Wiera: Towards Flexible Multi-Tiered Geo-Distributed
Cloud Storage Instances

Kwangsung Oh, Abhishek Chandra, and Jon Weissman
Department of Computer Science and Engineering
University of Minnesota Twin Cities
Minneapolis, MN 55455
{ohkwang, chandra, jon}@cs.umn.edu

ABSTRACT

Geo-distributed cloud storage systems must tame complex-
ity at many levels: uniform APIs for storage access, support-
ing flexible storage policies that meet a wide array of appli-
cation metrics, handling uncertain network dynamics and
access dynamism, and operating across many levels of het-
erogeneity both within and across data-centers. In this pa-
per, we present an integrated solution called Wiera. Wiera
extends our earlier cloud storage system, Tiera, that is tar-
geted to multi-tiered policy-based single cloud storage, to
the wide-area and multiple data-centers (even across dif-
ferent providers). Wiera enables the specification of global
data management policies built on top of local Tiera policies.
Such policies enable the user to optimize for cost, perfor-
mance, reliability, durability, and consistency, both within
and across data-centers, and to express their tradeoffs. A
key aspect of Wiera is first-class support for dynamism due
to network, workload, and access patterns changes. Wiera
policies can adapt to changes in user workload, poorly per-
forming data tiers, failures, and changes in user metrics
(e.g., cost). Wiera allows unmodified applications to reap
the benefits of flexible data/storage policies by externaliz-
ing the policy specification. As far as we know, Wiera is the
first geo-distributed cloud storage system which handles dy-
namism actively at run-time. We show how Wiera enables
a rich specification of dynamic policies using a concise nota-
tion and describe the design and implementation of the sys-
tem. We have implemented a Wiera prototype on multiple
cloud environments, AWS and Azure, that illustrates poten-
tial benefits from managing dynamics and in using multiple
cloud storage tiers both within and across data-centers.

Keywords

Data Locality; Multi-DCs; Multi-tiered storage; Wide Area
Storage; In Memory Storage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan
© 2016 ACM. ISBN 978-1-4503-4314-5/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2907294.2907322

165

INTRODUCTION

Today, the use of multiple geo-distributed datacenters
(DCs) is commonly used to provide Internet services and ap-
plications to users that are distributed geographically. This
mode of deployment not only reduces user-perceived latency
by putting data close to users but also provides higher data
availability and better fault tolerance by replicating data to
multiple locations. Although this idea is simple, it intro-
duces many complexities for the owner of the application
and/or the data, 1) the number and location of replicas as
a function of the desired consistency model, 2) degree of
fault tolerance, 3) expected workload, and 4) metrics of in-
terest such as user-perceived latency, cost, and so on. This
is further complicated by the dynamics of the network en-
vironment, cloud services, and applications. Thus, static
decisions or policies will not be effective. For example, ap-
plication workload may vary over time with the storage sys-
tem seeing a write-intensive pattern at first as new data is
created and stored followed by a read-intensive pattern as
that data is retrieved. This pattern is common in many
data analytics applications. Similarly, the location of active
users or the demand for data may change over time based
on changing popularity, trends and user interests, especially
for Internet services.

While some geo-distributed storage systems [3, 22, 1] have
been proposed, they typically re-evaluate storage policies on
very coarse time-scales such as hours-to-weeks and make as-
sumptions that may not always be true (e.g., SPANStore
assumes users are static). This results in policies that
may be inadequate in a wide-area multiple-tier environment
that spans different storage providers in which time-scales
of change may be much shorter. Examples would include
bursty demand due to flash crowds, temporary network out-
ages, and changes in application access pattern type (reads
vs. writes), all of which may occur at short time scales
(seconds to minutes). Additionally, these systems gener-
ally do not exploit the wide diversity of storage characteris-
tics available at different tiers of the cloud storage hierarchy
both within and across data-centers and different providers.
Different cloud providers offer multiple cloud storage ser-
vices! with different characteristics such as durability, per-
formance, and cost across their constituent DCs. Exploiting
such diversity both within and across cloud storage providers
can yield greater storage options and therefore greater ben-
efits. Moreover, the number of DCs has been increasing
continuously suggesting this opportunity will only grow. Ac-

1.

n this paper, we use the term storage tier and storage
service interchangeably.

cording to datacentermap.com [10], there were 171 DCs as
of Sep 2014 but 201 as of Dec 2015 within only the US West
(California) region. So it seems clear that applications will
have many more storage options to place data given the in-
creased density of DCs. In a previous paper [15] we showed
that applications can benefit by using multiple DCs within
the same region.”

To address these challenges and opportunities, we present
a new geo-distributed cloud storage system called Wiera (or
Wide-area tIERA) that builds upon our Tiera cloud stor-
age system [18]. Tiera provides storage instances that span
the storage hierarchy within a single data-center for a single
cloud provider. Wiera extends Tiera in multiple dimensions:
to the wide-area across different data-centers, across differ-
ent cloud providers, and enables policies that can respond
to dynamism at short time scales (seconds to minutes). As
with Tiera, the client is shielded from the underlying com-
plexity introduced by multiple storage tiers across multiple
DCs by a simple PUT/GET API and the encapsulation of
storage policies. Wiera supports global policies by leverag-
ing the local policy framework within each Tiera instance.
A Wiera storage instance logically contains many Tiera in-
stances distributed across the wide-area. We present the
design and implementation of the Wiera system, show how
a rich array of policies can be easily expressed in Wiera,
and evaluate its performance on a live multi-cloud system
to show its potential.

The key contributions of this paper are:

e The design and implementation of the Wiera system,
an integrated geo-distributed cloud storage system
that runs both within and across data-centers owned
by different cloud providers.

e Mechanisms for easily specifying a rich array of global
storage policies across a geo-distributed multi-tiered
cloud storage environment including several common
policies from the literature.

e First-class support for handling network and applica-
tion dynamics within the storage policies to achieve
user metrics (e.g., reduced cost, latency, and so on).

e Flexibility that allows wunmodified applications to
furhter reap benefits by replacing data/storage poli-
cies externalized at run-time.

e An empirical evaluation of the Wiera prototype in the
Amazon AWS and Microsoft Azure clouds, showing
that the use of non-local data-center storage tiers can
result in: improved performance, reduced cost, and
desired consistency at lower overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of Tiera upon which Wiera
is built. Section 3 provides an overview of Wiera including
its architecture and examples of global policies. Section 4
explains the implementation details of a Wiera prototype
in the AWS (Amazon) and Azure (Microsoft) clouds. Sec-
tion 5 discusses the results of our experimental evaluation.
The results demonstrates that Wiera handles dynamics and
achieves benefits by utilizing disparate storage tiers across
multiple DCs and cloud providers. Section 6 reviews related
work. Section 7 concludes the paper.

2We use the term region to represent a specific location e.g.,
US West, US East, and Europe West.

166

2. BACKGROUND

Wiera extends Tiera in multiple directions: wide-area
(e.g., multiple data-centers, regions, and providers), dy-
namism, and global policies. We provide a brief description
of Tiera as a background for understanding Wiera. Read-
ers may consult the Tiera paper [18] for additional technical
details.

