Avatar Self-Embody Enhances Distance Perception Accuracy in Non-Photorealistic Immersive Virtual Environments

Lane Phillips, Brian Ries, Michael Kaeding and Victoria Interrante
Department of Computer Science, University of Minnesota

ABSTRACT
Non-photorealistically rendered (NPR) immersive virtual environments (IVEs) can facilitate conceptual design in architecture by enabling preliminary design sketches to be previewed and experienced at full scale, from a first-person perspective. However, it is critical to ensure the accurate spatial perception of the represented information, and many studies have shown that people typically underestimate distances in most IVEs, regardless of rendering style. In previous work we have found that while people tend to judge distances more accurately in an IVE that is a high-fidelity replica of their concurrently occupied real environment than in an IVE that it is a photorealistic representation of a real place that they’ve never been to, significant distance estimation errors re-emerge when the replica environment is represented in a NPR style. We have also previously found that distance estimation accuracy can be improved, in photo-realistically rendered novel virtual environments, when people are given a fully tracked, high fidelity first person avatar self-embodiment. In this paper we report the results of an experiment that seeks to determine whether providing users with a high-fidelity avatar self-embodiment in a NPR virtual replica environment will enable them to perceive the 3D spatial layout of that environment more accurately. We find that users who are given a first person avatar in an NPR replica environment judge distances more accurately than do users who experience the NPR replica room without an embodiment, but not as accurately as users whose distance judgments are made in a photorealistically rendered virtual replica room. Our results provide a partial solution to the problem of facilitating accurate distance perception in NPR virtual environments, while supporting and expanding the scope of previous findings that giving people a realistic avatar self-embodiment in an IVE can help them to interpret what they see through an HMD in a way that is more similar to how they would interpret a corresponding visual stimulus in the real world.

Additional Keywords: spatial perception, immersive virtual environments, non-photorealistic rendering, first-person avatars.

1. INTRODUCTION
Immersive virtual environments can play a valuable role in the architectural design process by enabling people to preview designs from a first-person perspective before they are built [1, 3]. Although most often used to provide photorealistic walkthroughs of finished models, we believe that there is tremendous potential for greater use of virtual environments technology earlier in the design process, to facilitate the exploration of alternative conceptual approaches to the basic layout of the designed space.

Non-photorealistic rendering provides a promising solution to the problem of how to represent basic design ideas. Architects typically rely on rough 2D sketches at the beginning of the design process because the details necessary to produce a finished drawing have not yet been determined, and research has shown that sketch-style drawings are particularly effective at conveying the unfinished character of a design and inviting the consideration of changes [11].

A crucial goal in using immersive virtual environments technology is to enable people to experience the 3D space of a design from a first person perspective, so that they can naturally and intuitively interpret its spatial dimensions and layout. However studies have found that people typically do not judge egocentric distances in virtual environments as accurately as they do in the real world, and much effort has been devoted to investigating this problem and exploring potential solutions [6].

In this paper we address the question of how to facilitate accurate spatial perception in a NPR IVE. In particular, we report the results of an experiment in which we test the impact of providing people with a first person avatar self-representation in the NPR IVE.

2. PREVIOUS WORK

Non-photorealistic rendering has long been advocated as a useful device for conveying a sense of uncertainty about an architectural design and for indicating that a given 3D model is preliminary and open to change [11]. Klein et al. [5] were the first to demonstrate a system for rendering virtual environments in a NPR style. Their method achieved a painterly representation through the use of dynamic stroke-based textures.

Gooch and Willemsen [2] were the first to investigate the accuracy of distance perception in NPR IVEs presented via head mounted displays (HMDs). Their initial study considered a line-drawing representation, and they found that people underestimated distances in the NPR IVE. In subsequent work, they and others compared distance perception in the line-drawing style IVE with distance perception in a non-photorealistically textured virtual environment and in a simulated virtual environment created from panoramic photos, and found that participants underestimated distances in all three of these environments to a nearly equivalent extent [12].

Our group discovered that people do not tend to significantly underestimate distances in IVEs when the virtual environment is a high fidelity replica of the same physical environment that the observer knows that s/he is concurrently occupying [4]. However, we found that significant errors in distance estimation do occur when this replica environment is rendered in a NPR style [7]. Several possible explanations can be considered. On the one hand, participants could be misjudging distances when the replica environment is rendered as a line drawing because of a lack of sufficient detail in the line drawing representation. The statistics of the images available to the viewer in this case are very different from the statistics of natural images, and it is possible that the impoverished NPR representation lacks critical cues that our visual system relies upon when making spatial judgments. However it is also possible that participants are underestimating distances in the NPR IVE because its lack of realism interferes with their ability to feel present in the virtual environment, and that this lack of presence in turn affects their interpretation of the visual input provided by the head mounted display.
Mel Slater and others have long advocated providing participants in a virtual environment with a virtual body in order to enhance their sense of presence [10]. In recent work [8], our group has found that people who are given a high fidelity avatar self-embodiment in a novel, highly realistic virtual environment are able to judge distances in that environment significantly more accurately than are people who are immersed in the same VE without an embodiment. However, follow up studies found that this performance boost was compromised when either an impoverished dot avatar representation, or single point tracking, as opposed to full-body tracking, was used [9].

