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Abstract This paper tackles a privacy breach in current location-based services (LBS)

where mobile users have to report their exact location information to an LBS provider

in order to obtain their desired services. For example, a user who wants to issue a

query asking about her nearest gas station has to report her exact location to an

LBS provider. However, many recent research efforts have indicated that revealing pri-

vate location information to potentially untrusted LBS providers may lead to major

privacy breaches. To preserve user location privacy, spatial cloaking is the most com-

monly used privacy-enhancing technique in LBS. The basic idea of the spatial cloaking

technique is to blur a user’s exact location into a cloaked area that satisfies the user

specified privacy requirements. Unfortunately, existing spatial cloaking algorithms de-

signed for LBS rely on fixed communication infrastructure, e.g., base stations, and

centralized/distributed servers. Thus, these algorithms cannot be applied to a mobile

peer-to-peer (P2P) environment where mobile users can only communicate with other

peers through P2P multi-hop routing without any support of fixed communication in-

frastructure or servers. In this paper, we propose a spatial cloaking algorithm for mobile

P2P environments. As mobile P2P environments have many unique limitations, e.g.,

user mobility, limited transmission range, multi-hop communication, scarce commu-
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nication resources, and network partitions, we propose three key features to enhance

our algorithm: (1) An information sharing scheme enables mobile users to share their

gathered peer location information to reduce communication overhead; (2) A histor-

ical location scheme allows mobile users to utilize stale peer location information to

overcome the network partition problem; and (3) A cloaked area adjustment scheme

guarantees that our spatial cloaking algorithm is free from a “center-of-cloaked-area”

privacy attack. Experimental results show that our P2P spatial cloaking algorithm is

scalable while guaranteeing the user’s location privacy protection.

Keywords Spatial cloaking · location anonymization · location-based services ·
mobile peer-to-peer computing

1 Introduction

Location-based services (LBS) can provide a wide variety of important services for

mobile users that have been proven through many commercial products or research

prototypes. Examples of these services include transportation services (e.g., “What

is the shortest route from my current location to my home”), convenience services

(e.g., “Where is my nearest grocery store”), and emergency control (e.g., “Dispatch

the nearest ambulance to the patient”). Since LBS is provided for users based on

their exact location information, a major threat about the user’s location privacy has

been raised. Recently, spatial cloaking has been widely used to tackle such a privacy

breach in LBS. The basic idea of the spatial cloaking technique is to blur a user’s exact

location into a cloaked area such that the cloaked area satisfies the user specified privacy

requirements (e.g., [1,4,7,11,15,19,23,24]). The most popular privacy requirements for

the spatial cloaking technique are K-anonymity, i.e., a cloaked area contains at least K

users, and minimum area Amin, i.e., the size of a cloaked area is at least Amin. Since

a location-based database server does not know the user’s exact location information,

the database server can only return an answer set that includes the exact answer to

the user (e.g., [14,15,19]).

A mobile peer-to-peer (P2P) network is a highly ad-hoc environment in which

mobile users can only communicate with other peers through multi-hop routing without

any support of fixed communication infrastructure or centralized/distributed servers.

There are many unique limitations in the mobile P2P environment, e.g., user mobility,

limited transmission range, multi-hop communication, scarce communication resources,

and network partitions1. In terms of system architecture, existing spatial cloaking

techniques can be classified into three main categories, centralized (e.g., [1,7,11,15,

19,23,24]), distributed (e.g., [9,10]), and peer-to-peer approaches (e.g., [4]). Since the

spatial cloaking algorithms proposed for the centralized or distributed approach rely on

fixed communication infrastructure and centralized/distributed servers, they cannot be

applied to the mobile P2P environment. To our best knowledge, our previous work is the

only spatial cloaking algorithm for the mobile P2P environment [4]. The main idea of

the P2P spatial cloaking algorithm is that when a mobile user wants to obtain services

from an LBS provider, she collaborates with other peers via multi-hop communication

to blur her location into a cloaked area. Our algorithm guarantees that the cloaked

area satisfies the user’s K-anonymity and minimum area Amin privacy requirements.

1 In a partitioned network, mobile users are partitioned into disjoint networks, in which a
mobile user is only able to communicate with other peers residing in her network partition.
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Then, the user sends her location-based query along with the cloaked area to the LBS

provider to obtain her desired services. Since the location-based database server does

not know the exact user location, it can only return an answer set that includes the

exact answer to the user. Thus, after the user gets the answer set from the database

server, she has to compute the exact answer from the answer set.

In this paper, we propose three key features to enhance the scalability, efficacy

and privacy protection of our P2P spatial cloaking algorithm. Since the mobile P2P

environment has limited communication resources and constrained transmission range,

excessively searching the network for peers would pose a scalability issue. To this end,

we propose an information sharing scheme for our P2P spatial cloaking algorithm

to enable mobile users to share their gathered peer location information with nearby

peers. If the mobile user can get enough peer location information from a peer, she

does not need to search the network; and therefore, the information sharing scheme

can reduce communication overhead. In addition, the mobile user may encounter a

network partition problem in the mobile P2P environment, i.e., the number of users

residing in her network partition is less than her required anonymity level, i.e., K,

she cannot find enough peer location information to satisfy her K-anonymity privacy

requirement. To alleviate the network partition problem, we design a historical location

scheme that allows users to utilize the peer location information cached by the peers

residing in their network partition. We use a consecutive approach to adjust such stale

location information to capture its uncertainty. Furthermore, the mobile user needs to

search the network for an adequate number of peers to satisfy her required anonymity

level. Since the peer search process usually starts at the user and spreads out from

her nearby peers to farther peers, the user may be close to the center of the cloaked

area. Thus, an adversary could guess that the user who is the closest to the center of a

cloaked area is the actual query issuer, i.e., a “center-of-cloaked-area” privacy attack.

To avoid such a privacy breach, we propose a cloaked area adjustment scheme that

adjusts a cloaked area such that the probability of the actual query issuer being the

closest to the center of a cloaked area is 1/K.

We evaluate the performance of our proposed features through simulated exper-

iments. The experimental results show that these features enhance the scalability of

our P2P spatial cloaking algorithm while guaranteeing the user’s location privacy pro-

tection. In general, the contributions of this paper can be summarized as follows:

– We propose a spatial cloaking algorithm for mobile peer-to-peer environments.

(Section 4.1)

– We introduce an information sharing scheme for our spatial cloaking algorithm to

enable mobile users to share their gathered peer location information with other

peers in order to reduce communication overhead. (Section 4.2)

– We design a historical location scheme for our algorithm to overcome the network

partition problem. (Section 4.3)

– We propose a cloaked area adjustment scheme for our algorithm to avoid the

“center-of-cloaked-area” privacy attack. (Section 4.4)

– We experimentally evaluate our P2P spatial cloaking algorithm with the three

enhancement schemes. The experimental results show that the enhanced algorithm

is scalable while guaranteeing the user’s location privacy protection. (Section 6)

The rest of this paper is organized as follows. Section 2 highlights related works.