2.1 Tiera Instance

Cloud service providers offer multiple storage tiers with
different characteristics, performance, durability, and cost
for storage. For example, Amazon provides ElastiCache
(a caching service protocol compliant to Memcached), S3
(Simple Storage Service), EBS (Elastic Block Store), and
Glacier as different cloud storage options. These storage ser-
vices generally optimize one metric trading off others. For
instance, an application can get better performance from
ElastiCache but at high cost and low durability, compared
to using S3. Thus, it is common to see applications seek-
ing to obtain composite benefits from multiple cloud storage
tiers, e.g., putting hot data in memory using ElastiCache for
better performance and cold data in S3 for higher durabil-
ity and reduced cost with much lower performance. How-
ever, accessing multiple storage tiers introduces significant
complexities to the application because different tiers have
different interfaces and different data models. At the same
time, it creates a burden to specify and program policies to
manage data across the different storage tiers to realize the
desired metric(s). To address these problems, a Tiera in-
stance encapsulates multiple cloud storage tiers and enables
easy specification of a rich array of data storage policies to
achieve desired tradeoffs. An important property of Tiera
is that it can be inserted into an existing application frame-
work with minimal or no code changes.

Two primary mechanisms—event and response—are used
to express policies and manage data within the instance. An
event is the occurrence of some condition and a response is
the action executed on the occurrence of an event. Tiera
supports different kinds of events such as timer, threshold,
and action events. Tiera also supports responses such as
store, retrieve, copy, move, encrypt, compress, delete, and
grow to react to the events. New events and responses will
be added in support of Wiera as we will show in Section
3.2.3. A Tiera instance is defined by specifying the follow-
ing: the desired storage tiers, their capacities, and a set of
events along with their responses. For example, Figure 1(a)
and 1(b) show Tiera instances for low latency and for persis-
tent data respectively. LowLatencyInstance (Figure 1(a))
uses two storage tiers, Memcached for performance and EBS
for data persistence. For better performance, the instance
will put data into memory first and then copy data back
into EBS for persistence (write-back policy) responsive to
a timer event. PersistentInstance (Figure 1(b)) trades
performance for better data durability. This instance uses
a small Memcached area to cache the most recently writ-
ten data and copies data to EBS immediately when data is
inserted into Memcached according to a write-through pol-
icy. This example also shows a simple backup policy which
copies data into a more durable storage tier S3 if data in
EBS is filled more than 50%. In this instance, an applica-
tion may want to move data to Glacier instead of S3 not
only for durable storage but also to reduce the price of cold
data. Using these policies, the client of a Tiera instance is

Tiera LowLatencyInstance(time t) {
% two tiers specified with initial sizes
tierl: {name: Memcached, size: 5G};
tier2: {name: EBS, size: 5G};

% action event defined to always store data

% into Memcached

event(insert.into) : response {
insert.object.dirty = true;
store(what:insert.object, to:tier1);

}

% write back policy: copying data to
% persistent store on a timer event
event(time=t) : response {
copy(what: object.location
object.dirty ==
to:tier2);

== tierl &&
true,

(a) LowLatency Tiera instance.

Tiera PersistentInstance(time t) {
tier1l: {name: Memcached, size: 5G};
tier2: {name: EBS, size: 5G};
tier3: {name: S3, size: 18G};

% write-through policy using action event data

% and copy response

event(insert.into == tierl) : response {
copy(what:insert.object, to:tier2);

% simple backup policy
event(tier2.filled == 50%) : response {
copy(what:object.location == tier2,
to:tier3, bandwidth:4ekB/s);

(b) Persistent Tiera instance.

Figure 1: Tiera instance specifications.

shielded from the underlying complexity introduced by the
multi-tiered cloud storage services.

2.2 Data Model

Data in Tiera is stored as objects[14] treated as an unin-
terpreted variable size sequence of bytes that can represent
any type of application data, e.g., text files, tables, images,
etc. Each object is immutable (i.e., cannot be modified) and
can be accessed through a globally unique identifier that acts
as the key to access the corresponding value stored. It is up
to the application to decide the keyspace from which to se-
lect this globally unique identifier. Tiera exposes a simple
PUT/GET API to allow applications to store and retrieve
data. An object stored into Tiera cannot be edited, though
an application can choose to overwrite an object. To sup-
port policy specification, Tiera provides several common at-
tributes or metadata for each object such as: size, access fre-
quency, dirty bit, modified time, location (i.e., which storage
tier), and last access time. In addition, each object can be
assigned a set of tags which enables an application to define
object classes (those that share the same tag). The user can
then easily specify policies that apply to all objects of a par-
ticular class. For example, an application could add a “tmp”
tag to temporary file and a policy could dictate that objects
with “tmp” tag are stored in inexpensive volatile storage.
We have revised the Tiera data model to allow Wiera to
manage multiple versions of an object as we will explain in
Section 3.2.1.

3. WIERA OVERVIEW

In this section, we present an overview of Wiera, describ-
ing the Wiera architecture and data model, and mechanisms
for defining global policies for managing data across multiple
data centers.

3.1 Wiera Architecture

Wiera builds on top of Tiera in a geo-distributed setting:
a Wiera instance consists of multiple Tiera instances run-
ning on multiple data centers. While Tiera is responsible
for managing data on multiple storage tiers within a sin-
gle DC, Wiera manages the data placement and movement

167

across multiple Tiera instances running on geo-distributed
DCs. A Wiera instance simplifies the global data access for
applications by hiding the complexities of accessing multi-
ple Tiera instances. Wiera can launch and manage Tiera
instances in multiple regions, and can enforce a global data
management policy between them, as we will explain more
fully in Section 3.3.

Figure 2 shows the Wiera architecture. Wiera consists of
the following main components:

e The Wiera User Interface (WUI) provides an API to
applications to manage Wiera instances (Table 1). The
API allows applications to: launch multiple Tiera in-
stances as part of a Wiera instance with a global policy
specification, stop instances, and get the list of cur-
rently running instances.

e Global Policy Manager (GPM) creates a new policy
for a Wiera instance. It stores metadata for the pol-
icy and executes a Tiera Instance Manager (TIM) to
manage the Tiera instances which belong to the Wiera
instance.

e Tiera Server Manager (TSM) manages Tiera servers
at different locations, which spawn and remove Tiera
instances based on application requests. For instance,
if the application calls startInstances through WUI to
start Tiera instances at Region 1 and Region 2, TSM
will direct the Tiera servers in Region 1 and Region 2
to each spawn a new Tiera instance.

We will explain how these components work together in
more detail in Section 4. Wiera also includes other com-
ponents such as a network monitor, workload monitor, and
data placement manager. The network monitor aggregates
latency information for handling requests from each instance
and latencies between instances. The workload monitor ag-
gregates workload related information such as users’ loca-
tions (number of requests from each instance), access pat-
terns, and object sizes. Based on this aggregated informa-
tion, a data placement manager could generate a dynamic
global policy automatically. In this paper, we focus on defin-
ing different policies, and such automated policy generation
is left as future work.

Data
Placement
Manager

Global Policy Manager

Workload
Monitor

Network
Monitor

Policy

Tiera
Instances
Manger

Meta
Data Tiera Server

Manager

Wiera
User Interface

Application

Region N

Region 1 Region 2

Figure 2: Wiera Architecture.

Table 1: Wiera Instance Management API

[APT | Arguments | Function |
startInstances Wler&lnstance,ld, pol- Launch
icy instances
stopIlnstances | wiera_instance_id Stop
instances
getInstances wiera_instance_id .Get .
instances list

3.2 Changes and New Features in Wiera

As mentioned above, Wiera manages multiple geo-
distributed Tiera instances. In order to handle data across
multiple regions, we have extended the Tiera data model
and policy mechanisms to support several key requirements:
data replication and consistency across multiple locations;
load balancing, locality-awareness, and fault tolerance; scal-
ability of existing Tiera stores to multiple DCs; and mod-
ular construction of storage containers. In this section, we
describe some of the changes and newly added features in
Wiera.