If people are failing to accurately judge distances in our NPR virtual replica room because of a lack of detail in the rendering, then one possible solution would be to use a different style of NPR to represent our models. If, however, the decrease in performance is due to a lack of presence in the NPR IVE, then we might be able to improve the situation by providing people with a high fidelity avatar self-embodiment. The study we report here seeks to evaluate the potential of taking this latter approach.

3. OUR EXPERIMENT

The goal of our experiment was to determine whether participants would be able to judge egocentric distances more accurately in an NPR immersive virtual environment, presented via a head-mounted display, when they are immersed in that environment with a high fidelity avatar self-embodiment, as opposed to experiencing the environment from the default perspective of a dis-embodied viewer.

3.1. Method

We used direct ‘blind walking’ to assess the accuracy with which participants judged distances in our NPR virtual replica and in the real world. We used a mixed within- and between-subjects design, in which half of the participants experienced the virtual environment with an avatar embodiment and half did not, and all participants made judgments in both the virtual environment and in the real world as a control.

3.1.1. Participants

Twelve new participants (11 male, 1 female) took part in this experiment. Ten (9 male, 1 female) experienced the NPR VE with an avatar self-embodiment, while the other two experienced the without-avatar condition; the latter’s results were combined with the results of the 8 participants in our earlier experiment [7] run under identical conditions, to yield a total of 20 results for our present analysis. All participants were University of Minnesota students, ranging in age from 18 to 33 years old. They were recruited via either a hand-held sign at a high-traffic sidewalk, a posted sign on our lab door, or an announcement in one of the authors’ large undergraduate classes. Each participant was compensated with a $10 gift certificate to a national retail chain.

3.1.2. Apparatus

The experiment was conducted in our Digital Design Consortium Laboratory, consisting of a large rectangular room with a large, curved screen on one side. This space was 30’ long, and 25’ wide at its widest point, narrowing to a width of 16.5’ at each end.

The virtual environment was modeled in SketchUp as an exact 3D replica of the real room, and was rendered with non-photorealistic textures derived by hand-tracing over the major edges in photographs of the original space. Our goal was to emulate the style of the NPR environment used in [2, 12], although the contours in that case were derived from the model geometry rather than from textures. Figure 1 shows the high-fidelity version of the replica virtual environment used in our earlier experiments and figure 2 shows the NPR version of that environment used in this study. The model was rendered using the OGRE library, which provided useful support for the avatar animation. The appearance of the virtual environment was identical in both cases and we did not notice any differences in rendering speed between the two conditions. Rendering was done on a desktop computer with a 2.42 GHz AMD Athlon 64 X2 dual core processor 4800+ with 2.0GB of RAM and an nVidia Quadro FX 4500 video card with 512 MB of graphics RAM.

Figure 1: A screen shot of the photorealistic virtual environment used in our prior experiments, showing the photographic textures that were drawn over to define the line-drawing textures used in the NPR rendering.

Figure 2: A screen shot of the NPR IVE used in this experiment.

The virtual environment was presented using an nVisor SX head mounted display, which has two 1280 x 1024 screens (one for each eye) that provide 100% stereo overlap across a manufacturer-specified 60° monocular field of view. Foam blinders attached to the HMD blocked participants’ view of the external environment. The HMD weighed about 1 kg and was connected by a 15’ cable to a video control unit that was strapped to a wheeled cart. An experimenter managed the cables to prevent them from getting in the participant’s way or from weighing down behind their head. Real time viewpoint tracking was provided by a HiBall 3000 optical ceiling tracker in the without-avatar condition, and, in the with-avatar condition, by a 12-camera Vicon MX40 motion capture system tracking six retro-reflective markers attached to the HMD. A portable radio tuned to static was used to mask auditory cues to participants’ locations. Participants in the with-avatar condition wore a black body suit over their clothes, to which we attached 41 retro-reflective markers to enable full body tracking. Additional markers were
attached to participants’ hands and feet. The avatar used in the experiment was based on a generic texture-mapped mesh from TurboSquid. All participants were embodied using the same mesh, which was manually skinned to the default Vicon skeleton in an offline pre-process. The skeleton was then custom-fitted to each participant via a calibration procedure, and the avatar mesh was scaled to fit. Particular care was taken to ensure that the avatar width was appropriate to the user, and that the lengths of the avatar’s feet were scaled to match the participant’s.