Section 3 gives our system model. Section 4 describes our peer-to-peer spatial cloaking

algorithm and the three enhancement features. Section 5 presents the privacy-aware
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query processing for anonymous location-based services. Experimental results are de-

picted in Section 6. Section 7 concludes this paper.

2 Related Works

Privacy-preserving techniques for location privacy have been widely studied. These

techniques are based on one of the following concepts. (a) False locations. Users pro-

tect their location privacy by reporting either fake locations [26] or their exact locations

with a set of fake locations, termed dummies [17], to a location-based database server.

(b) Space transformation. The user location information and data are transformed into

another space in which their exact [8,25] or approximate [16] spatial relationships are

maintained to answer location-based queries. (c) Spatial cloaking. The main idea of

the spatial cloaking technique is to blur a user’s exact location into a cloaked area

that satisfies the user’s privacy requirements [1,3,4,6,7,9–11,13,15,19,23,24], e.g., K-

anonymity [21] (i.e., the cloaked area contains at least K users) and minimum area

Amin (i.e., the cloaked area size is at least Amin). Among these concepts, we em-

ploy the spatial cloaking technique to protect the user location privacy because this

technique is the most popular one and it supports many environment settings, e.g.,

centralized [1,7,11,15,19,23,24], distributed [9,10], peer-to-peer [4], and wireless sen-

sor networks [12], and many problem settings, e.g., snapshot queries [1,4,7,9–11,15,

19], continuous queries [3,23], and trajectories [24].

In terms of architecture models, existing spatial cloaking techniques can be cat-

egorized into three models, centralized, distributed and peer-to-peer. For the central-

ized architecture model [1,7,11,15,19,23,24], a trusted third party, termed location

anonymizer, is placed between the user and the location-based service provider. The

location anonymizer is responsible for blurring users’ exact locations into cloaked ar-

eas that satisfy their privacy requirements, and for communicating with the service

provider. This architecture model could pose a scalability issue because it requires all

the mobile users to periodically report their exact locations to the location anonymizer.

Also, storing the user’s exact location at a server could pose a privacy breach, i.e., a

single point of attacks [9,10,27]. For the distributed architecture model [9,10], the users

maintain a complex data structure to anonymize their location information through

fixed communication infrastructure, i.e., base stations. However, such a complex data

structure leads to difficulties to apply this model to highly dynamic location-based mo-

bile applications [27]. For the peer-to-peer model, to our best knowledge, our previous

work is the only spatial cloaking algorithm for this architecture model [4]. The basic

idea is that mobile users are able to work together to blur their locations into cloaked

areas without using any fixed communication infrastructure or centralized/distributed

servers.

Since the user’s location information is blurred into cloaked areas, a query processor

embedded inside a location-based database server must have the ability to deal with

location-based queries with cloaked areas. The state-of-the-art privacy-aware query

processor can deal with nearest-neighbor queries with either rectangular cloaked ar-

eas [5,14,19] or circular cloaked areas [15]. Since the query processor does not know the

exact location of the query, it can only determine an answer set that includes the exact

answer to the query [14,15,19] or an approximate answer set with a certain quality

guarantee [5]. Among the algorithms returning the exact answer within the answer set

to the user, the works [14,15] compute the minimal answer set while the work [19]
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Fig. 1 System architecture

computes a superset of the answer set. Then, the database server sends the answer

set to the user, and the user computes the exact answer from the answer set (or the

best answer from the approximate answer set). In this paper, we adopt the work [14]

as our privacy-aware query processor because it minimizes the communication over-

head of sending the minimal answer set from the database server to the user while

guaranteeing the user can get the exact answer.

3 System Model

Figure 1 depicts the system architecture of our peer-to-peer (P2P) spatial cloaking

algorithm that consists of two entities, mobile users and location-based database servers.

We will first discuss our privacy threat model and privacy settings in user privacy

profiles, and then describe each entity in our system.

Privacy threat model. We assume that mobile users are trusted, so they do not

use their gathered peer location information to attack our system. However, we do not

have any assumption about the trustworthiness of the location-based service providers.

Thus, we assume that an adversary can utilize the information gathered by the service

provider to make privacy attacks. In addition, we only focus on snapshot location-based

queries, and each query is assigned a unique pseudonymous identity that is completely

unrelated to the user’s personal identity in order to ensure the pseudonymity of the

user’s location information [20].

User privacy profiles. Each user specifies her privacy requirements in a privacy

profile in a form of (K, Amin), where K indicates the required anonymity level and

Amin indicates the required minimum area of her cloaked areas. In other words, the

user wants to find a cloaked area that includes at least K users and has an area of

at least Amin. Amin is particularly useful in a dense area where a large K would not

achieve high privacy protection. For example, a user in a stadium with K = 100 may

result in a very small cloaked area. It is important to note that the user can change

her privacy profile at any time to guarantee that her specified privacy settings achieve

her desired privacy protection in different situations.

The privacy profile can be extended to support temporal, spatial, and/or inter-

dependent constraints on the required anonymity level and the required cloaked area

size.

– Temporal constraint. The user can specify her privacy requirements for different

time intervals. For example, a user is willing to reveal her location information
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during office hours, e.g., (K = 1, Amin = 0 mile) between 8:00 AM and 5:00 PM, but

she needs high privacy protection after office hours, e.g., (K = 100, Amin = 5 miles)

after 5:00 PM.

– Spatial constraint. The user can specify her privacy requirements for different

geographic regions. For example, a user needs a small Amin in downtown ar-

eas, e.g., (K = 50, Amin = 1 mile), but a large Amin in rural areas, e.g.,

(K = 50, Amin = 10 miles). This is because a high density of geographic fea-

tures in a downtown area can make the adversary very difficult to infer anything

about the user even a small cloaked area of a couple of city blocks.

– Interdependent constraint. The user can specify an interdependence between the

anonymity level and the size of a cloaked area. For example, a user can specify a

maximum area Amax requirement of her cloaked areas, i.e., she is happy with a

cloaked area of a size Amax regardless of the number of users within the cloaked

area. Amax also ensures the query utility of our spatial cloaking algorithm.

Since it is straightforward to extend our P2P spatial cloaking algorithm to sup-

port temporal, spatial, and/or interdependent constraints, we only discuss how our

algorithm finds cloaked areas satisfying both K and Amin in this paper.