3.2.1 Data Model Extension

In order to support low latency and fault tolerance, a
Wiera instance can replicate data across multiple locations.
Such replication could result in multiple copies of the same

Table 2: Wiera Object Versioning API

[API | Arguments [Function |
: trine k Retrieve the Iatest
ge string ey version of object
. string key, Retrieve specific ver-
get Version integer version | sion of object
. . . Retrieve list of avail-
getVersionList | string key able version of object
string key, .
put binary object Store object
dat gtltrlng key, Update specific ver-
update mteger VEsIon, | gion of object
binary object
trine k Remove all version of
remove string key object
Versi string key, Remove specific ver-
TEMOVEVEISION | 4 teger version | sion of object

168

data object in different locations, each with a potentially dif-
ferent state depending on the consistency model being used.
As mentioned in Section 2.2, an object stored in Tiera is con-
sidered immutable, so that it cannot be modified but only
overwritten. In order to support replication and consistency
control, we have extended the Tiera data model to allow
maintaining multiple versions of an object. Thus, modifica-
tion of an existing object now results in the creation of a
new version of the object. By default, an application will
be provided with an appropriate object version based on its
consistency policy (e.g., its local version for eventual con-
sistency, the latest version for a primary-based consistency,
etc.). An application can specify the object version number
if it needs to access old versions. Old versions of objects will
be stored until they are required to be garbage collected in
the policy specification. Wiera exposes an object versioning
API to applications as shown in Table 2.

3.2.2 Modular Instances

To provide scalability and flexibility to applications, a
Tiera instance can specify another Tiera instance as a stor-
age tier. This lets applications easily add pre-defined in-
stances and easily extend Tiera instances to other regions
where other Tiera instances are already running. For exam-
ple, an application launches Tiera instances with a policy
id (a) RAW-BIG-DATA-INSTANCES, for storing a big data size
within a durable and cheap storage tier. Later, the appli-
cation may launch other Tiera instances with a policy id
(b) INTERMEDIATE-DATA which encapsulates RAW-BIG-DATA-
INSTANCES as a read-only storage tier for retrieving raw data
and local Memcached as another storage tier to store inter-
mediate data for better performance. This can enable the
modular assembly of complex storage containers.

3.2.3 New Events and Responses

In a geo-distributed setting, clients may access data from
different regions. The placement and replication of data
can have significant impact on the application’s latency of
access, load across different DCs, and consistency of data.
Wiera provides a number of new events and responses to
support different policies to manage data across multiple
locations. Wiera adds three new monitoring events: (1)
LatencyMonitoring events that occur when data access re-
quests take longer than a specified latency threshold (and
thus, may violate an application’s latency requirements), (2)
RequestsMonitoring events that occur when a Tiera instance
gets more requests than other instances (and thus, may be
overloaded), and (3) ColdDataMonitoring events that occur
when certain data is not accessed more recently than a spec-
ified time threshold (and hence, is cold). To react to these
newly added events, Wiera also adds new responses: (1)
forward that forwards a request to another Tiera instance
(e.g., for load balancing), (2) queue that enqueues a request
for lazy update to other locations (e.g., to reduce on update
traffic), and (3) change_consistency that changes the consis-
tency model between Tiera instances at run-time to handle
workload dynamics.

3.3 Defining Global Policies

The data model extensions as well as the new events and
responses discussed above give more flexibility to applica-
tions to specify a number of global data management poli-
cies, including many that have been proposed in the litera-

ture [22, 3, 1]. In this section, we explain how various global
policies can be specified by showing some examples. Wiera
extends Tiera instance specification to define data placement
policy across multiple Tiera instances. The desired storage
tiers, their capacities, and the set of events along with corre-
sponding responses for each instance are now specified using
a Wiera policy. The application needs to specify the regions
where instances will be running. Note that all global policies
in this section are just examples to show how they can be
easily specified. Applications can modify these policies or
create a new policy based on their requirements. Note that
instances running at different locations can have different lo-
cal policy specifications as well. In this paper, however, we
use the same specification everywhere for simplicity, unless
noted otherwise. Further, due to space constraints, we show
the specification of put operation in our examples, and get
operation also can be specified similarly.

3.3.1 Data Consistency Policy

We begin by showing how a desired data consistency
model between Tiera instances can be easily specified
through in a global Wiera policy. Figures 3(a), 3(b), and 4
show three different consistency policies: Multiple Primaries
Consistency, Primary Backup Consistency, and Eventual
Consistency respectively.

In the MultiPrimariesConsistency policy (Figure 3(a))
specification, multiple locations maintain replicas of the data
and every update to any replica is synchronously transmit-
ted to all other replicas. This policy can be used for services
in which strong data consistency is more important than put
operation performance, e.g., flight booking system and bank-
ing system. The figure shows how this policy is implemented
using the Wiera events and responses. Here, the same Tiera
instances (LowLatencylnstance from Figure 1(a)) are cre-
ated on multiple regions. When an application puts an ob-
ject into an instance (normally the closest Tiera instance),
it tries to get a global lock first for the key as specified in
the global policy. Once it gets the lock for the key, it stores
the object into the local Memcached storage tier first as was
explained in Figure 1(a). Then it distributes the update to
other instances that are part of the same Wiera instance.
The lock is released upon getting a response from all other
instances.

In the PrimaryBackupConsistency policy (Figure 3(b)),
there is only one primary replica. Here, if a Tiera instance
gets a put request from an application and the instance is
not the primary, it will simply forward it to the primary
instance. This policy is simpler than MultiPrimariesCon-
sistency policy and can provide better performance since
no global lock is required, but the primary instance can be
a bottleneck for overall performance. The application can
trade off its desired consistency with performance in this
policy. For instance, to minimize get latency, the primary
can send updates to other instances synchronously by using
a copy response, so that all replicas are up-to-date. On the
other hand, to improve put latency, updates could be trans-
mitted asynchronously by the primary using queue response.

An EventualConsistency policy (Figure 4) is desired for
better PUT/GET operations latency, e.g., for social network
services like Facebook and Twitter. Here, a put operation
simply stores the object to the local replica first and then
queues the update for distribution to other replicas later in
the background. Applications can specify how frequently

169

wiera EventualConsistency() {

#%Eventual Consistency

event(insert.into) : response {
store(what:insert.oject, to:local instance)
queue(what:insert.object, to:all regions)

}
¥

Figure 4: Eventual consistency policy.

queued updates need to be distributed. In this consistency
model, there is no specific order of put operations from each
instance, thus each instance needs to handle object version
conflicts when update requests come in from other instances
as we will explain in Section 4 in more detail.

3.3.2 Defining Dynamic Policies

Since the network, workload, and placement of replicas
can be dynamic, it would be desirable to have a dynamic
policy that can change its actions at run-time.

