
CSci 5271
Introduction to Computer Security

Day 13: Network, etc., security overview
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

Second half of course

More Unix access control

The Internet

A bunch of computer networks
voluntarily interconnected

Capitalized because there’s really only
one
No centralized network-level
management

But technical collaboration, DNS, etc.

Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP Packet wrapping



IP(v4) addressing

Interfaces (hosts or routers) identified
by 32-bit addresses

Written as four decimal bytes, e.g.
192.168.10.2

First k bits identify network, 32- k

host within network
Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual
packets

Packets have source and destination
addresses, other options

Automatic fragmentation (usually
avoided)

ICMP (I Control Message P) adds
errors, ping packets, etc.

UDP

User Datagram Protocol: thin wrapper
around IP

Adds source and destination port
numbers (16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides
reliable bidirectional stream abstraction

Packets have sequence numbers,
acknowledged in order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest
link

“Window” limits number of packets sent
but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease
of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure,
cooperative protocols

Internet-level algorithm: BGP (Border
Gateway Protocol)



Below IP: ARP

Address Resolution Protocol maps IP
addresses to lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast
packets

Complex Ethernets also need their own
routing (but called switches)

DNS

Domain Name System: map more
memorable and stable string names to
IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu

server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP
address written backwards

Classic application: remote login

Killer app of early Internet: access
supercomputers at another university
Telnet: works cross-OS

Send character stream, run regular login
program

rlogin: BSD Unix
Can authenticate based on trusting
computer connection comes from
(Also rsh, rcp)

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

Second half of course

More Unix access control

Midterm result: high-order bit

It was a little harder than I’d intended
Sorry about that

But even allowing for that, results
disappointing



Midterm results schedule

Grading is mostly finished

Plan to have grades posted on Moodle
by Thursday or Friday

Post and discuss (a bit) solutions on
Monday

Give back paper copies in class
Monday

HW1 and HW2 schedule

Homework 1 grading is under way

Will discuss more once it’s graded

HW2 coming next week

Ex2 and Ex3 schedule

Exercise set 2 grading: after HW1

Posted soon: exercise set 3, due 10/31

Project meetings schedule

Next meetings start a week from today,
10/23

Watch your email for invitations

Will default to the day and time of last
meeting, but can change

Crypto textbooks show and tell, 1/5

Practical Cryptography by Ferguson
and Schneier
Cryptography Engineering by Ferguson,
Schneier, and Kohno

Pretty much a second edition

Lots of specific advice, not too much
theory

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

Second half of course

More Unix access control



Packet sniffing

Watch other people’s traffic as it goes
by on network
Easiest on:

Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in
routing, often not checked

Change it to something else!

Might already be enough to fool a naive
UDP protocol

TCP spoofing

Forging source address only lets you
talk, not listen

Old attack: wait until connection
established, then DoS one participant
and send packets in their place
Frustrated by making TCP initial
sequence numbers unpredictable

But see Oakland’12, WOOT’12 for fancier
attacks, keyword “off-path”

ARP spoofing

Impersonate other hosts on local
network level

Typical ARP implementations stateless,
don’t mind changes

Now you get victim’s traffic, can read,
modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if
originating host is on whitelist

How can you attack this mechanism
with an honest source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if
originating host is on whitelist

How can you attack this mechanism
with an honest source IP address?

Remember, ownership of reverse-DNS
is by IP address



Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

Second half of course

More Unix access control

Cryptographic primitives

Core mathematical tools

Symmetric: block cipher, hash function,
MAC

Public-key: encryption, signature

Some insights on how they work, but
concentrating on how to use them
correctly

Cryptographic protocols

Sequence of messages and crypto
privileges for, e.g., key exchange

A lot can go wrong here, too

Also other ways security can fail even
with a good crypto primitive

Crypto in Internet protocols

How can we use crypto to secure
network protocols

E.g., rsh ! ssh

Challenges of getting the right public
keys

Fitting into existing usage ecosystems

Web security: server side

Web software is privileged and
processes untrusted data: what could
go wrong?

Shell script injection (Ex. 1)

SQL injection

Cross-site scripting (XSS) and related
problems

Web security: client side

JavaScript security environment even
more tricky, complex

More kinds of cross-site scripting

Possibilities for sandboxing



Security middleboxes

Firewall: block traffic according to
security policy

NAT box: different original purpose, now
de-facto firewall

IDS (Intrusion Detection System):
recognize possible attacks

Malware and network DoS

Attacks made possible by the network

Viruses, trojans, bot nets
Detection?
Mitigation?

Distributed denial of service (DDoS)

Adding back privacy

Every Internet packet has source and
destination addresses on it

So how can network traffic be private
or anonymous?

Key technique: overlay a new network

Examples: onion routing (Tor),
anonymous remailing

Usability of security

Prevent people from being the weakest
link

Usability of authentication

“Secure” web sites, phishing

Making decisions about mobile apps

Electronic voting

Challenging: hard versions of many
hard problems:

Trust in software
Usability
Simultaneously public and private

Some deployed systems arguably
worse than paper

Can do better with crypto and systems
approaches

Electronic money (Bitcoin)

Current payment systems have strong
centralized trust

US Federal Reserve and mint
Banks, PayPal

Could they be replaced by a
peer-to-peer distributed system?

Maybe



Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

Second half of course

More Unix access control

Special case: /tmp

We’d like to allow anyone to make files
in /tmp

So, everyone should have write
permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage
permissions, want a whole tree to have
a single group
When 02000 bit set, newly created
entries with have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit
02000

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly
Unix-like
Multiple user and group entries

Decision still based on one entry

Default ACLs: generalize group
inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of
legacy code

Suggests: “fail closed”

Contrary pressure: don’t want to break
functionality

Suggests: “fail open”

POSIX ACL design: old group
permission bits are a mask on all novel
permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35)
pieces

Note: not real capabilities

First runtime only, then added to FS
similar to setuid

Motivating example: ping

Also allows permanent disabling



Privilege escalation dangers

Many pieces of the root privilege are
enough to regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to
drop privileges

Use of temporary files by no-longer
setuid programs

For more details: “Exploiting
capabilities”, Emeric Nasi

Next time

Symmetric crypto primitives