Mobile users. Each mobile user is equipped with two wireless network interface

cards; one of them is dedicated to connect to a mobile base station to communicate

with location-based database servers, while the other one is devoted to communicate

with other peers via multi-hop routing without any support of fixed communication in-

frastructure or centralized/distributed servers. This multi-interface approach has been

adopted in location-based services (e.g., [4,18]) and mobile peer-to-peer information

access applications (e.g., [2,22]). Each user is also equipped with a positioning device,

e.g., GPS, to determine her location that is represented as a coordinate (x, y). It is

important to note that we do not have any assumption about the transmission range

of the user mobile device, i.e., the mobile users can have different transmission ranges,

and the network topology.

Location-based database servers. A privacy-aware query processor embedded

inside the location-based database server has the ability to deal with location-based

queries with cloaked areas. When a mobile user wants to obtain services from a location-

based service provider, she executes our P2P spatial cloaking algorithm to blur her

location into a cloaked area that satisfies her privacy requirements. Then, the user

sends her location-based query along with the cloaked area to the database server.

Since the query processor does not know the exact user location, it can only compute

an answer set that includes the exact answer to the user. Then, the database server

sends the answer set to the user, and the user computes the exact answer from the

answer set.

4 Peer-to-Peer Spatial Cloaking Algorithm

We now present our spatial cloaking algorithm in mobile peer-to-peer (P2P) environ-

ments where no fixed communication infrastructure or centralize/distributed servers

are available. Thus, the mobile users are only able to collaborate with each other

through multi-hop routing to execute our algorithm. Such a highly ad-hoc mobile net-

work poses many limitations to the computing environment, e.g., user mobility, limited

transmission range, multi-hop communication, scarce communication resources, and
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network partition problems. In this section, we first describe our P2P spatial cloaking

algorithm (Section 4.1). Then, we present the three key features proposed for our algo-

rithm. Section 4.2 describes the information sharing scheme that enables users to share

their gathered peer location information with nearby peers in order to reduce commu-

nication overhead. Section 4.3 gives the historical location scheme that allows users

to utilize stale peer location information to alleviate the network partition problem.

Section 4.4 presents the cloaked area adjustment scheme that guarantees our algorithm

to be free from the “center-of-cloaked-area” privacy attack. We start by assuming that

the network partition problem does not take place, i.e., all mobile users can communi-

cate with each other through multi-hop routing in the network. The network partition

problem will be addressed in Section 4.3.

4.1 Spatial Cloaking Algorithm

The basic idea of our P2P spatial cloaking algorithm is that a mobile user communicates

with other peers via multi-hop routing to find at least K − 1 peers. Then, the user

determines a cloaked area that includes the K − 1 nearest peers and herself. The

cloaked area is K-anonymous because the user is indistinguishable among K users

within the cloaked area. After satisfying the K-anonymity privacy requirement, the

user extends the cloaked area to have an area of at least Amin, in order to satisfy the

minimum area privacy requirement. To obtain location-based services, the user sends

her location-based query along with the result cloaked area as her blurred location

information to a database server. We will discuss how the database server computes

an answer set that includes the exact answer to the user based on the cloaked area in

Section 5.

Algorithm. Algorithm 1 depicts the pseudo code of our P2P spatial cloaking

algorithm. Figure 2 depicts a running example to illustrate the algorithm where 15

mobile users are labeled from m1 to m15. m8 who executes the algorithm is represented

by a triangle, and other peers are represented by circles. We assume that m8’s required

anonymity level is five, i.e., K = 5, and her required minimum area is Amin. In general,

the P2P spatial cloaking algorithm consists of two main steps.

Step 1: Peer search step. The user U starts this step by enlisting her neighbor

peers for help. First, U broadcasts a request to her neighbor peers, i.e., the hop distance

between U and her neighbor peers is one (h = 1). Each neighbor peer replies her identity

and location information to U . Then, U stores the received peer information in a list

List. If U has at least K − 1 neighbor peers, U gets enough peer information, so U

proceeds to the next step. However, if U does not have at least K−1 neighbor peers, U

has to enlist multi-hop peers for help. U increases h by one, i.e., h = 2, and broadcasts

the request to the peers within two hop distance. When a peer receiving the request, if

h > 1, the peer replies her identity and location information to U , decreases h by one,

and forwards the request with the updated h to her neighbor peers. However, if h = 1,

the peer simply replies her identity and location information to U . U also stores the

received peer information in List. In case that U still cannot find an adequate number

of peers within h hop distance, i.e., NumUser(List) < K − 1, where NumUser(List)

returns the total number of peers included in List, U repeats this peer search process

until U finds at least K − 1 peers, as depicted in Lines 5 to 9 in Algorithm 1. After U

finds enough peer location information, it proceeds to the cloaked area step.
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Algorithm 1 Peer-to-Peer Spatial Cloaking

1: function P2PSpatialCloaking(User U)
2: //Step 1: Peer Search Step

3: List← {∅}
4: h← 1
5: while NumUser(List) < U.K − 1 do

6: Broadcast a request to the peers within h hop(s) from U
7: List← List ∪ {the received peer location information}
8: h← h + 1
9: end while

10: //Step 2: Cloaked Area Step

11: S ← {U} ∪ {the K − 1 nearest peers of U in List}
12: A← a minimum bounding rectangle of all users in S
13: if Area(A) < U.Amin then

14: α← −2(w+l)+
√

4(w+l)2−16(Area(A)−U.Amin)

8
, where w and l are the width and length

of A, respectively
15: Expand each edge of A by α
16: end if

17: return A

Figures 2a and 2b illustrate the peer search step, where m8 executes the algorithm.

The transmission range of m8 is represented by a dotted circle (Figure 2a). Thus,

m8 finds three neighbors peers, m5, m7, and m9, that are represented by black circles,

when m8 searches for her neighbor peers (i.e., h = 1). Since m8 cannot find an adequate

number of peers to satisfy her required anonymity level, i.e., m8.K = 5, m8 has to enlist

more peers for help. m8 broadcasts a request with h = 2 to her neighbor peers. After

the neighbor peers m5, m7, and m9 receive the request with h > 1, they send their

identity and location information to m8, decrease h by one, and forward the request

with h = 1 to their neighbor peers. In Figure 2b, the transmission ranges of m5, m7,

and m9 are represented by thin, dotted, and bold circles, respectively. Thus, the two-

hop peers m4, m6, m10, and m15 receive the request with h = 1. Since h = 1, they

simply send their identity and location information to m8. After the two-hop search,

m8 has the location information of seven peers, m4, m5, m6, m7, m9, m10, and m15,

m8 has enough peer location information to proceed to the cloaked area step.

Step 2: Cloaked area step. This step takes the peer location information stored

in List from the previous step as an input, and determines a cloaked area A that

satisfies both the user K-anonymity and minimum area privacy requirements, i.e.,

NumUser(A) ≥ K and Area(A) ≥ Amin, where Area(A) returns the area of A. We

find a set of users S that includes U and the K − 1 nearest peers to U in List (Line 11

in Algorithm 1). Then, A is a minimum bounding rectangle of U and the selected peers

in S (Line 12 in Algorithm 1). A is represented by its bottom-left vertex (xs, ys) and

top-right vertex (xe, ye).

