImageNet, we use the unlabeled
images from MS COCO [68]. Both unlabeled dataset are
widely-used large-scale real-world datasets. Hence, the unla-
beled pool are representative and general for various CL tasks.

In the semi-supervised training scheme, we follow the same
experimental protocols used in [20] to evaluate the proposed
method on SVHN [69], CIFAR-10, and CIFAR-100 [66]. The
numbers of labeled data are 1k, 4k, and 10k for SVHN,
CIFAR-10, and CIFAR-100, respectively.

C. Metrics & Methods

To comprehensively validate the performance of the pro-
posed method, we conduct experiments based on the training
schemes of GEM and ACL. DCL [15] achieves state-of-the-art
performance on MNIST-P, MNIST-R and iCIFAR-100, and is
considered as another baseline in the GEM training scheme.

CL has three key metrics, namely average accuracy (ACC),
backward transfer (BWT), and forward transfer (FWT) [5], i.e.

ACC =
1

T

T∑
i=1

RT,i (15)

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i (16)

FWT =
1

T − 1

T∑
i=2

Ri−1,i − b̄i (17)

where Ri,j is the test classification accuracy that is evaluated
on the test set of the j-th task when training on the i-th task,
T is the number of tasks, and b̄i is the test classification
accuracy at random initialization at the i-th task. Average
accuracy indicates the predictive ability of the trained models
on all tasks. BWT measures the effect of how learning a task
t influences the performance on previous tasks k < t. A large
negative score is referred as catastrophic forgetting while a
positive score implies that learning new tasks generalizes to
previous tasks. Correspondingly, FWT measures the effect of
how learning a task t influences the performance on future
tasks k > t. A positive score implies that learning a task gener-
alizes to future tasks, which is similar to zero-shot learning. In
the ACL training scheme, we use the same metrics, i.e. average
accuracy and BWT, as [14]. We denote a baseline as backbone
(if any) continual algorithm, e.g. ResNet GEM. Similarly, we
denote the proposed method as backbone (if any) continual
algorithm + proposed, which indicates the proposed method
is used to leverage the information from unlabeled images.
Also, following [11] and [20], we report the performance of
1-PL, P-PL, and MG for the purpose of comparison in the CL
setting. Specifically, the teacher model takes images as input
to predict pseudo labels when the learning process encounters
unlabeled images. The teacher model is composed by the same
backbone of the CL model and a linear transformation layer
that generate pseudo labels in each task. In other words, 1-PL
and P-PL have many more parameters than the baseline and
the proposed method.

TABLE II: Hyperparameters w.r.t. the proposed method. BS
denotes batch size of unlabeled images.

Setting Dataset Method Backbone BS p α λ hω

SSCL

MNIST-R GEM MLP 4 0.15 0.001 0.30 (64,16)
MNIST-R DCL MLP 4 0.15 0.001 0.30 (64,16)

MNIST-P GEM MLP 4 0.15 0.001 0.50 (64,16)
MNIST-P DCL MLP 4 0.15 0.001 0.49 (64,16)

iCIFAR-100 GEM ResNet-18 4 0.30 0.005 2.00 (128,32)
iCIFAR-100 DCL ResNet-18 4 0.30 0.005 2.50 (128,32)
iCIFAR-100 GEM EffNet-B1 4 0.20 0.005 2.00 (128,32)
iCIFAR-100 DCL EffNet-B1 4 0.35 0.005 2.00 (128,32)

CIFAR-100 ACL AlexNet 64 0.30 0.001 0.20 (128,32)

miniImageNet ACL AlexNet 64 0.35 0.001 0.15 (128,32)

SSL
SVHN - Conv-Large [70] - - 0.001 2.00 (128,32)
CIFAR-10 - Conv-Large - - 0.001 1.00 (128,32)
CIFAR-100 - Conv-Large - - 0.001 1.00 (128,32)

D. Hyperparameters & Implementation Details

We use the same training hyperparameters in GEM [5],
DCL [15], and ACL [14]. More details can be found in
these works or in our code repository. Here, we focus on
the hyperparameters that are related to the proposed method.
There are five hyperparameters, namely threshold p, magnitude
ratio α, loss scale λ, network architecture hω , and batch size
of unlabeled images. The hyperparameters w.r.t. the proposed
method used in the SSCL and SSL setting are reported in
Table II. In particular, we follow [20] to use the unlabeled
data with p = 1.0 in SSL.