3.1.3. Procedure

Each participant individually entered our lab and read written instructions describing the experiment. The ten participants in the with-avatar condition went through an additional pre-process in which they put on the motion capture suit and performed a range-of-motion exercise to calibrate the Vicon system. All participants were assisted in putting on the HMD and adjusting it to fit.

Each participant performed 20 trials of blind walking in the virtual environment, followed by 10 trials of blind walking in the real room as a control. At the start of each trial, participants in the with-avatar condition were shown one virtual tape mark on the ground about 8–10’’ in front of their virtual feet and another at a random distance 8–20’’ in front of them. They were instructed to look down and align their toes with the starting mark, take visual aim at the ending mark, and then, when ready, to close their eyes, say ‘ready’ (at which point the display was blanked), walk with their eyes closed to where they thought the ending tape mark was, and then stop and say ‘done’. The use of the starting tape mark provided a subtle means of ensuring that all of the participants who had an avatar saw their avatar (as shown in figure 3) at the start of each trial. Participants in the without-avatar condition were only shown the ending tape mark, as they had no visible feet to align with a starting tape mark, and we did not want to explicitly draw their attention to their lack of an embodiment. At the end of each trial, the participant was directed to walk (with their eyes still shut) to a new position to start the next trial.

After completing the virtual world trials, participants removed the HMD, and motion capture suit if applicable, and performed ten similar trials in the real room as an individual control. We used each participant’s performance in the real world to calibrate their performance in the virtual world. The procedure for the real world trials was essentially the same as for the virtual world trials, except that the starting and ending points for each trial were marked using arbitrarily placed strips of cloth. Participants in the without-avatar condition did not wear shoes during the virtual-world trials (so that we could track their feet), but were required to wear their shoes during the real-world trials, so that they could not feel the cloth strips. Participants also wore a blindfold during the real world trials to ensure that they were not able to peek at the floor any time. The distances between tape marks and the distances walked were measured with a tape measure.

3.2. Results

Figures 4 and 5 show the results of the 20 total participants in the without- and with- avatar conditions respectively. The results of 8 of the participants in the without-avatar condition were previously presented in an earlier paper [7].

As a group, participants significantly underestimated distances in the NPR virtual world relative to in the real world in both conditions (F(1,18) = 27.026, p < 0.001 with no avatar, and F(1,18) = 16.608, p < 0.001 with an avatar). This indicates that giving people an avatar self-embodiment in a NPR virtual environment does not enable them to perceive distance in that environment as accurately as they can perceive distances in the real world.

However, the difference in the virtual and real world errors was significantly smaller for the participants who were given an avatar self-embodiment in the NPR IVE, as a group, than for the participants who experienced the NPR IVE without an embodiment (F(1,18) = 5.118, p = 0.036). The average difference between the relative errors in participants’ virtual world and real world distance judgments was -14.70% for the participants who experienced the NPR IVE with a first-person avatar self-embodiment and -25.97% for the participants who experienced the NPR IVE in the default, dis-embodied manner. This suggests that while providing people with a first-person avatar does not solve the problem of distance underestimation in NPR virtual environments, it does help.

3.3. Discussion

Although it appears clear that providing people with a first-person avatar in a NPR IVE enables them to perceive distances in that environment more accurately than if they are not embodied, the explanation for this result remains open to interpretation. On the one hand, it is possible that providing people with an avatar self-embodiment enables them to feel more ‘present’ in the virtual environment, which in turn encourages them to act upon what they see through the HMD in a way that is more similar to how they would act in the real world, despite the ‘unreality’ of what
they are seeing, while participants who view the same environment without an embodiment experience greater uncertainty in how to interpret the unfamiliar visual input. But other explanations cannot be ruled out. For instance, it is possible (but unlikely in light of the findings of [9]) that participants are using the familiar size cues provided by the high fidelity virtual body representation as a referent for calibrating their perception of scale in the NPR IVE. It is also possible that some subtle difference in procedure between the with- and without-avatar trials is responsible for the performance difference, although we feel that this is unlikely in the absence of any clear theoretical basis for concern.

In future work we are also interested in exploring the use of alternative NPR representational styles. We remain concerned that the particular rendering style chosen for this study produces images whose statistics are very different from the statistics of natural images, and we foresee some potential benefit in using a NPR representation that involves more natural variation in the input signal.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation through grants IIS-0313226 and IIS-0713587, and by the University of Minnesota through the Digital Technology Center and the Linda and Ted Johnson Digital Design Consortium Endowment and Lab Setup Funds.

REFERENCES