Although A already satisfies the K-anonymity privacy requirement, we still need

to check for the minimum area privacy requirement. If the area of A is larger than or

equal to Amin, i.e., Area(A) ≥ Amin, the algorithm simply returns A as U ’s blurred

location information. However, if Area(A) < Amin, we extend each edge of A by a

distance α such that the area of the extended A is equal to Amin. Let w and l be the

width (i.e., xe − xs) and height (i.e., ye − ys) of A, respectively. We can determine α
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(a) One-hop Peer Search
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(b) Two-hop Peer Search
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(c) Peer Selection
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(d) Area Expansion

Fig. 2 Example of the peer-to-peer spatial cloaking algorithm

by solving the following equation:

(w + 2α)(l + 2α) = Amin

4α2 + 2(w + l)α + w × l −Amin = 0

4α2 + 2(w + l)α + Area(A)−Amin = 0 (1)

Since Area(A) − Amin < 0, [2(w + l)]2 − 4(4)(Area(A) − Amin) ≥ 0, i.e., the

discriminant of Equation 1 is non-negative; hence, α is equal to the non-negative root

of Equation 1, i.e., α =
−2(w+l)+

√
4(w+l)2−16(Area(A)−Amin)

8 , as depicted in Line 14 in

Algorithm 1. After determining α, we extend each edge of A by α to form a new cloaked

area that satisfies both the K-anonymity and minimum area privacy requirements.

Thus, the bottom-left and top-right vertices of the extended A are (xs−α, ys−α) and

(xe + α, ye + α), respectively.

Figures 2c and 2d illustrate the cloaked area step, where m8 knows the location

information of seven peers, i.e., List = {m4, m5, m6, m7, m9, m10, m15}. We find a set

of users S that includes m8 and the four nearest peers of m8 in List, i.e., m4, m5, m7,

and m9. The selected peers in S are represented by black circles in Figure 2c. Then, we

determine a minimum bounding rectangle of the users in S as a cloaked area A that

is represented by a rectangle. In this example, we assume that the area of A is less
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Algorithm 2 Information Sharing Scheme

1: function InformationSharingScheme(User U , Tolerance tols)
2: //Step 1: Peer Search Step

3: List stores the received peer location information of the last peer search
4: if the timestamp of the last peer search < tnow − tols then

5: Request the neighbor peers to turn in their List size and the timestamp of their last
peer search tsearch

6: if some neighbor peer has List with a size of at least U.K and the timestamp of her last
peer search ≥ tnow − tols then

7: Select the neighbor peer P with the latest peer search timestamp
8: Request P to turn in the cached location information of the K-nearest peers to U
9: List← the received peer location information

10: else

11: return P2PSpatialCloaking(User U) (i.e., Algorithm 1)
12: end if

13: end if

14: //Step 2: Cloaked Area Step

15: Adjust the peer location information in List
16: A ← a minimum bounding rectangle includes U and the adjusted location region of the

K − 1 nearest P of U in List
17: Execute Lines 13 to 16 in Algorithm 1 to ensure that A satisfies the minimum area privacy

requirement
18: return A

than Amin. Thus, we determine α and extend each edge of A by α. In Figure 2d, the

distance of α is indicated by arrows, and the extended A is represented by a rectangle,

while the original A is represented by a dotted rectangle.

4.2 Information Sharing Scheme

As described in the previous section, when a mobile user wants to obtain anonymous

location-based services from a service provider, she executes our P2P spatial cloaking

algorithm to blur her location into a cloaked area. Due to scarce communication re-

sources in mobile P2P environments, excessively searching the network for peers could

pose a scalability issue. For example, if many nearby users search the network for peers

within a short time period, they would suffer from long searching time. In the mobile

P2P network, the user has to enlist her neighbor peers for help to forward messages

to multi-hop peers, in order to search the network for enough peer information. Thus,

a set of nearby mobile users would have a similar set of peers within the same hop

distance. To this end, we propose the information sharing scheme for our P2P spatial

cloaking algorithm to improve system scalability. The main idea is to enable a group

of nearby mobile users to share their gathered peer location information with others.

If the user obtains enough peer location information from her neighbor peer, she can

blur her location without performing the peer search step in Algorithm 1. Thus, the

information sharing scheme can reduce communication and computational overhead.

Algorithm. Algorithm 2 depicts the pseudo code of the information sharing

scheme. In this scheme, after the mobile user has found enough peer information

through the peer search step in Algorithm 1, she maintains the received peer infor-

mation in List and records the timestamp, tsearch, when the last peer search step

started. Since this scheme only provides the cached peer location information for the

user, the information could be cached a long time ago. The older the cached infor-
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mation, the lower the quality of a cloaked area (i.e., the cloaked area size) will be

obtained. To this end, the information sharing scheme enables the user to control the

staleness of the cached information through a user specified parameter tols. In other

words, the user only utilizes the peer’s stored information cached not earlier than tols.

The information sharing scheme can be incorporated into our P2P spatial cloaking

algorithm (i.e., Algorithm 1) with the following modifications.

Step 1: Peer search step. The user U starts this step by checking whether she can

use her cached information and/or her neighbor peers’ cached information to blur her

location. U first checks the freshness of her cached peer information. If the timestamp of

the last peer search is larger than or equal to tnow−tols, where tnow is the current time,

U can reuse her cached peer information. Otherwise, U requests her neighbor peers to

reply with the size of their List along with tsearch (Line 5 in Algorithm 2). If more than

one neighbor peer caches enough peer location information and tsearch ≥ tnow − tols,

U selects the peer P caching the freshest information, i.e., the largest tsearch (Line 7

in Algorithm 2). Then, U requests P to turn in the K − 1 nearest peer information to

U . However, if no neighbor peer caches enough peer location information or the cached

information is too stale, U simply executes the original peer search step in Algorithm 1

(Line 11 in Algorithm 2). After U receives enough peer information, U stores the peer

information in List.

Step 2: Cloaked area step. Due to user mobility, i.e., mobile users are continu-

ously moving, the only modification to this step is to capture the location uncertainty

of the cached peer information. The basic idea is that given a peer’s location cached

at time t, we use a conservative approach to determine a location region that includes

all possible locations of the peer at current time tnow. Since the current location of the

peer could be at any point within a circular area centered at the peer’s cached location

with a radius of (tnow − t)× vmax, where vmax is the maximum possible speed of the

peer and t is the time when the peer’s location information was cached, such a circular

area constitutes the peer’s adjusted location region. For a peer P with an adjusted lo-

cation region, we consider the maximum distance between U and P ’s adjusted location

region, i.e., dmax(U,P ) = d(U, P ) + (tnow − t) × vmax, as their distance. In reality,

vmax can be set to the maximum legal speed in the system area. Then, we form a

K-anonymous cloaked area A as a minimum bounding rectangle of U and the adjusted

location region of the K − 1 peers (Line 16 in Algorithm 2). If A does not satisfy the

minimum area privacy requirement, we extend A as in the original cloaked area step in

Algorithm 1 (Line 17 in Algorithm 2).