Specifically, this work follows the same experimental pro-
tocol used in [5], [15] to evaluate the proposed method
on MNIST-R, MNIST-P, and iCIFAR-100, while it follows
the same experimental protocol used in [14] to evaluate
the proposed method on CIFAR-100 and miniImageNet. All
hyperparameters that are used with the baselines are used with
the proposed method as well.

Without loss of generality, we use MLP as the gradient
learner h(·;ω) (hω for short). Assume the gradient is in Rm,
we denote (dimension of the 1st layer output, dimension of
the 2nd layer output, . . . , dimension of the penultimate layer
output) for simplicity. For instance, given m = 5, architecture
(64, 16) indicates the MLP consists of three layers, the first
one is a linear operation with a coefficient matrix of size 5×64,
the second one is with a coefficient matrix of 64×16, and the
last one is with a coefficient matrix of size 16× 5.

Similar to other supervised learning methods, few learning
steps may not be adequate to train a good gradient learner.
Hence, the gradient learner is trained from the very beginning,
but the predicted gradients are used after 50 learning steps in
the GEM and DCL training scheme, and after 5 learning steps
in the ACL training scheme.

Note that restricted to the shared and private module design
in ACL [14], which requires a fixed dimension of the input
features, the batch size of unlabeled images has to be the same
as the batch size of training samples, that is, 64.

E. Generalization Performance

Tables III–V report the performance of the proposed method
with comparison to the compared baselines on MNIST-R,
MNIST-P, and iCIFAR-100. EWC [25], iCARL [26], MAS
[71], A-GEM [72], LUCIR [30], BiC [73], HAL [74], DER
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TABLE III: Performance on MNIST-R. All methods use MLP
as the backbone network [5], [15]. The proposed gradient
learner has 1824 parameters. Accuracy is in (%). The top
performance is highlighted in bold. MG and PG stand for meta
gradient [20] and predicted gradient (proposed), respectively.
FT and COS indicate the fitness loss and the cosine similarity
loss, respectively.

Methods Accuracy BWT FWT

EWC [25] 54.61 -0.2087 0.5574
GEM [5] 83.35 -0.0047 0.6521
DCL [15] 84.08 0.0094 0.6423

GEM + 1-PL 74.58 -0.0782 0.6319
GEM + P-PL 79.39 -0.0380 0.6453
GEM reproduced 83.03 -0.0061 0.6482
GEM + MG 84.97 0.0051 0.6552
GEM + proposed 86.54 0.0227 0.6537

DCL + 1-PL 82.12 0.0022 0.6275
DCL + P-PL 83.34 0.0033 0.6359
DCL reproduced 84.88 0.0088 0.6526
DCL + MG 85.74 0.0168 0.6518
DCL + proposed 86.26 0.0106 0.6620

TABLE IV: Performance on MNIST-P. All methods use MLP
as the backbone network [5], [15]. The proposed gradient
learner has 1824 parameters.

Methods Accuracy BWT FWT

EWC [25] 59.31 -0.1960 -0.0075
GEM [5] 82.44 0.0224 -0.0095
DCL [15] 82.58 0.0402 -0.0092

GEM + 1-PL 80.61 0.0327 -0.0014
GEM + P-PL 80.58 0.0224 -0.0039
GEM reproduced 82.35 0.0251 -0.0101
GEM + MG 82.30 0.0332 -0.0170
GEM + proposed 82.91 0.0316 -0.0072

DCL + 1-PL 81.57 0.0479 0.0002
DCL + P-PL 80.95 0.0219 -0.0083
DCL reproduced 82.83 0.0279 -0.0100
DCL + MG 82.48 0.0423 -0.0078
DCL + proposed 82.97 0.0402 -0.0038

[28], X-DER [29], CFA [75], MutexMatch [32], Interpolation-
Based Contrastive Learning (ICL) [35], and the Glimpse Net-
work [76] use the same ResNet backbone. Compared to these
baselines, the proposed method achieves higher average accu-
racy and BWT, e.g. ResNet GEM + proposed. This implies
that the proposed method effectively utilizes the information
of unlabeled images to improve the predictive ability, allevi-
ates catastrophic forgetting, and enhances zero-shot learning
ability. Moreover, the proposed method consistently improves
the average accuracy, BWT, and FWT of the baselines with
the same backbone, e.g. ResNet GEM reproduced vs. ResNet
GEM + proposed.

