Today

m Cache memory organization and operation

[]
Cache Memories o
.
CSci 2021: Machine Architecture and Organization "
Lecture #25-27, March 27-April 1st, 2015
Your instructor: Stephen McCamant
Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai
1 2
Cache Memories General Cache Organization (S, E, B)
m Cache memories are small, fast SRAM-based memories Ej\z’ lines per set
managed automatically in hardware. - p
= Hold frequently accessed blocks of main memory | ” |' e { |_
m CPU looks first for data in caches (e.g., L1, L2, and L3), | I Joeee] |
then in main memory.
. S=25sets | I Jeooeof]
m Typical system structure:
e eeecscsccsccscsscscsccsssscae
Register file | Il Jeooof]
Cache -
A==
I System bus Memory bus Cache size:
: ﬁ P ain | m [o[]2] - 51] | C =S xE x B data bytes
Bus interface memory ‘
valid bit S——

B = 2" bytes per cache block (the data)
3 4

Cache Read - bocate set Example: Direct Mapped Cache (E = 1)

* Check if any line in set
has matching tag Direct mapped: One line per set

E = 2° lines per set * Yes + line valid: hit Assume: cache block size 8 bytes
- A ~ « Locate data starting
at offset
l ” |....| l Address of int:
| | J-eee] | | Coc] CEEEEGEE]| el s Tae]
s=zses{ | | Jeees]] 5 2% |C e "°'1'2'3""5'°"'}Wl
index offset §=2°sets

cecsccsseccsccccsccssscnne ||I| [g | |o|1|z|3|4|5|s|7||
[I XXX IQ

T [[] Cos] CLREGEGEL|

|
5] G GLEl—Te)
~—

valid bit!
B = 2P bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1) Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Direct mapped: One line per set
Assume: cache block size 8 bytes Assume: cache block size 8 bytes

Address of int: . . Address of int:
valid? + match: assume yes = hit

|
.
|[]] LEGEEEE]

valid? + match: assume yes = hit

.
[G LRG0
|

block offset block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

Ignore the variables sum, i, j

Direct-Mapped Cache Simulation A Higher Level Example assume: cold (empty) cache,

a[0][0] goes here
int sum_array_rows (double a[16][16]) |

{

t=1 s=2 b=1

m=4 bit addresses, B=2 bytes/block,

S=4 sets, E=1 Blocks/set int i, j; M
double sum = 0;
for (i = 0; i < 16; i++)
Address trace (reads, one byte per read): for (j = 0; j < 16; j++)
0 [0000,], miss sum += a[i][§];
1 [0@121, hit] return sum;
7 [0111,], miss
8 [1000,], miss int sum_array_cols(double a[16][16])
0 [0000,] miss o L
int i, j;
double sum = 0;
v Tag Block
for (j = 0; j < 16; j++) _
Set0 [1 0 M[0-1] for (i =0; i< 16; i+t 32 B =4 doubles
Set1l sum += a[i][j]1;
Set2 return sum;
set3[1 | 0 | Mie7] !
9
Ignore the variables sum, i, j Ignore the variables sum, i, j
A ngher Level Example assume: cold (empty) cache, A ngher Level Example assume: cold (empty) cache,
a[0][0] goes here a[0][0] goes here

int sum array_rows (double a[16][16])
{

int i, j; [1] (]
double sum = 0; BlGlala

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][]j]/

HOE =S
) o] o |)
(3)| S0}
O ORE

, return sum; DD

[5][6] [7][8]

D D D D int sum_array_cols(double a[16][16])

{
mimimin double sum = 0;
|
_ for (3 = 0; j < 16; j++) _
32 B =4 doubles for (i = i< 16 i+4) 32 B =4 doubles

sum += a[i][j];
return sum;

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

(D] Coos] TTelTals107)| | Cee] OLEGTEGTE0]|
| Cee] CEEEEELH| [Coed PREREGED]
| o] PEEEEEED| [Ceed BERGEEEL|

(o] nopenong |[o; LGLGL|

find set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

compare both

valid? + | match: yes = hit

[o) CEEEREED) [Cosd FREGLEGTH])

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

15

A Higher Level Example Ignore the variables sum, i, j

cold (empty) cache,

int sum_array rows(double a[16][16]) a[0][0] goes here
{

int i, j;

double sum = 0; v

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][]j]/
return sum;
}
H_J

32 B =4 doubles

int sum_array_cols (double a[16][16])

int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];
return sum;

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

compare both

valid? + | match: yes = hit

[(] CMEGEGED) [Cee] CREGLEEEE)

block offset

2-Way Set Associative Cache Simulation

- M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [0000,], miss
[0001,], hit
[0111,], miss
[1000,], miss
[0000,] hit

O 00N =

v Tag Block
seto [L_J00 [mio1]]

. I h iabl), 0, §
A Higher Level Example gnore the varianis sum)
cold (empty) cache,
int sum_array rows(double a[16][16]) a[0][0] goes here
{
int i, j;
double sum = 0; (11 (21 3] [all [[2] [2] [3] [2]

for (i = 0; i < 16; i++) [5] [6] G EEE]
T e ata s OOoOooon
sum 4= alil[3]; HiEimy.

return sum; nopoooon

32 B =4 doubles

{

Ignore the variables sum, i, j

A Higher Level Example

cold (empty) cache,
a[0][0] goes here

E] (2]

int sum array_cols(double a[16][16]) 328 =4 doubles

{
int i, 3;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[il[j];
return sum;

Administrative Break

m We’ve posted several updates about the architecture lab
= Download new materials from the Moodle
= Check the forum for some clarifications

Cache Performance Metrics

m Miss Rate
= Fraction of memory references not found in cache (misses / accesses)
=1-hitrate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk
m What to do on a write-hit?
= Write-through (write immediately to memory)
= \Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)
m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

! Core0

L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,

L3 unified cache:
8 MB, 16-way,

Access: 30-40 cycles

Block size: 64 bytes for

i
i

i

i

i

i

i

i Access: 11 cycles
i all caches.