4.3 Peer-to-Peer Spatial Cloaking in a Partitioned Network

Since we consider a highly ad hoc mobile environment, where no fixed communication

infrastructure or centralized/distributed servers are available, mobile users can only

communicate with each other via multi-hop peer-to-peer routing. Due to user mobility,

mobile users may be partitioned into disjoint networks. When a network partition takes

place, a mobile user can only communicate with other peers residing in her network

partition. If a user’s required anonymity level is larger than the number of users residing

in her network partition, the user cannot find enough peer location information to blur

her location information; and thus, the user suffers from a network partition problem.

In this section, we first discuss how to detect a network partition problem and two
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Algorithm 3 Historical Location Scheme

1: function HistoricalLocationScheme(User U , Tolerance tolh)
2: //Step 1: Peer Search Step

3: if U detects |Listh| = |Listh−1| in the peer search step in Algorithm 1 then

4: hlast ← h− 1
5: h← 1
6: while |List| < U.K − 1 or h ≤ hlast do

7: Send a request with U.K and tolh to the peers within h hops
8: List← List∪ {the “uncertain” cached location information returned by the peers}
9: h← h + 1

10: end while

11: end if

12: //Step 2: Cloaked Area Step

13: Adjust the uncertain peer location information in List
14: if |List| ≥ K − 1 then

15: S ← {U} ∪ {the K − 1 peer nearest to U in List}
16: else

17: S ← {U} ∪ List
18: end if

19: A← a minimum bounding rectangle includes U , the peers with exact location information
in S, and the adjusted location region of the peers with uncertain location information

20: Execute Lines 13 to 16 in Algorithm 1 to insure that A satisfies the minimum area privacy
requirement

21: return A

straightforward approaches to alleviate it, and then propose the historical location

scheme to better alleviate the network partition problem.

We now discuss how to detect a network partition problem in the peer search

step in Algorithm 1. Let Listh be the set of peer location information that is found

by the peer search step with a hop distance h. It is expected to find more peers as

h increases, i.e., |Listh| > |Listh−1|. Thus, we know that a network partition takes

place when |Listh| = |Listh−1|. It is important to note that we only need to record

the size of Listh−1 without maintaining the peer location information. There are two

straightforward approaches that a user can use to overcome the network partition

problem. (1) After the user suffers from the network partition problem, she periodically

performs the peer search step until she can find enough peer location information.

(2) After the user cannot find an adequate number of peers in her network partition, she

simply reduces her required K-anonymity level to the number of users residing in her

network partition. However, these two straightforward approaches have drawbacks. The

first approach would incur very long searching time while the second one requires the

user to degrade her privacy protection. To this end, we propose the historical location

scheme that enables the users to utilize their or other peers’ cached information to

better alleviate the network partition problem.

Algorithm. Algorithm 3 depicts the pseudo code of the historical location scheme,

and Figure 3 gives an example to illustrate this scheme. Similar to the information

sharing scheme, the user can control the staleness of the historical peer location infor-

mation through a tolerance parameter tolh. Thus, this scheme only uses the historical

peer location information that was cached not earlier than tnow − tolh. When U suf-

fers from the network partition problem in the peer search step in Algorithm 1, i.e.,

|Listh| = |Listh−1| and Listh−1 < K, U sets hlast = h− 1 and executes the historical

location scheme. In general, the historical location scheme can be incorporated into our

P2P spatial cloaking algorithm with the following modifications.
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(b) Historical Location Scheme

Fig. 3 Example of peer-to-peer spatial cloaking in a partitioned network

Step 1: Peer search step. As List already stores the exact location information

of the peers residing in U ’s network partition through the previous peer search process,

U only needs to ask them to turn in their cached peer location information. Initially,

U sends a request with a parameter tolh and a hop distance h = 1 to her neighbor

peers. Then, the neighbor peer sends the location information cached not earlier than

tnow − tolh to U . U stores this cached location information in List and marks it as

uncertain. When U receives duplicate peer location information, U only keeps the

freshest one. Similar to the original peer search step in Algorithm 1, if U cannot find

enough peer location information in List with a hop distance h, U increases h by one

and rebroadcasts the request. This peer search process repeats until U finds enough

peer location information or h = hlast (Lines 6 to 10 in Algorithm 3). After U finishes

the peer search process, she proceeds to the next step regardless of whether List stores

enough peer location information.

Step 2: Cloaked area step. The user U starts this step by adjusting the uncertain

peer location information in List as in the information sharing scheme. If |List| ≥
U.K−1, U adds the K−1 nearest peers in List and herself to S (Line 15 in Algorithm 3).

For a peer P with uncertain location information, the distance between U and P is the

maximum distance between U and the adjusted location region of P , i.e., dmax(U, P ) =

d(U, P )+(tnow−t)×vmax. However, if |List| ≤ U.K, we use the second straightforward

approach to temporally reduce U.K to |List| + 1 (Line 17 in Algorithm 3); and thus,

U simply adds all peers in List and herself to S. Then, U forms a cloaked area A that

includes the peers with the exact location information and the adjusted location region

of the peers with the uncertain location information in S (Line 19 in Algorithm 3).

If A does not satisfy the minimum area privacy requirement, we extend A as in the

original cloaked area step in Algorithm 1 (Line 20 in Algorithm 3).