One example of such a dynamic policy would be one that
can adjust the consistency model based on observed laten-
cies of operations. While strong consistency is desirable for
better user experience, achieving strong consistency can be
expensive in a geo-distributed cloud environment due to high
WAN latency. For example, in the MultiPrimariesPolicy
(Figure 3(a)), the latency for a put operation will depend
on the highest round trip latency from the primary initi-
ating the update to any replica. For instance, consider a
policy that maintains strong consistency as long as the la-
tencies are low, but switches to a weaker consistency model
such as eventual consistency if the latencies become high.
Some shopping web applications (like amazon.com) may get
benefits by having different policies, strong consistency for
more important data (purchase transactions), eventual (or
causal) consistency for browsing data. When all operations
can be performed with low latency, strong consistency can be
used for all data access. In the high latency case, browsing
data can use eventual consistency for better user-perceived
latency.

Figure 5(a) shows how Wiera can specify such a dynamic
consistency policy. In this figure, an application specifies
the latency threshold (800 ms) and the duration (30 sec-
onds) for which this latency threshold is exceeded. Once
the put operations violates both conditions, Wiera changes
the global consistency policy to eventual consistency at run-
time for better put operation latency. Similarly, while using
the eventual consistency model, once Wiera detects that the
latency for put operations can satisfy the conditions for the
strong consistency, it will switch them back to strong consis-
tency policy at run-time. The change of consistency policy
is done in a manner that allows all operations in progress
(or queued) to be applied first. All new requests from ap-
plications arrived at when the consistency is being changed
will be blocked and queued until the change takes effect.

Consider another case in which handling dynamics is re-
quired. Assuming a single primary, if the workload changes
over time (e.g., client locations change with time of day),
then moving the primary replica closer to the users might
be desirable [3]. Figure 5(b) shows how this can be achieved
with Wiera for the PrimaryBackupPolicy. If the primary
instance discovers that another instance received (and for-
warded) more requests from an application than the pri-

Wiera MultiPrimariesConsistency() {

Regionl = {name:LowLatencyInstance, region:us-west,
tierl = {name:LocalMemory, size=5G},
tier2 = {name:LocalDisk, size=5G} }

Region2 = {name:LowLatencyInstance, region:US-East
tierl = {name:LocalMemory, size=5G},
tier2 = {name:localDisk, size=5G} }

RegionN = {name:LowLatencyInstance, region:EU-West
tierl = {name:LocalMemory, size=5G},
tier2 = {name:LocalDisk, size=5G} }

%MultiPrimaries Consistency

event(insert.into) : response {
lock(what:insert.key)
store(what:insert.object, to:local_instance)
copy(what:insert.object, to:all regions)
release(what:insert.key)

(a) Multiple Primaries consistency policy.

Wiera PrimaryBackupConsistency() {

% Same Tiera instances configuration

% Primary instance is running on Regionil

Region1l = {name:LowlLatencyInstance, region:us-west,
primary:True}

%PrimaryBackup Consistency
event(insert.into) : response {
if(local_instance.isPrimary == True)
store(what:insert.object, to:local_instance)
copy(what:insert.object, to:all_regions)
else
forward(what:insert.object, to:primary_instance)

(b) Primary Backup consistency policy.

Figure 3: Primary-based consistency policies.

Wiera DynamicConsistency() {
% In Multiple-Primaries Consistency
% Put operation spends more time than
% threshold required for specific amount of time
event(threshold.type put) : response {
if(threshold.latency > 800 ms
&& threshold.period > 3@ seconds)
change_policy(what:consistency,
to:EventualConsistency);
else if (threshold.latency <= 8@ ms
&& threshold.period > 3@ seconds)
change_policy(what:consistency,

to:MultiPrimariesConsistency);

(a) Changing consistency policy.

wWiera changePrimary() {

% In Primary-Backup Consistency
% If there is an instance which received more
% requests than primary received from application
event(threshold.type == primary) : response {
if(forwarded _reqeusts_per_each_instance
>= updates_from_primary
&& threshold.period = 600 seconds)
chage_policy(what:primary_instance,
to:instance_forward_most)

(b) Changing the primary in Primary Backup
policy.

Figure 5: Defining dynamic policies.

mary, then Wiera will change the primary instance to the
more heavily accessed replica. Once this change has been
done, all requests will be forwarded to the new primary in-
stance.

3.3.3 Achieving Desired Metrics

Applications can have different desired metrics such as
performance, reliability, cost, etc. Wiera policies can be
defined to achieve such desired metrics as well. While we fo-
cused on consistency policies above to achieve desired laten-
cies in the presence of replication, another important metric
could be cost.

Many internet applications see huge fraction of data which
is accessed infrequently or not at all. For example, Facebook
shows its data access patterns typically conform to a Zipfian
distribution [11] in which only a small proportion of data
is frequently accessed. One way for such an application to
lower its cost could be to use cheaper but slower storage (e.g.,
Amazon S3 or Glacier) for its cold data while using more
expensive, faster storage (e.g., MemCache or EBS) for hot
data. Figure 6(a) shows how Wiera can allow applications
to get benefits from such cheaper and durable storage tiers.
In this policy, each instance has one cheaper storage tier.
An application defines cold data by setting a threshold on
elapsed time from the last access (120 hours). If an instance
gets the event which notifies that there is any object has
not been accessed for 120 hours, it is identified as cold and
moved to the cheaper storage tier.

170

Another way to reduce cost could be by maintaining fewer
replicas. This could reduce both storage costs as well as
network bandwidth costs by reducing the update traffic, as
cloud providers charge for all out-bound network traffic. As
shown in our prior work [15], an application can achieve good
performance even with fewer replicas by accessing nearby
DCs’ faster storage tier (e.g., Memcached) instead of a local
slower tier (e.g., S3 or EBS). Figure 6(b) shows how Wiera
can enable the reduction in the number of replicas by using
the fastest storage tier in the centralized DC in a region.
In this policy, all Tiera instances are running within the
same region (US-WEST), and are forwarding requests to a
primary instance. Thus instances in this region need not
be concerned about data consistency which can reduce net-
work traffic and cost. All non-primary instances could then
be used as caches or for load balancing if needed. An appli-
cation can reduce cost further by maintaining a single replica
for cold data on centralized cheaper storage tier. That is,
if the application allows instances to share the centralized
cheaper storage tier for cold data, it can save even greater
storage cost. We will explain how this can be achieved in
Section 5.3 in more detail.

Using remote storage tiers may induce monetary network
cost which should be considered. Wiera provides the flexibil-
ity for users to choose the right point in the cost-performance
tradeoff. In a hybrid cloud environment, an application may
not need to worry about the network cost. If much of the
data flow happens from the private DC into a nearby pub-

Wiera ReducedCostPolicy() {

RegionN = {name:PersistancelInstance, region:us-west,
tierl = {name:LocalDisk, size=5G}}
tier2 = {name:Cheapestarchival, size=5G}}

%Data is getting cold
event(object.lastAccessedTime > 120 hours)
move (what:object.location == tieri
to:tier2, bandwidth:1eekB/s);

: response {

Wiera SimplercConsistency() {

}

Region1l = {name:LowLatencyInstance, region:US-west-1,
primary:True
tier1l = {name:LocalMemory, size=30G}
tier2 = {name:LocalDisk, size=3@G}}
Region2 = {name:ForwardingInstance, region:US-West-2}

RegionN = {name:ForwardingInstance, region:Us-west-n}

%PrimaryBackup consistency

event(insert.into) : response {
if(local_instance.isPrimary == True)
store(what:insert.object, to:local instance)

else
forward(what:insert.object, to:primary_instance)

}

(a) Reducing cost by moving cold data to (b) Simpler consistency by using fastest stor-
age tier within the same region.

cheaper storage.