In the ACL setting (i.e. Table VI and VII), the average
accuracy and BWT of the baseline are improved by the
proposed method. Moreover, the standard deviation w.r.t. the
proposed method over 5 runs is smaller than the corresponding
baseline. This implies the proposed method is more stable than
the baseline.

On the other hand, 1-PL and P-PL yield lower accuracies
than the proposed method. This is because the pseudo labels

TABLE V: Performance on iCIFAR-100. ResNet indicates
ResNet-18. EffNet stands for EfficientNet (B1) [57]. The
proposed gradient learner has 4896 parameters.

Methods Accuracy BWT FWT

EWC [25] 48.33 -0.1050 0.0216
iCARL [26] 51.56 -0.0848 0.0000
MAS [71] 49.45 -0.0674 0.0157
A-GEM [72] 67.14 0.0037 0.0087
LUCIR [30] 58.71 0.0177 -0.0067
BiC [73] 60.92 -0.0010 -0.0023
HAL [74] 63.85 0.0017 0.0088
DER [28] 65.72 0.0011 0.0053
X-DER [29] 68.32 0.0223 0.0017
CFA [75] 67.41 0.0124 -0.0026
MutexMatch [32] 68.09 0.0156 0.0021
ICL [35] 67.23 0.0084 -0.0012
Glimpse [76] 66.87 0.0169 -0.0031
ResNet GEM [5] 66.67 0.0001 0.0108
ResNet DCL [15] 67.92 0.0063 0.0102
EffNet GEM [15] 80.80 0.0318 -0.0050
EffNet DCL [15] 81.55 0.0383 -0.0048

ResNet GEM + 1-PL 65.44 0.0861 -0.0030
ResNet GEM + P-PL 65.55 0.0511 -0.0033
ResNet GEM reproduced 66.92 0.0132 -0.0048
ResNet GEM + MG 67.24 0.0614 -0.0001
ResNet GEM + proposed 68.74 0.0619 0.0055

ResNet DCL + 1-PL 66.43 0.0765 0.0051
ResNet DCL + P-PL 67.78 0.0704 0.0078
ResNet DCL reproduced 67.55 0.0048 -0.0117
ResNet DCL + MG 66.07 0.0524 0.0184
ResNet DCL + proposed 68.53 0.0574 -0.0038

EffNet GEM + 1-PL 78.33 0.0855 -0.0106
EffNet GEM + P-PL 77.46 0.0535 0.0077
EffNet GEM reproduced 81.44 0.0128 0.0105
EffNet GEM + MG 83.95 0.0294 -0.0256
EffNet GEM + proposed 85.51 0.0219 0.0148

EffNet DCL + 1-PL 77.12 0.0862 -0.0160
EffNet DCL + P-PL 76.82 0.0821 0.0097
EffNet DCL reproduced 83.47 0.0266 -0.0185
EffNet DCL + MG 85.06 0.0488 -0.0043
EffNet DCL + proposed 85.70 0.0378 0.0017

TABLE VI: Performance on CIFAR-100 in adversarial con-
tinual learning setting. The training process is repeated 5
times, and the average accuracy and standard deviation are
reported [14]. ACL uses AlexNet [55] as backbone. The
proposed gradient learner has 1427 parameters.

Methods Accuracy BWT

A-GEM [12] 54.38±3.84 -0.2199±0.0405
ER-RES [13] 66.78±0.48 -0.1501±0.0111
PNN [77] 75.25±0.04 0
HAT [9] 76.96±1.23 0.0001±0.0002
ACL [14] 78.08±1.25 0±0.0001

ACL reproduced 78.17±1.32 0.01±0.0168
ACL + proposed 78.46±1.05 0.01±0.0123

are likely to be incorrect as the training samples are not
adequate and the visual concepts vary from task to task
(the analysis of pseudo labeling is provided in Section VI).
Incorrect pseudo labels lead to the gradients that guide the
learning process in unpredictable directions. Note that the
BWTs of 1-PL and P-PL are higher than the others. This
results from lower accuracy. As indicated in the definition of
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TABLE VII: Performance on miniImageNet in adversarial
continual learning setting. The training process is repeated
5 times, and the average accuracy and standard deviation
are reported [14]. ACL uses AlexNet [55] as backbone. The
proposed gradient learner has 1427 parameters.