Example. Figure 3 depicts an example of a partitioned network where the mobile

users are partitioned into two disjoint networks. One network partition includes five

mobile users m1 to m5, while the other partition includes five mobile users m6 to m10

(Figure 3a). Each user is labeled with a pair of values, where the first value is her

identity and the second value is her required anonymity level. In this example, m4

(represented by a black circle) executes the P2P spatial cloaking algorithm to blur

her location into a cloaked area. Since the number of users residing in m4’s network

partition is less than her required anonymity level, i.e., m4.K = 6, m4 suffers from

the network partition problem. After m4 performs the peer search process with a hop

distance of h = 3, she detects the network partition problem because |List2| = |List3|
(i.e., hlast = 2). We assume that m5 caches the location information of m6. Thus,
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Algorithm 4 Cloaked Area Adjustment Scheme

1: function CloakedAreaAdjustment(User U , UserSet S, Area A)
2: C′

A
← CA; A′ = {(x′

s, y′

s), (x
′

e, y′

e)} ← A = {(xs, ys), (xe, ye)}
3: PC ← the nearest user in S to CA

4: P ← a randomly selected user in S
5: if P 6= PC then

6: //Step 1: Center Adjustment Step

7: PN ← the nearest user in S to P
8: M ← the intersection point between line PCA and the circle centered at P with a radius

of d(P, PN )/2
9: R← a random value within a range of (d(M, CA), d(P,CA)]

10: C′

A ←
(

[d(P,CA)−R]×CA.x+R×P.x

d(P,CA)
,
[d(P,CA)−R]×CA.y+R×P.y

d(P,CA)

)

11: //Step 2: Area Adjustment Step

12: ∆x ← |C′

A
.x− CA.x|

13: ∆y ← |C′

A.y − CA.y|
14: if C′

A.x < CA.x then x′

s ← xs − 2∆x; else x′

e ← xe + 2∆x

15: if C′

A
.y < CA.y then y′

s ← ys − 2∆y; else y′

e ← ye + 2∆y

16: end if

17: return A′

m4 can find enough peer location information after she enlists the peers within two

hop distance for help to turn in their cached location information. List stores the

location information of five peers, i.e., List = {m1, m2, m3, m5, m6}, where the peer

with uncertain location information is underlined. Then, m4 adjusts m6’s location

information, and the adjusted location region of m6 is represented by a dotted circle,

as depicted in Figure 3b. The cloaked area A of m4 that is represented by a rectangle

includes m4, the peers with exact location information in List, i.e., m1, m2, m3, and

m5, and the adjusted location region of m6 (i.e., the dotted circle). We assume that

A satisfies m4’s minimum area privacy requirement, so A is returned to m4 as her

cloaked area.

4.4 Cloaked Area Adjustment Scheme

As discussed in Section 4.1, our P2P spatial cloaking selects the nearest peers of a

mobile user to form her cloaked area A. This peer selection process may pose a pri-

vacy breach that the query issuer tends to be the closest to the center of A, i.e.,

the “center-of-cloaked-area” privacy attack [10,15,27]. Such a privacy breach may give

more information to an adversary to infer the query issuer’s actual location. To prevent

this privacy breach, we should adjust A such that the probability of the query issuer

being the closest to the center of A is 1/K. To this end, we propose the cloaked area

adjustment scheme that prevents the “center-of-cloaked-area” privacy attack if the user

knows the exact location information of the peers residing in A. In case that the user

only knows the historical location information of some peers residing in A, the cloaked

area adjustment scheme can still alleviate the “center-of-cloaked-area” privacy attack.

We will evaluate the resistance of our cloaked area adjustment scheme to this privacy

attack through extensive experiments in Section 6.1.

Algorithm. Algorithm 4 gives the pseudo code of the cloaked area adjustment

scheme. This algorithm is called by Algorithm 1 after executing Line 12; thus, we

add the statement “A ← CloakedAreaAdjustment(U,S, A)” after Line 12 in Al-

gorithm 1. The inputs to the algorithm include a user U , a set of users S selected by
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Fig. 4 Examples of the cloaked area adjustment scheme

the cloaked area step in Algorithm 1, and a minimum bounding box of the users in S,

A. A is represented by its bottom-left vertex (xs, ys) and top-right vertex (xe, ye), and

the center of A is CA = ((xs + xe)/2, (ys + ye)/2). The output of this algorithm is

an adjusted cloaked area A′ that is represented by its bottom-left vertex (x′

s, y
′

s) and

top-right vertex (x′

e, y
′

e), and C′

A is the center of A′. Initially, we set A′ = A (Line 2

in Algorithm 4). For the peer with historical location information in S, we consider

the center of her adjusted location region as her location. We start this algorithm by

randomly selecting a user P in S and finding the nearest user PC in S to the center of

A, CA. If P = PC , we simply return the original A to Algorithm 1; otherwise, we have

to adjust A by the following two main steps.

Step 1: Center adjustment step. Figure 4a illustrates this step where the gray

and black squares represent the center of the input A (CA) and the center of the

adjusted A′ (C′

A), respectively. The user U starts this step by finding the nearest user

PN in S to P . Then, U computes the intersection point M between line PCA and the

circle centered at P with a radius of d(P, PN )/2 (Line 8 in Algorithm 4). To guarantee

that P will be the closest one to C′

A, CA has to be moved towards P by a distance

of greater than d(M,CA). We can set the upper bound of the adjustment distance to

d(P, CA). If the adjustment distance is d(P, CA), C′

A will be located at P . To avoid

revealing any location information of the user residing in A, we randomly select a value

R within a range (d(M, CA), d(P, CA)] (Line 9 in Algorithm 4). Then, CA is moved

towards P by a distance of R; hence, the adjusted center C ′

A is:

(

[d(P, CA)−R]× CA.x + R × P.x

d(P, CA)
,
[d(P, CA)−R]× CA.y + R× P.y

d(P, CA)

)

.

Step 2: Area adjustment step. Figure 4b illustrates this step where the solid

and dotted rectangles represent the adjusted A′ and the input A, respectively. After

the user U determines the center of the adjusted A, C ′

A, we adjust A such that C′

A is

the center of A′. To form A′, we can determine the difference between the coordinates

of CA and C′

A, i.e., ∆x = |C′

A.x − CA.x| and ∆y = |C′

A.y − CA.y| (Lines 12 to 13 in

Algorithm 4). Then, we extend the nearest vertical edge of A to C ′

A by a distance of

2∆x, and the nearest horizontal edge of A to C ′

A by a distance of 2∆y. Mathematically,

we can compute the coordinates of A′ by using the equations given in Lines 14 to 15

in algorithm 4.
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(b) Client Side

Fig. 5 Privacy-aware nearest-neighbor query processing

5 Anonymous Location-based Services

To enable location-based database servers to support privacy-aware location-based

queries with cloaked areas rather than with exact location points, the database server

needs to be equipped with a privacy-aware query processor [5,14,15,19]. In this paper,

we adopt the work [14] as our privacy-aware query processor because it minimizes the

communication overhead of sending a minimal answer set from the database server

to the user while guaranteeing the user can get the exact answer. When a user wants

to issue a privacy-aware location-based queries, she executes our P2P spatial cloaking

algorithm to blur her location into a cloaked area. Then, the user sends the query along

with the cloaked area to the location-based database server. After the privacy-aware

query processor computes a minimal answer set that includes the exact answer to the

user, the database server sends the answer set to the user. Finally, the user computes

the exact answer from the answer set. The smaller the cloaked area, the smaller the

answer set will be returned to the user. However, the user may need to relax her pri-

vacy requirements to achieve a smaller cloaked area. Thus, a trade-off between the user

privacy protection and the quality of services can be achieved.