Figure 6: Achieving desired cost metrics.

lic cloud DC, one could acquire better performance without
any network cost as network traffic into DC is normally not
charged.

4. IMPLEMENTATION

‘We now describe our implementation of the Wiera proto-
type (under 1000 lines of code written in python) and how
Wiera components work together and with Tiera servers.
We also describe additional features newly implemented in
Tiera. To enable communication with applications, Wiera
launches a Thrift server [4], a remote procedure call frame-
work, that enables applications written in different lan-
guages to communicate with each other. Since Tiera in-
stances now need to connect to Wiera and all other in-
stances, we implement a communication component using
Thrift in Tiera (under 500 lines of codes written in Java)
while most of the Tiera code base remained unchanged. A
global policy is implemented in the instance by hand-coding
the event-response pairs into the Tiera’s control layer. We
implemented global policies that were explained in Section
3.3 (under 100 lines of codes written in Java per global pol-
icy). Note that Wiera mainly manages Tiera instances and
their policies but is not involved in data movement. All data
flow happens directly between Tiera instances as specified
in the policies.

4.1 Wiera Communication

As described in Section 3.1, Wiera is composed of multi-
ple components. Whenever a Tiera server (note, not a Tiera
instance) launches, it connects to the Tiera Server Manager
(TSM) first to let Wiera know that it is ready to spawn
instances. Note: instances run within the Tiera server pro-
cess for simplicity, but could easily run as a separate process
for better fault tolerance. The TSM holds all information
about Tiera servers and periodically sends a “ping” message
to check on their health. The steps to initiate Tiera instances
on multiple regions are as follows: 1) an application specifies
the instances, their regions, and policies through the Wiera
application interface, 2) when Wiera gets the request, the
Global Policy Manager (GPM) creates a new policy with
a policy id sent from the application and launches a new
Tiera Instance Manager (TIM) to communicate with the
Tiera instances which will be created, 3) the TSM asks the
Tiera servers to spawn instances with storage tiers and local
policy as specified in the request, 4) a Tiera server receives
the request, spawns a new instance, and informs the instance

171

about the TIM address to which the new instance will con-
nect, 5) the new instance runs a server with a unique port
number to communicate with other instances. It then con-
nects to the TIM and sends its own server information (port
number for the application and port number for communi-
cating between instances), 6) when the TIM accepts server
information from its instances, it propagates information to
all instances, 7) Wiera returns the list of instances and global
policy ID to the application which sent the request, and 8)
the application can connect to the closest instance (placed
at the head of the list) and sends requests as in Tiera.

4.2 Global Lock and Conflicts Handling

If an instance is replicated it may need to obtain a global
lock before distributing updates to all other instances. For
example, if an application specifies MultiPrimariesConsis-
tency (Figure 3(a)), it should get the global lock first for data
consistency. For the global lock, Wiera relies on Zookeeper
[13], an atomic messaging system that keeps all of the servers
in sync, and we use Curator library [8] for using Zookeeper
easily. When an instance gets updates from another in-
stance, it will update the object as specified in the global
policy. In MultiPrimariesConsistency, as an example, if an
instance receives an update from another instance, it will
simply update the object because the instance that sent the
update has a global lock for the object and thus it does
not need to be concerned about data consistency. How-
ever, in EventualConsistency (Figure 4), instances should
check whether there is any write-write conflict between in-
stances whenever they get updates from another instance.
This is needed to avoid version conflicts because they do
not hold the global lock for better write performance. To
handle this, we add a new feature, which allows applications
to have multiple object versions. Each object can have mul-
tiple versions with added metadata including version num-
ber, create time, access count, last modified time, and last
accessed time. As in Tiera, all object metadata is stored
and persisted using BerkeleyDB [16]. When instances dis-
tribute updates to other instances, they also send metadata
including object version and last modified time. Thus, each
instance that receives an update can decide whether it will
accept the update based on the metadata version and last
modified time. In the current implementation, we choose a
simple strategy, last write wins. That is, updates will be ac-
cepted when they has a higher version number than the local
object or when the update is newer (most recently written)

than the local object if the versions are the same. We add
new APIs for this feature as shown in Table 2.

4.3 New Events and Responses

As mentioned in Section 3.2.3, we added events Latency-
Monitoring, RequestsMonitoring and ColdDataMonitoring,
to Wiera to handle dynamics in the multiple cloud environ-
ment. LatencyMonitoring events are handled by a dedicated
thread which waits to be signaled. The thread handling the
application request will signal the dedicated thread to check
the latency. The dedicated thread checks whether the con-
ditions (a latency threshold and period of the violation) are
met. If it is determined that all conditions are violated it
will notify Wiera to handle it. In our example policy (Fig-
ure 5(a)), a change_policy() response request with a new
desired consistency model will be issued to Wiera to change
the consistency model.

RequestsMonitoring events are handled by the dedicated
thread which waits to be signaled in the primary instance
(or in all instances as specified by the policy). The thread
which handles requests in the primary instance signals the
dedicated thread to check the number of requests from both
an application and other instances. If the thread detects
that an instance has received more requests forwarded from
other instances than it has directly received from the appli-
cation, a change_policy() response request with a new pri-
mary instance will be issued to Wiera to change the primary
instance.

ColdDataMonitoring events are handled by the dedicated
thread in each instance. The dedicated thread will keep
checking metadata to find any object not accessed for a spe-
cific amount of time. If it finds an object which has not been
accessed, it will take the actions as specified in the policy.
In our example policy, in Figure 6(a), it simply moves the
object to the cheaper storage tier as a response.

4.4 Handling Failure

In the current implementation, an application can spec-
ify the required number of replicas to be available at all
times. If a replica crashes, the system detects this via pe-
riodic heartbeat and creates a new replica if this threshold
is not met. In addition, if the application observes that the
closest instance is down then it tries to send requests to the
second closest instance, and so on. In future work, we plan
to develop mechanisms in Wiera in support of new reactive
fault tolerance policies.

S. EXPERIMENTAL EVALUATION

We evaluated the Wiera prototype in the Amazon cloud
and Azure. Wiera and Tiera instances were hosted on Ama-
zon EC2 instances. For our experiments, we used EC2
t2.micro instances, 1 vCPU, 1GB of RAM, and 16GB of EBS
storage for Wiera and Tiera servers unless mentioned other-
wise. Wiera is running on the US East (Virginia) region and
Zookeeper is also running with Wiera on the same instance
(for global locking purposes). Tiera servers are running on
multiple regions, US East (Virginia), US West (North Cali-
fornia), Europe West (Ireland) and Asia East (Tokyo). The
client workloads were generated using Yahoo Cloud Serving
Benchmark [6] (YCSB) and our own benchmarks. We mea-
sure latency from the perspective of an application within
a DC, with clients running on the same VM where the in-
stances are running (thus no wide-area latency from users of

172

applications). Our experiments illustrate the following: (1)
it is easy to change the data consistency model and config-
uration using Wiera to handle dynamics from applications
and cloud services, (2) Wiera can enable applications to op-
timize for a particular metric in multi-cloud environments,
and (3) Wiera can be easily used with an application with-
out any modification. As mentioned in Section 4, Wiera is
not a bottleneck in the data path. The performance over-
head introduced by Tiera is very low (under 2%) as shown
in the Tiera paper [18].