Methods Accuracy BWT

A-GEM [12] 52.43±3.10 -0.1523±0.0145
ER-RES [13] 57.32±2.56 -0.1134±0.0232
PNN [77] 58.96±3.50 0
HAT [9] 59.45±0.05 -0.0004±0.0003
ACL [14] 62.07±0.51 0±0

ACL reproduced 62.69±1.01 0±0.0042
ACL + proposed 63.88±0.39 0±0.0000

TABLE VIII: Semi-supervised classification error rates (%)
of the Conv-Large [70] architecture on the SVHN, CIFAR-
10, and CIFAR-100 datasets. The numbers of labeled data
are 1k, 4k, and 10k for these three datasets, respectively. We
follow the exact experimental protocol used in [20] and use
the official implementation code to conduct this experiment.
The meta-objective defined in [20] is used as the fitness loss
to learn to predict pseudo gradients for unlabeled images.

Method SVHN CIFAR-10 CIFAR-100

Co-training [78] 3.29 8.35 34.63
TNAR-VAE [79] 3.74 8.85 -
ADA-Net [80] 4.62 10.30 -
DualStudent [81] - 8.89 32.77
MG [20] 3.15 7.78 30.74

MG reproduced 3.53 7.82 30.74
MG + proposed 3.45 7.46 30.02

BWT (Eq. (16)), when the test classification accuracy Ri,i on
the i-th task with the model trained in the i-th task is low, it
will lead to high BWT. In other words, when overall ACC is
high, BWT tends to be relatively low. Similarly, FWT tends to
be high (i.e. 0.0216) when the corresponding accuracies over
tasks are low (i.e. 48.33%).

Since the proposed method is generic, we also evaluate it
in the SSL setting [20]. The meta-objective defined in [20] is
used as the fitness loss to learn to predict pseudo gradients for
unlabeled images. The experimental results on SVHN [69],
CIFAR-10, and CIFAR-100 are reported in Table VIII. The
proposed method can improve the performance of the SSL
task. This implies that the proposed method generally work
with the unlabeled data with the pseudo labels that share the
same or similar distributions as the labeled data.

VI. ANALYSIS

This section provides a series of experiments to analyze the
proposed method. All analyses are based on iCIFAR-100.

A. Effects of Visual Diversity

Here, we study the influence of the variance between
training images and the unlabeled images on the model
performance. In addition to the Tiny ImageNet from the
previous section, we selected a variety of datasets, namely MS

TABLE IX: Effects of visual diversity of x̃ on the classifica-
tion performance (%) on iCIFAR-100 with ResNet GEM.

Source Accuracy BWT FWT

x̃ = ∅ 66.92 0.0132 -0.0048

Tiny ImageNet [41] 68.74 0.0619 0.0055
MS COCO [68] 67.78 0.0562 0.0006
CUB-200 [82] 68.03 0.0460 0.0041
FGVC-aircraft [83] 67.05 0.0385 0.0159
Stanford-cars [84] 67.41 0.0465 -0.0028

TABLE X: Effects of random noise on the performance (%)
with ResNet GEM. The noise follows a uniform distribution
U(−1, 1) or a unit normal distribution N (0, 1), and is used as
predicted gradients. The experimental details are described in
Section VI-B.

Setting Accuracy BWT FWT

No noise 66.92 0.0132 -0.0048
No noise + proposed 68.74 0.0619 0.0055

U(−1, 1) 54.10 0.1978 -0.0121
U(−1, 1) + proposed 67.71 0.0533 0.0004

N (0, 1) 45.29 0.2121 0.0032
N (0, 1) + proposed 67.08 0.0502 0.0007

COCO [68], CUB-200 [82], FGVC-aircraft [83], and Stanford-
cars [84], as the source of unlabeled images. The classes in
these datasets overlap with the ones in CIFAR-100 to various
degrees. The performance are reported in Table IX. Overall,
the proposed method shows improvement with all unlabeled
images source. The images in Tiny ImageNet are similar to
the ones in MS COCO, where both are natural images but
having different image resolution. The resolution of images
in Tiny ImageNet is closer to that in CIFAR-100 than MS
COCO. Therefore, using Tiny ImageNet images leads to the
most performance improvement. In contrast, the images in
FGVC-aircraft are the most dissimilar to the ones in CIFAR-
100 and the accuracy improvement is marginal. On the other
hand, using CUB-200 leads to higher accuracy than using
MS COCO. This is because CUB-200 shares similar visual
concepts with CIFAR (i.e. bird) and both the two datasets are
object-centered, whereas the images of MS COCO contain
multiple objects and are non-object-centered.