Figure 5 illustrates the privacy-aware nearest-neighbor query processing. Figure 5a

depicts the data objects, e.g., gas stations, stored at the server side. There are 32

data objects T1 to T32 represented by black circles, the shaded area represents the

cloaked area of the mobile user who issued the query. For clarification, the actual

mobile user location is plotted in Figure 5 as a black square inside the cloaked area A,

i.e., the shaded area. However, such information is neither stored at the server side nor

revealed to the server. The privacy-aware query processor determines a minimal answer

set that includes the nearest object to every point within A. It has been proved that

the minimal answer set includes all objects within A and the nearest object to every

point of each edge of A [14]. In this example, the server returns the answer set that

includes six objects, i.e., T8, T12, T13, T16, T17, and T22, to the user. Then, the user

computes the exact answer, i.e., T13, from the answer set. The algorithmic detail of

the privacy-aware query processor is beyond the scope of this paper. Interested readers

are referred to [14] for more details.
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Table 1 Summary of the features of our algorithms

P2P P2P-IS P2P-IS-CA P2P-IS-CA-HL

Peer-to-Peer Spatial Cloaking (P2P)
√ √ √ √

Information Sharing Scheme (IS) × √ √ √
Cloaked Area Adjustment Scheme (CA) × × √ √

Historical Location Scheme (HL) × × × √

6 Experimental Results

In this section, we evaluate the performance of our P2P spatial cloaking algorithm

(denoted as P2P) with the three key features, information sharing scheme (denoted as

IS), historical location scheme (denoted as HL), and cloaked area adjustment scheme

(denoted as CA) through simulated experiments. Our P2P spatial cloaking algorithm

(P2P) corresponds to the on-demand approach of the state-of-the-art P2P spatial cloak-

ing algorithm [4]. We do not consider the proactive approach because its communication

overhead is much higher than the on-demand approach. Table 1 summaries the features

of our algorithms.

We evaluate our algorithms with respect to five important performance measures.

(1) Number of messages. This measure gives the average number of messages incurred

by our algorithms per each query. It indicates the network bandwidth consumption

and the power consumption on user devices. (2) Cloaked area size. This measure gives

the average size of cloaked areas generated by our algorithms. The smaller the cloaked

area, the more accurate the location is reported to the location-based database server;

the thus, this measure can indicate the location utility of our algorithms. (3) Answer

set size. This measure indicates the average number of objects included in answer sets

returned by the location-based database server. It also indicates the communication

overhead of sending the answer set from the database server to the user. (4) Anonymiza-

tion success rate. This is a ratio of the number of times that the anonymization al-

gorithm can find enough peer location information to satisfy the user’s K-anonymity

privacy requirement to the total number of queries. (5) Privacy attack probability. This

measure gives the resilience of our algorithms to the “center-of-cloaked-area” privacy

attack by measuring the probability of the nearest user to the center of a cloaked area

(Uc) being the actual query issuer, i.e., P(Uc is the query issuer).

We use a networked generator to generate moving objects on the road map of

Hennepin County, Minnesota, USA. The road map consists of 57,020 edges and 42,135

vertices. Unless mentioned otherwise, all our experiments consider 100,000 mobile users

in which 10% of them are randomly selected to issue nearest-neighbor queries (e.g.,

“where is my nearest gas station”) at each time instance. The mobile users are moving

at speeds between 50 and 70 miles per hour. Their required K-anonymity levels are

uniformly selected from a range [50, 100], while their required minimum areas are set to

zero. There are 20,000 data objects that are uniformly distributed within the underlying

road map. The default uncertainty tolerance for the information sharing scheme (tols)

and historical location scheme (tolh) is set to zero and 50 seconds, respectively. We

consider a heterogeneous network environment where the transmission range of each

user is uniformly selected within a range [100, 200] meters. Table 2 summarizes the

parameter settings.
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Table 2 Parameter settings

Parameters Default values Ranges

Number of users 200K 100K to 500K
Number of querying users 20K 10K to 50K
Number of data objects 20K 10K to 50K

Transmission range [100, 200] meters [100, 100] to [100, 300] meters
K-anonymity [50, 100] [50, 100] to [50, 300]

Minimum area Amin 0 1 to 5 km2

tols 0 0 to 50 seconds
tolh 50 seconds -

Movement speed [50, 70] miles per hour -
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Fig. 6 “Center-of-cloaked-area” privacy attack

6.1 Anonymization Strength

Figure 6 depicts the resilience of our algorithms to the “center-of-cloaked-area” privacy

attack with respect to varying (a) the K-anonymity level from 100 to 300, (b) the

number of users from 100,000 to 500,000, (c) the transmission range from [100, 100] to
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Fig. 7 Number of querying users

[100, 300] meters, and (d) the uncertainty tolerance for the information sharing scheme,

i.e., tols, from 0 to 50 seconds. The default K-anonymity level for (b)-(d) is 100. The

results of P2P-IS-CA-HL, P2P-IS-CA, P2P-IS, and P2P are represented by black, gray,

light gray, and white bars, respectively. The pattern bars represent the value of 1/K

which indicates the ideal probability of the actual query issuer being the nearest user

to the center of the cloaked area Uc, i.e., P(Uc is the query issuer). Although P2P

is more vulnerable to the “center-of-cloaked-area” attack than P2P-IS (Figures 6a-

6d), the probability of both P2P and P2P-IS are way above the ideal probability. The

results show that our cloaked area adjustment scheme (CA) gives the probability of Uc

being the actual query issuer is equal to or very close to 1/K. Thus, our cloaked area

adjustment scheme can effectively prevent the “center-of-cloaked-area” privacy attack.

6.2 Scalability

In this section, we evaluate the scalability of our algorithms with respect to large

numbers of querying users, large numbers of users, and large numbers of data objects.
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Fig. 8 Number of users

Figure 7 depicts the performance of our algorithms with respect to varying the

number of querying users from 10,000 to 50,000 users, i.e., from 5% to 25% of 200,000

users. The performance of P2P is not affected by the number of querying users because

there is no information sharing among users in P2P. The results show that our infor-

mation sharing scheme (i.e., P2P-IS, P2P-IS-CA, and P2P-IS-CA-HL) effectively reduces

communication overhead as there are more querying users (Figure 7a). The main reason

is that when the number of querying users increases, there is a higher chance for a user

to obtain enough peer location information from her neighbor peers without searching

the network. Likewise, when a user encounters a network partition problem, she is more

likely to get enough peer location information from other peers residing in her network

partition, as there are more querying users. Thus, the anonymization success rate of

P2P-IS-CA-HL improves with more querying users (Figure 7b). Since P2P-IS-CA-HL re-

quires the users to adjust historical peer location to capture location uncertainty, they

get larger cloaked areas than P2P-IS-CA (Figure 7c). Processing such larger cloaked

areas at the database server results in larger answer sets (Figure 7d). It is important

to note that although our algorithms with the cloaked area adjustment scheme, i.e.,
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Fig. 9 Number of data objects

P2P-IS-CA and P2P-IS-CA-HL, result in larger cloaked areas and answer sets than P2P

and P2P-IS, P2P-IS-CA and P2P-IS-CA-HL are free from the “center-of-cloaked-area”

privacy attack.