5.1 Changing Consistency

In this section, we show how Wiera changes consistency
policy dynamically as specified in the DynamicConsistency
policy (Figure 5(a)), using a put operation latency thresh-
old of 800 ms and a period threshold of 30 seconds. In this
experiment, instances are running in regions US West, US
East, Europe West, and Asia East, and simulated appli-
cations send requests to instances in all the regions using
workload A: an update heavy workload in YCSB [6].

We set instances to use MultiplePrimariesConsistency
(Figure 3(a)) initially in which all put operations result
in updates being distributed to all other instances syn-
chronously. Figure 7 shows the latency for put operations
in US West region®. The bold line in the figure indicates
the application-perceived latency. Initially, the application
sees around 400 ms which includes time for getting (and re-
leasing) the global lock for a key, broadcasting updates to
all other instances synchronously, and internal operations
(write to local storage). We inject delays into an instance to
simulate network or storage delay. In the figure, we can see
that there are 3 simulated delays from (a) to (c). All of these
delays cause the operation latency violation (800 ms), but
only delays (a) and (b) cause a period threshold violation (30
sec). For delays (a) and (b), Wiera detects that both thresh-
olds are violated, so it changes the consistency to Fventu-
alConsistency (Figure 4) to preserve application-perceived
put operation latency which now becomes less than 10 ms.
This is because instances don’t need to get the global lock
for the key and broadcasting updates is done in the back-
ground in EventualConsistency. Note that Wiera identifies
the last delay (c) as being transient and hence, ignores it.
When Wiera detects that there is no additional delay during
the period threshold (30 seconds) i.e., points (1) and (2) in
the figure, it changes the consistency model back to Multi-
plePrimariesConsistency. This result shows that Wiera can
adaptively change consistency models to handle dynamics
at run-time.

5.2 Changing Primary Instance

User location is another factor that may be important for
data placement policy as shown in systems such as Volley
[1] and Tuba [3]. Tuba shows that changing storage con-
figuration can improve overall resource utilization and user-
perceived latency. In this section, we show how Wiera can
easily achieve the same goals as Tuba. To do this, we imple-
ment one of Tuba’s policies: changing the primary instance
based on user location.

In this experiment, instances are running on three regions:
US West, Europe West, and Asia East. 10 clients are run-
ning per each region and the number of active clients are

3Note that we see a similar pattern of results from all re-
gions, and we omit these results due to space constraints.

1400
(b) (©
1200
1000

— 800

600

Latency (ms)

400 ,

o

DSBS DS

IR

S
eSS RO Ne

SRS
SELH S
SRR NN

oS
NSRS ee"'e"e"e"e"é”é”bbbu@’@@
<

MultiplePrimaries Eventual MultiplePrimaries Eventual MultiplePrimaries
==Locking #Broadcast == Operation—Application Perceived-Latency~—Latency Threshold

Figure 7: Changing consistency at run-time.

o

Static Primary Changing Primary

Figure 8: Percentage that applications can see the
latest data (Strong) and outdated (Eventual) data.

modeled with a normal distribution to mimic the workload
in different regions of the world. The mean of the normal dis-
tribution is 7.5 minutes and variance is set to 5 minutes. The
number of active clients will increase and decease in the fol-
lowing order, Asia East, EU West and US West. Each simu-
lated client sends requests to instances for each regions using
workload A: Read mostly workload (5% put and 95% get) in
YCSB [6]. We use the queue response mentioned in Section
3.3.2 to distribute updates asynchronously to other instances
as Tuba does. We implement the Wiera ChangePrimary
policy (Figure 5(b)). The difference as compared to Tuba
is that Wiera changes the primary instance by comparing
the number of put operations from clients and from other
instances forwarded while Tuba used a cost model. Wiera
could also adopt this cost model if desired. Initially, we set
the primary instance to run on the Asia East region. The
primary instance checks the put operation history (last 30
seconds) to find an instance which forwards more requests
than the primary instance received from clients. We set the
time period threshold to 15 seconds.

Figure 8 shows the chance that the clients will see the
latest data (Strong) and outdated data (Eventual). With a
static (no changing) primary location, 69% of get operations
can return outdated data: clients that are not close to the
primary instance can see outdated data since the updates are
distributed asynchronously. Wiera reduces this to 39% when
the the primary instance location is changed dynamically.
That is, more clients now have a greater chance to obtain
the latest version of the data from their closest instance.
This pattern is similar to that shown for Tuba.

In addition, the overall application-perceived put opera-
tion latency is also decreased by changing the primary in-
stance. Table 3 shows that an average put operation time
for each region and overall average of all regions. With static

173

Table 3: Average put
EU

operation latency (in ms)
US Asia,

West West East Overall
Static 216.61 105.26 <5 105.18
Changing 95.19 72.20 40.60 68.13
70
BGet #Put
60
& 50
£
40
§ 30
820
10 %
0 =S|

EBS (gp2)

S3

EBS (magnetic)

Figure 9: Operations Latencies for 4KB in US East.

primary location, the clients in Asia East can see low latency
(<5ms) since they are always close to the primary instance,
but clients in other regions need to wait a long time until
put operations are forwarded to the primary instance. With
changing of the primary instance, clients in all regions can
have a greater chance that their closest instance will become
the primary instance, so that the overall put operation la-
tency can be decreased. These results show that Wiera can
easily adopt policies hard-coded in other systems.

5.3 Reducing Cost Using Multiple Storage
Tiers

Many internet services and applications have reported
that their data access pattern follows Zipfian distribution
e.g., Facebook [11], that is huge portion of data is accessed
infrequently or not at all. Applications using cloud storage
services, however, have to pay for the storage provisioned
even for cold data whether it has been accessed or not. Even
worse, the size of data will keep increasing but never decreas-
ing while a large fraction of data will not be accessed. In
this section, we will describe how an application can save
the cost for storage with a new ColdDataMonitoring event
explained in Section 3.2.3.

Within a DC, an application has various durable storage
options with different performance. Figure 9 shows the la-
tencies that the application can see from each storage tier
through a Tiera instance. Table 4 shows the prices for pro-
visioned storage, put/get requests, and network cost. Un-
surprisingly, we see clear evidence that applications can get
better performance from more expensive storage tiers. That
is, EBS SSD (gp2-general purpose) ($0.1/GB) provides the

Table 4: Storage Tiers’ Price in AWS (US East)
EBS | EBS :
Storage [$0.1 | $0.05 [$0.03 | $0.0125]] GB/Month
Put req | $0 $0.0005] $0.05 | $0.1 10,000 reqs
Get req | $0 $0.0005] $0.004| $0.01 10,000 reqs
GB/Within
Network | $0 $0 $0 $0 a DC
GB/To In-
Network | $0.09 | $0.09 $0.09 | $0.09 ternet

400

=] 2]
150 Get BPut 3
_.300
2]
E 250
5200
=
2150
3
100
50 m
o B
US East US West Europe West Asia East

Figure 10: Operation Latency for S3 in US East
from each region.

best performance and S3 ($0.03 or $0.0125 for S3-IA) pro-
vides the worst performance while EBS HDD (magnetic)
(%0.05) is in between them. Note that since EBS uses the
OS buffer cache, we see very low latency (<1lms) regard-
less of EBS type if there is enough memory on EC2. To
see the native performance of EBS, we throttle the memory
by running a memory-intensive application while doing the
experiment.