B. Using Random Noise as Pseudo Gradients

To evaluate the efficacy of the proposed method, we use
random noise as the predicted gradients. The random noise is
either generated by a uniform distribution U(−1, 1) or a normal
distribution N (0, 1). The results with the same experimental
set-up as Table V are shown in Table X. Specifically, U(−1, 1)

or N (0, 1) indicates that the corresponding noise is used to
replace ḡ|x̃i (see line 13 in Algorithm 1), while proposed
indicates that the corresponding noise is used to replace g|x̃i

(see line 12 in Algorithm 1) and they will be the input to the
equations in line 13 in Algorithm 1. As shown, U(−1, 1) or
N (0, 1) produces much lower accuracy than the other settings.
Note that the random noise disturbs the training for all the
tasks so that the accuracies of preceding tasks are low when
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TABLE XI: Effects of different numbers of labeled images on
iCIFAR-100. L-Ratio indicates the amount of labeled images
in iCIFAR-100 used for training. About 20% of unlabeled
images are sampled from Tiny ImageNet. The setting is the
same as the one used in Table V and ResNet GEM is used in
this analysis.

Method L-Ratio Accuracy BWT FWT

MG [20]

20% 48.02 0.0420 0.0033
40% 60.09 0.0822 -0.0004
60% 61.40 0.0699 -0.0047
80% 63.21 0.0541 0.0006

100% 67.24 0.0614 -0.0001

Proposed

20% 50.38 0.0693 -0.0011
40% 61.10 0.1045 -0.0039
60% 61.38 0.0582 0.0107
80% 64.60 0.0552 0.0003

100% 68.74 0.0619 0.0055

computing the BWT scores for the current task. As discussed
in Section V-E, this leads to high BWTs, according to the
definition of BWT (Eq. (16)).

C. Effects of Number of Labeled/Unlabeled Images

To understand how the numbers of labeled and unlabeled
images affect the performance of CL, we conduct an analysis
to show the performance of using different amount (range
from 0% to 100%) of labeled and unlabeled images. Without
using any unlabeled images, it implies the methods is a regular
SCL method. We compare our proposed method with Meta-
gradient [20] and the results with different amount of labeled
(unlabeled) images are reported in Table XI (Table XII). For
results in Table XI, we use 20% of unlabeled images for
training. An observation is that the performance increases as
more labeled images are used for training. On the contrary,
using more unlabeled images, which follows very different
distributions in comparison to the labeled images, does not al-
ways lead to better performance. As discussed in Section IV-E
and shown in Fig. 1, the distributions of unknown classes’
samples could be very different from the ones of known
classes’ samples. Therefore, using more unlabeled images of
the unknown classes would lead to a performance drop.

D. How Hyperparameters Range Across Datasets

In this section, we study how key hyperparameters p, α,
and λ are robust to the training on different datasets when
using the same unlabeled data. Fig. 6 shows the curves of the
accuracy w.r.t. p, α, and λ. Overall, the curves w.r.t. iCIFAR-
100 and MNIST-R are similar to each other. Specifically, as
the values of p, α, and λ exceed a certain point, it would lead
to a significant drop in accuracy. The hyperparameters used in
this work (see Table II) are selected in the optimal range.

E. Ablation Study

As introduced in the experimental set-up, the proposed
method depends on five hyperparameters. This section shows
the corresponding ablation studies and the results are shown

Figure 6: Effects of p (top), α (middle), and λ (bottom) on
accuracy across datasets (i.e. iCIFAR-100 and MNIST-R).

TABLE XII: Effects of different numbers of unlabeled images
on iCIFAR-100. U-Ratio is the amount of unlabeled images
in Tiny ImageNet used for training. The setting is the same
as the one used in Table V and ResNet GEM is used in this
analysis.