Figure 8 depicts the scalability of our algorithms with respect to increasing the

number of users from 100,000 to 500,000. The results show that the performance of all

algorithms gets better when there are more users. In a denser network, the user can

find enough peer information to blur her location with a smaller hop distance, i.e., a

smaller searching area; and hence, the communication overhead reduces (Figure 8a).

When the number of users increases, there are more users in a network partition. Thus,

it is more likely that the user can find enough peer location information in her network

partition, i.e., the anonymization success rate improves (Figure 8b). Since the users

can blur their locations into smaller cloaked areas in the denser network (Figure 8c),

the database server returns smaller answer sets to them (Figure 8d).

Figure 9 depicts the scalability of our algorithms with respect to varying the number

of data objects from 10,000 to 50,000. Since increasing the number of data objects at

the database server only affects the answer set size, the performance of the peer search

process and the spatial cloaking process of all algorithms is not affected. Figure 9b

gives that the answer set size of all algorithms linearly increases as there are more data

objects.

6.3 Effect of Privacy Requirements

In this section, we evaluate the performance of our algorithms with respect to the user

specified K-anonymity and minimum area Amin privacy requirements.

Figure 10 depicts the performance of our algorithms with the increase of the strict-

ness of the K-anonymity privacy requirement from [50, 100] and [50, 300]. It is expected

that the performance of all algorithms becomes worse as the K-anonymity privacy re-

quirement gets stricter. When K increases, the user needs to enlist more peers for

help to gather enough peer location information, so the communication overhead gets

higher (Figure 10a). Our algorithms with the information sharing scheme (i.e., P2P-
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Fig. 10 K-anonymity privacy requirements

IS, P2P-IS-CA, and P2P-IS-CA-HL) perform better than P2P as K gets larger. Since

the user with a stricter K-anonymity privacy requirement needs to gather more peer

location information to blur her location, she is more likely to encounter the network

partition problem (Figure 10b). The results show that the user adopting our historical

location scheme (i.e., P2P-IS-CA-HL) records a higher anonymization success rate than

other algorithms. Figure 10c depicts that all algorithms generate larger cloaked areas

to satisfy stricter privacy requirements. With larger cloaked areas, it is expected that

the database server returns larger answer sets to the user (Figure 10d).

Figure 11 gives the performance of our algorithms with respect to increasing the

required minimum area Amin of cloaked areas from 1 to 5 km2. In this experiment,

we set the anonymity level to a smaller value, i.e., K = 10, so the results mainly

depend on Amin. Varying Amin only affects the cloaked area size and the answer

set size. It is interesting to see that when Amin is stricter than the K-anonymity

privacy requirement, all algorithms give similar results in terms of cloaked area size

and answer set size, as depicted in Figures 11a and 11b, respectively. It is expected

that all algorithms generate larger cloaked areas as Amin gets stricter. When a cloaked
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Fig. 11 Minimum area privacy requirements

area A gets larger, it is more likely that A includes a larger set of data objects and each

edge of A has a larger set of nearest data objects. Thus, the answer set size increases

as Amin gets stricter.

6.4 Effect of Transmission Range

Figure 12 depicts the performance of our algorithms respect to increasing the transmis-

sion range of user mobile devices from [100, 100] to [100, 300] meters. If the transmission

range gets larger, the user can find enough peer location information within a smaller

hop distance; and thus, the communication overhead reduces (Figure 12a). As the

transmission range gets larger, our algorithms can find K-anonymized cloaked areas

for the users with stricter anonymity levels, so the anonymization success rate improves

(Figure 12b). However, the stricter the anonymity level, the lager the cloaked area size

is generated by our algorithms, so all algorithms generates larger cloaked areas as the

transmission range increases (Figure 12c). Since the increase of the cloaked area size

is small, the answer set size is slightly affected (Figure 12d).

6.5 Effect of Uncertainty Tolerance

Figure 13 gives the performance of our algorithms respect with to varying the user

uncertainty tolerance level for the information sharing scheme, i.e., tols, from 0 to

50 seconds. Since P2P does not support information sharing among users, varying

tols does not affect its performance. When the user is willing to utilize staler peer

location information, it is easier for her to obtain enough peer location information

from her neighbor peers without searching the network. Thus, the communication

overhead of the algorithms with the information sharing scheme (i.e., P2P-IS, P2P-IS-

CA, and P2P-IS-CA-HL) reduces, as tols gets larger (Figure 13a). Likewise, when the

user accepts a larger tols, there is a higher chance for her to find enough peer location

information within her network partition; and therefore, the user experiences a higher
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Fig. 12 Transmission range

anonymization success rate as tols increases (Figure 13b). With respect to cloaked area

size, all algorithms generate larger cloaked areas, as tols increases (Figure 13c). This

is due to the fact that we need larger adjusted location regions for staler peer location

information in order to capture its uncertainty. It is expected that the answer set size

increases as the cloaked area gets larger (Figure 13d).

7 Conclusion

In this paper, we present a peer-to-peer (P2P) spatial cloaking algorithm that enables

mobile users to obtain location-based services without revealing their exact location in-

formation. Our P2P spatial cloaking algorithm is designed for mobile P2P environments

in which no fixed communication infrastructure or centralized/distributed servers are

available. The main idea of our algorithm is that when a mobile user wants to obtain

location-based services, she collaborates with other peers to blur her location into a

cloaked area. Our algorithm guarantees the cloaked area satisfies the user specified

K-anonymity and minimum area Amin privacy requirements, i.e., the cloaked area in-
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Fig. 13 Uncertainty tolerance for the information sharing scheme (tols)

cludes at least K users and has a size of at least Amin. To overcome the limitations of

mobile P2P environments, e.g., user mobility, limited transmission range, scarce com-

munication resources, multi-hop communication, and network partition problem, we

propose three key features for our algorithm. (1) The information sharing scheme en-

ables mobile users to share their gathered peer location information with nearby peers

in order to reduce communication overhead. (2) The historical location scheme allows

users to utilize historical peer location information cached by other peers to alleviate

the network partition problem. (3) The cloaked area adjustment scheme aims to adjust

a cloaked area to guarantee that the adjusted cloaked area is free from a “center-of-

cloaked area” privacy attack. We evaluate our P2P spatial cloaking algorithm with the

three key features through extensive experiments. The experimental results show that

our algorithm is scalable and efficient while guaranteeing the user’s location privacy

protection.
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