Based on this cost and performance information, let’s as-
sume that an application sees that 80% out of 10TB data in
EBS have not been accessed for 120 hours, in Figure 6(a) as
an example. As a response for a ColdDataMonitoring event,
each instance will move 8B data into S3-IA and the appli-
cation will save $700 (if data was stored in SSD) and $300
(if data was stored in HDD) per month for each instance. Of
course, the application will see higher latency for cold data
in S3-IA and pay a more expensive request cost than EBS,
but this will happen very rarely as the data is cold. For
the high put operation latency from S3-TA, the application
can ignore this since all put operations will be done in other
faster storage tiers as specified in the policy. Thus, the ap-
plication can save the storage cost by moving cold data into
cheaper storage without much penalty.

The application can save even greater storage cost if it al-
lows instances to share the storage tier where the cold data
is stored. That is, when Wiera detects that data is getting
cold from all regions, it will ask the instance running on a
single centralized region to move cold data into local S3-IA
and will ask other instances running on other regions to re-
move cold data as a response for the ColdDataMonitoring
event. If an instance running on a region other than the
centralized one needs to read cold data, it will access the
S3-IA storage tier located at the centralized region. Since
S3-IA is a durable storage tier, the application doesn’t need
to consider data durability even with the reduced number
of data replicas. Of course, the application needs to con-
sider operation latency and network cost for the centralized
storage tier. Figure 10 shows the operation latencies from
all regions when all instances use S3-IA in US East region
as a shared centralized storage tier. The highest get oper-
ation latency is around 200 ms when a request comes from
Asia East. If this get latency is acceptable to the appli-
cation, it can save $300 more (from our previous example,
$100 per each region) by reducing the number of replicas
for cold data. The high put operation latency also can be
ignored since all put operations will be done in each region
locally. In this example, the cost for requests becomes much
more expensive by using a centralized storage tier, i.e., from
free or $0.0005 to $0.01 per 10,000 get operation request,

174

8 Local Disk (Not using Wiera)
@ Remote Memery (Using Wiera)

Basic A2 Standard D1 Standard D2 Standard D3
Figure 11: Performance (IOPS) comparison.

8 Local Disk (Not using Wiera) 27
o5 @Remote Memory (Using Wiera) 24

[
(=1

Request/s
&

Basic A2 Standard D1 Standard D2 Standard D3

Figure 12: Throughput (request/s) comparison.

and from free to $0.09 (or $0.02 between AWS) per GB for
network as shown in Table 4. However, by definition, the
access to cold data will be rare.

5.4 Exploiting Remote Storage Tiers

One of the benefits of Wiera is that it increases the range
of storage tier options. In our previous work [15], we have
shown that a nearby faster DC storage tier can provide bet-
ter performance than a local but slower DC storage tier
even with wide-area network latency. In this section, we will
show how Wiera can let applications achieve better perfor-
mance from non-local DC storage using both a benchmark
(SysBench) and a real application case (RUBIS). Note that
we have built our own POSIX-compliant file system using
Filesystem in User Space (FUSE) [12] to run applications
that require a POSIX interface to Wiera, so that all ap-
plication requests are forwarded to Wiera through FUSE.
Thus, applications that require a POSIX interface can run
on top of Wiera without any modification.

5.4.1 Better Performance from Non-Local DC

In this experiment, we compare I/O performance between
Azure’s local disk without Wiera and AWS’ memory with
Wiera using SysBench [21], a system performance bench-
mark. We use Azure instances, Basic A2 (2 CPU, 3.5 GB of
RAM), Standard D1 (1 CPU, 3.5GB of RAM), Standard D2
(2 CPU, 7GB of RAM) and Standard D3 (4 CPU, 14GB of
RAM), and AWS EC2 t2.micro instance for non-local mem-
ory storage. First, we measure the native disk performance
attached to Azure VMs. To avoid any cache (memory) in-
fluence, we turn host cache off for the disk attached and use
the O_DIRECT flag for SysBench. This kind of setting is de-
sired for some applications e.g., database systems (MySQL),
to avoid double cache effects that may create cache misses.
We then measure the remote memory (in AWS) performance
through Wiera. In this setting, we deploy instances on AWS
and Azure in the US East (Virginia) region where the la-
tency between DCs is around 2 ms. We use PrimaryBackup

consistency policy (Figure 3(b)) with synchronous update
(copy response) and set an instance running on Azure to be
the primary instance. We set the primary instance to have
a disk storage tier only and set another instance on AWS to
have memory storage tier. We set a get operation policy for
all get operations to be forwarded to the instance on AWS.
That is, if the primary instance receives put operations from
SysBench, it puts data into local disk and sends the update
to another instance on AWS synchronously. If the primary
instance receives get operations from SysBench, it retrieves
data from another instance on AWS i.e., remote memory
instead of local disk.

We run the SysBench benchmark on Azure 10 times vary-
ing the VM size. Figure 11 shows results for each VM size.
For the local disk performance, the figure shows the same
performance (~ 500 IOPS) regardless of VM size. This is
because Azure throttles the disk performance to 500 IOPS
[4]. For the remote memory performance through Wiera,
performance is sensitive to the VM size. Wiera can achieve
a 44% performance improvement when the primary instance
is running on Standard D2 and Standard D3 instances. Ac-
cessing non-local DC memory through Wiera may be af-
fected by CPU performance but the fact that Basic A2 (2
CPUs) provides worse performance than Standard D1 (1
CPU) implies CPU is not a bottleneck in this experiment.
We think that this is because Azure throttles the network
performance between instances based on VM type and size
as we have shown in our previous work [15]. These results
shows that an application can achieve a desired goal (better
performance) using nearby faster DC storage tiers through
Wiera if network performance between DCs is not a bottle-
neck.

5.4.2 RUBIS on Wiera

We next explore running an unmodified web application,
the popular open-source benchmark RUBIS [20], on Wiera.
RUBIS is a multi-component web application that imple-
ments functions of an auction site EBay.com, selling, buying,
bidding, commenting and so on. We use Apache and PHP
for the front-end web server and MySQL for the back-end
database. We use the same evaluation environment setup as
in Section 5.4.1. All RUBIS components are hosted on an
Azure VM.

For this experiment, MySQL uses two different storage
settings: either local disk or remote memory through Wiera.
We set the flag O_DIRECT (which prohibits MySQL to use
the OS buffer) and reduce MySQL internal buffer size to the
minimum (16MB) to see the performance from the native at-
tached disk. The database was populated with information
for 50,000 items and 50,000 customers. 300 simulated clients
are hosted on a separate t2.micro EC2 instance on the same
region (US East). The benchmark is run for 300 seconds,
with 120 seconds for ramp-up and 60 seconds for ramp-down.
Likewise, we vary VM size from Basic A2 to Standard D3.
Figure 12 shows the throughput from each VM size. Similar
to the SysBench results, we see low throughput from small
instances (Basic A2 and Standard D1) and higher through-
put (50% ~ 80% improvement) from larger instances (Stan-
dard D2 and Standard D3) due to a reduction in network
throttling. This experiment shows how easily an application
can use Wiera to achieve desired (performance in this exper-
iment) goal by accessing multiple storage tiers on multiple
DCs without any modification.

175

6. RELATED WORK

Data Locality: Recent research [2] has shown that data
locality within a DC is irrelevant, given the bandwidth of
current DC networks. They show that accessing data from
a remote node’s memory within a DC can provide better
performance than reading data from local disk. In our
previous work [15], we show that data locality may also be
irrelevant in multiple DCs environment, and accessing data
over the network from the same or faster storage resource
in a nearby DC can be faster than using a slower local
storage tier. Wiera realizes many opportunities for utilizing
cross-DC storage as a complete system.