Method U-Ratio Accuracy BWT FWT

MG [20]

0% 66.92 0.0132 -0.0048
10% 66.43 0.0539 -0.0118
20% 67.24 0.0614 -0.0001
40% 67.03 0.0601 -0.0010
60% 66.95 0.0579 -0.0037
80% 66.71 0.0536 -0.0059
100% 66.27 0.0456 0.0018

Proposed

0% 66.92 0.0132 -0.0048
10% 67.80 0.0525 0.0084
20% 68.74 0.0619 0.0055
40% 67.53 0.0630 0.0140
60% 67.99 0.0644 0.0099
80% 67.91 0.0581 -0.0021
100% 66.96 0.0573 0.0000

in Fig. 7. As discussed in Section IV, p reflects the trade-off
between overwhelming and generalizing. As p increases, the
accuracy drops significantly. This is as expected in the earlier
discussion. Moreover, we can observe that the architecture of
the proposed gradient learner is more critical to the proposed
method in terms of accuracy, BWT, and FWT, comparing to
the other hyperparameters.

F. Training Loss, Validation Accuracy, and Fitness Loss
The losses and accuracy against tasks are shown in Fig. 8.

As shown, the proposed method can improve the predictive
ability of CL models, i.e. EfficientNet GEM and Efficient-
Net DCL, when unlabeled data and corresponding predicted
gradients are used. The loss is decreased and the accuracy is
increased. On the bottom row, the curves of the fitness loss vs.
task show that the fitness loss (6) across tasks is minimized
by the proposed gradient learner.

G. Pseudo Labeling vs. Gradient Prediction
This section examines how pseudo labeling and gradient

prediction work in the CL method. Moreover, we investigate
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Figure 7: Ablation study of the proposed method with
various hyperparameters detailed in Section V. The metrics
are classification accuracy (left), BWT (middle), and FWT
(right). ResNet GEM is used for the analysis.

the correlations between the gradients generated by various
methods and its performance.

To understand the efficacy of pseudo labeling methods, we
first inspect the gradients generated with pseudo labels and the
accuracy of pseudo label prediction on training samples. We
take the gradients generated with ground-truth labels as a ref-
erence and compute the cosine similarity cos( ∂ℓ

∂z
|x,t,y, ∂ℓ

∂z
|x,t,ŷ)

between the gradients generated with two types of labels,
where x, t, y are training samples and ŷ are pseudo labels.
In this way, the discrepancy can be quantified as the cosine
similarity. In other words, if pseudo labels are the same as the
ground-truth labels, the cosine similarity between the gradients
generated with pseudo labels and ground-truth labels should
be 1, which indicates the resulting gradients are fully aligned.
As shown in Fig. 9, the cosine similarities generated by 1-PL
and P-PL are stably around 0.4. The drop from 1 to 0.4 results
from the incorrect pseudo labels. The accuracies of 1-PL and
P-PL are lower than 1%. The reasons for the low accuracy are
two-fold. First, in CL, all samples are only observed once and
the number of training sample w.r.t. a class is relatively small,
e.g. 500 on iCIFAR-100. Thus, there is no enough data to
train a high-performance teacher model. Second, the classes
of samples are used for training at a task are distinct from
that of the other tasks. This dynamic results in the difficulty
to train a strong teacher model.

TABLE XIII: Computational complexity on iCIFAR-100.

Methods Training Time
(ms/Image)

GPU Mem
(MB/Image)

ResNet GEM + 1-PL 25 194
ResNet GEM + P-PL 25 194
ResNet GEM 18 193
ResNet GEM + MG 14 194
ResNet GEM + proposed 19 193

ResNet DCL + 1-PL 24 194
ResNet DCL + P-PL 25 194
ResNet DCL 15 193
ResNet DCL + MG 13 193
ResNet DCL + proposed 16 193

EffNet GEM + 1-PL 108 753
EffNet GEM + P-PL 109 753
EffNet GEM 60 756
EffNet GEM + MG 61 750
EffNet GEM + proposed 62 756

EffNet DCL + 1-PL 108 763
EffNet DCL + P-PL 108 763
EffNet DCL 57 759
EffNet DCL + MG 56 757
EffNet DCL + proposed 61 759

Next, we examine how the gradients generated by various
methods correlate with the performance. Note that the pre-
dicted gradients aim to minimize the fitness loss (6), while
the pseudo labeling methods aim to maximize the similar-
ity between the gradients generated with pseudo labels and
ground-truth gradients labels. Hence, the predicted gradients
are expected to differ from the ground-truth generated gra-
dients. As shown in Fig. 10, ResNet GEM + P-PL yields
a higher cosine similarity than ResNet DCL + P-PL, but
achieves a lower accuracy. In contrast, the proposed method’s
(i.e. with gradient prediction) accuracy is clearly proportional
to the cosine similarity. On the other hand, we observe that
discriminative features produced by a strong backbone will
lead to better predicted gradients in terms of the geometric
relationship.