In-Memory Storage: Many previous works utilize
memory to improve performance. Cooperative Caching [9]
tries to use idle remote node’s memory to improve file
system performance. Many recent storage systems, like
Redis [19] and RAMCloud [17] aggregate memory resources
from many nodes and present it as a common storage pool
to applications. In this paper, we show that unmodified
applications can get a performance benefit from these
in-memory storage systems even in multi-DC environment
through Wiera.

Wide Area Storage: Many previous storage systems
utilize multiple DCs. Volley [1] performs automated data
placement across distributed DCs using diurnal and weekly
users’ data access patterns to reduce user perceived-latency
and to minimize costs associated with inter-DC traffic.
Spanner [7] manages cross-data center replicated data
and implements database operations while maintaining
externally-consistent distributed transactions for their
internal applications. These systems use a single cloud
storage provider. In contrast, SPANStore [22] tries to utilize
multiple cloud provider DCs rather than a single provider
to get a higher DC density to deliver data closer to users
with reduced cost, much like a content delivery network.
Tuba [3] tries to achieved applications’ desired goals while
maximizing the utility delivered to read operations. They
show that automatic reconfiguration of the storage system
can yield substantial benefits such as higher overall resource
utilization and better user-perceived latency. However,
these storage systems do not adequately handle dynamics
from the cloud infrastructure and applications because of
their design choices, most notably, a lazy data placement
policy decision. Our work tries to handle such dynamics
using a combination of local policy, global policy, and
multiple storage tiers across multiple DCs. In addition,
Wiera provides a flexible substrate that enables the imple-
mentation of such existing data policies easily e.g., Wiera
can support a time-varying user-specified data consistency
model based on changes to access patterns and network
conditions while most previous works only support a few
hard-coded data consistency models.

Policy-Driven Storage: The policy architecture for
distributed storage systems (PADS) [5] was proposed for
system designers to construct a new distributed storage
system easily. PADS provides a data plane that is a fixed
set of mechanisms for storing, transmitting, and consistency
information and control plane policy that specifies the
system-specific policy for orchestrating flows of data among
nodes. In our previous work Tiera [18], we explored building

a storage framework that helps applications build a tiered
storage system consisting of local DC memory resources
for better performance, and persistent storage services
like S3 or EBS for durability. Tiera supports dynamic
policy modification e.g., addition/removal of tiers, adding
new events and responses, at run-time. In this paper, we
extend and utilize Tiera which focused on a single DC.
We use storage tiers across multiple cloud providers to get
additional benefits such as simpler consistency and reduced
cost, and to handle dynamics from cloud infrastructures
and applications at run-time.

Storage Tiering Features on Cloud Providers: Some
cloud providers offer similar features but with significant
limitations. For example, AWS S3 provides storage tiering
between S3 and Glacier with limitations e.g., only from S3 to
Glacier, data size (>128 KB), and duration (>30 days) and
more. Google only supports deletion of old objects. Wiera
provides diverse policies and more flexible features through
our own custom implementation but without such limita-
tions. Moreover, cloud providers don’t provide guarantees
on the consistent performance of their services and it is left
to the applications to handle dynamics. Wiera makes this
much easier for applications through a simple interface and
support for changing policies.

7. CONCLUSION

In this paper, we introduced Wiera, an integrated geo-
distributed cloud storage system that runs across multiple
storage tiers, multiple data-centers, and multiple providers,
to exploit storage options available to the application and
user. The diversity of options is exploited by a flexible stor-
age policy framework that can optimize across a wide array
of metrics such as performance, cost, durability, reliability,
in the face of network and application dynamics. Wiera is
built upon the Tiera storage system to achieve far greater
flexibility and adaptability including support for multiple
levels of consistency based on current SLAs or performance
goals. The results indicate that metrics such as reduced
cost and higher performance are obtainable by exploiting
the larger set of storage options. Lastly, the benefits can
be obtained with minimal impact to existing applications as
demonstrated by the unmodified RUBiS application.

8. ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd,
Thilo Kielmann, for their helpful comments. We acknowl-
edge grant NSF CSR-1162405 that supported this research.

9. REFERENCES

[1] S. Agarwal et al. Volley: Automated data placement
for geo-distributed cloud services. In Proceedings of
the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI'10, pages 2-2,
Berkeley, CA, USA, 2010. USENIX Association.

G. Ananthanarayanan et al. Disk-locality in
datacenter computing considered irrelevant. In
Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS’13, Berkeley, CA,
USA, 2011. USENIX Association.

M. S. Ardekani and D. B. Terry. A self-configurable
geo-replicated cloud storage system. In Proceedings of

176

[
[

[
[

[

[

[

[

[

[4]

[5]

[6]

7]

10]
11]

12]

13]

14]

15]

16]

17)

18]

the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 367381,
Berkeley, CA, USA, 2014. USENIX Association.
Azure Virtual Machine.
https://azure.microsoft.com/en-us/documentation/
articles/virtual-machines-linux-sizes/.

N. Belaramani et al. Pads: A policy architecture for
distributed storage systems. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, pages 59—-73, Berkeley,
CA, USA, 2009. USENIX Association.

B. F. Cooper et al. Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages
143154, New York, NY, USA, 2010. ACM.

J. C. Corbett et al. Spanner: Google’s globally
distributed database. volume 31, pages 8:1-8:22, New
York, NY, USA, Aug. 2013. ACM.

Curator. http://curator.apache.org/.

M. D. Dahlin et al. Cooperative caching: Using remote
client memory to improve file system performance. In
Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation, OSDI
'94, Berkeley, CA, USA, 1994. USENIX Association.
Data Center Map. http://www.datacentermap.com/.
Flashcache at Facebook: From 2010 to 2013 and
beyond. http://alturl.com/us4fi/.

FUSE - Filesystem In User Space.
https://github.com/libfuse/libfuse/.

P. Hunt et al. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’10, pages 11-11, Berkeley,
CA, USA, 2010. USENIX Association.

M. Mesnier, G. R. Ganger, and E. Riedel.
Object-based storage. Comm. Mayg., 41(8):84-90, Aug.
2003.

K. Oh et al. Redefining data locality for cross-data
center storage. In Proceedings of the 2Nd International
Workshop on Software-Defined Ecosystems, BigSystem
'15, pages 15-22, New York, NY, USA, 2015. ACM.
M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db.
In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’99, pages 43-43,
Berkeley, CA, USA, 1999. USENIX Association.

J. Ousterhout et al. The case for ramclouds: Scalable
high-performance storage entirely in dram. SIGOPS
Oper. Syst. Rev., 43(4):92-105, Jan. 2010.

A. Raghavan, A. Chandra, and J. B. Weissman. Tiera:
Towards flexible multi-tiered cloud storage instances.
In Proceedings of the 15th International Middleware
Conference, Middleware ’14, pages 1-12, New York,
NY, USA, 2014. ACM.

Redis. http://redis.io/.

RUBIS Web site. http://rubis.ow2.org.

SysBench. https://github.com/akopytov/sysbench/.

Z. Wu et al. Spanstore: Cost-effective geo-replicated
storage spanning multiple cloud services. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 13, pages
292-308, New York, NY, USA, 2013. ACM.