H. Computational Complexity for Training

Table XIII reports the runtime and GPU memory for train-
ing models. For ResNet models, the training time per image
ranges from 13-25 ms, with MG being fastest and P-PL
being slowest. For EfficientNet models, training is generally
slower, ranging from 56-109 ms per image. GPU memory
usage per image is around 190-200 MB for ResNet models
and 750-760 MB for EfficientNet. There is little difference
between methods. In general, MG and the proposed method
are faster than the other methods (i.e. baseline, 1-PL, and P-
PL). In particular, the proposed gradient learner method has
comparable speed to MG for both ResNet and EfficientNet
models, while using slightly less memory.

VII. CONFUSION MATRIX

To comprehensively understand the efficacy of the proposed
predicted gradients, we visualize the confusion matrices gen-
erated by various methods on iCIFAR-100 in Fig. 11 and
12. The i-th row of the confusion matrix indicates the test
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ResNet GEM ResNet DCL EffNet GEM EffNet DCL

Figure 8: Plots of the training loss curves (top row), the validation accuracy curves (middle row), and fitness loss curves
(bottom row) on iCIFAR-100 with various pairs of methods and backbones.

(a) ResNet GEM 1-PL (b) ResNet DCL 1-PL

(c) ResNet GEM P-PL (d) ResNet DCL P-PL

Figure 9: Plots of cosine similarity between the gradients
generated with ground-truth labels and pseudo labels (black
curve), as well as the corresponding pseudo label prediction
accuracy (brown curve). Due to the lack of training samples
and the dynamical change of visual concepts at each task, the
pseudo label prediction perform badly (lower than 1%). This is
consistent with the drop on the cosine similarity, which should
be 1 if the predicted pseudo labels are correct.

classification accuracies over 20 tasks with the model trained
on the i-th task. Similarly, the j-th column indicates the results
are evaluated on the test set of the j-th task.

As shown in Fig. 11, leveraging extra unlabeled images
with the proposed method will have lower accuracies on early
tasks than the baseline as the proposed gradient learner does
not have sufficient training samples for learning. With more
and more training samples being observed, better predicted
gradients are produced to improve the performance on late

Figure 10: Correlation between cosine similarity and averaged
accuracy. Left: Experiments with 1-PL and P-PL; Right:
Experiments with the proposed method.

tasks. In addition, the accuracies of 1-PL and P-PL are overall
lower due to the disturbance caused by the incorrect pseudo
labels. As discussed in Section V-E, low Ri,i leads to a high
BWT score.

Table X shows that using random noise as predicted gradi-
ents yields higher BWT than the other settings. Again, this
is because the random noise disturbs the learning process,
which leads to low accuracies (see Fig. 12). More importantly,
Fig. 12 shows that random noise + proposed is more robust
than method with only random noise.

VIII. CONCLUSION

In this work, we study how to exploit the semantics of the
unlabeled data to improve the generalizability of CL meth-
ods. Exsisting semi-supervised (continual) learning presumes
that the labels associated with unlabeled data are known to
the learning process. We relax the constraint, i.e. the labels
associated with unlabeled data could be known or unknown
to the learning process. Correspondingly, we propose a new
SSCL method, where a novel gradient learner is trained with
labeled data and utilized to generate pseudo gradients when
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(a) 1-PL (b) P-PL (c) Baseline (d) Proposed

Figure 11: Confusion matrix generated by different methods. The i-th row indicates it is the training stage with the i-th task’s
samples, while the i-th row j-th column indicates the model trained with the i-th task’s samples is evaluated on the j-th task.
ResNet GEM is used for the analysis.

(a) N (0, 1) (b) N (0, 1) + proposed (c) U(−1, 1) (d) U(−1, 1) + proposed

Figure 12: Confusion matrix generated with random noise. The experimental details are described in Section VI-B.

the input label is absent. The proposed method is evaluated
in the CL and ACL settings. The experimental results show
that the average accuracy and backward transfer are both
improved by the proposed method and achieve state-of-the-
art performance. This implies that utilizing the semantics of
the unlabeled data improves the generalizability of the model
and alleviates catastrophic forgetting. Last but not least, we
provide empirical evidence to show that the proposed method
can generalize to the semi-supervised learning task.
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