L3 unified cache
(shared by all cores)
[

S

Main memory ‘

Let’s think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Compare 99% hits vs. 97% hits?
Consider:

cache hit time of 1 cycle

miss penalty of 100 cycles

What's the ratio of average access times?
Average access time:

97% hits: 1 cycle +0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

99% hit rate is twice as fast!

m Moral: this is why “miss rate” is used instead of “hit rate”

Writing Cache Friendly Code

m Make the common case go fast
= Focus on the inner loops of the core functions

= Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
= Compact way to characterize memory system performance.

Intel Core i7
32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

The Memory Mountain

@ 7000 +

11

S _chi
= 6000 - All caches on-chip
=

2

S 5000 -

S

e

=

-

<

jo)

'3

Today

m Performance impact of caches
= The memory mountain

26
/* The test function */
void test(int elems, int stride) {
int i, result = 0;
volatile int sink;
for (i = 0; i < elems; i += stride)
result += data[i];
sink = result; /* So compiler doesn't optimize away the loop */
}
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
double cycles;
int elems = size / sizeof (int);
test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems, stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
2

Intel Core i7
32KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

The Memory Mountain

Q 7000 ~

o . ;

= e g
< 6000 4 All caches on-chip
= =

2

=) 5000 -

5

o

I= 4000 1

o

o

k3

@

The Memory Mountain

@ 7000 +

3]

=

= 6000 -

=

a

= 5000 -

=

R

£ 4000

°

& 3000 1

@

Slopes o] 000 ‘i 2

spatial 1060

locality |
0

Today

Intel Core i7
32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Ridges of
Temporal
locality

= Rearranging loops to improve spatial locality

Matrix Multiplication Example

m Description:
= Multiply N x N matrices
= O(N3) total operations
= N reads per source
element
= N values summed per
destination
= but may be able to
hold in register

— Variable sum
7 i3k */ held in register

for (i=0; i<n; i++) {
for (j=0; j<n; j++) { /
sum = 0.0;

for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]];
c[i][j] = sum;

}

Administrative Break

m We’ve heard requests for postponing the lab 4 due date
= We're thinking about it
® Watch for a decision announced tomorrow

m Assignment 4, on caches, out tonight

m Cache lab out next week

Miss Rate Analysis for Matrix Multiply

m Assume:
= Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows
m Analysis Method:

= Look at access pattern of inner loop

St

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][1];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= compulsory miss rate = 4 bytes / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i] [0];
= accesses distant elements
® no spatial locality!
= compulsory miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;

for (k=0; k<n; k++)

c[i][3] = sum;

}

sum += a[i] [k] * b[k][j];

Inner loop:

=in
I

Row-wise Column- Fixed

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

wise

Matrix Multiplication (kij)

7* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i]l[j] += r * b[k][3];

Inner loop:

E (k’*)g (i*)
B C

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

Matrix Multiplication (jki)

/* 3ki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]3];
for (i=0; i<n; i++)
c[i][3] += a[i]l[k] * =z;

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Fixed Row-wise Row-wise
»
Inner loop:
(*,k) (*)
A B C
Column- Fixed Column-
wise wise

Matrix Multiplication (jik)

7* 3ik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)

c[i][j] = sum

}

sum += a[i] [k] * b[k][]];

Inner loop:
g(i,*)ﬂﬁ
T

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][3];

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

Matrix Multiplication (kji)

/* k3ji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][3];
for (i=0; i<n; i++)
c[i][3] += a[i][k] * r;

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Row-wise Column- Fixed
wise
Inner loop:
o
] i
A B ©
Fixed Row-wise Row-wise
@
Inner loop:
*k) *
1 1]
L]
A B C
Column- Fixed Column-
wise wise

Summary of Matrix Multiplication

for (i=0; i<n; i++) (
for (3=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; ki+)
sum += a[i] [k] * b[k][3];
c[i][3] = sum;
}
}

ijk (& jik):
* 2 loads, O stores
* misses/iter = 1.25

for (k=0; k<n; k++) {

for (<n; i++) {

r = a[i] [k];
for (3=0; j<n; j++)
c[il[j] += = * bk][j];

kij (& ikj):
* 2 loads, 1 store
* misses/iter = 0.5

i 3<n;) |

k<n; k++) {

r = b[k][3];

for (i=0; i<n; i++)
c[i][3] += alillk] * r;

jKi (& kii):
* 2 loads, 1 store
* misses/iter = 2.0

= Using blocking to improve temporal locality

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

m First iteration:
= n/8+n=9n/8 misses

]
*

= Afterwards in cache:
(schematic) -

]
*

8 wide

Cycles per inner loop iteration

Core i7 Matrix Multiply Performance

60
iki / ki

40
30

20 /

iik/i:(/@—@

: ! e

s RN T
g PR
0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n)
Example: Matrix Multiplication
c = (double *) calloc(sizeof (double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (3 = 0; j < n; 3++)
for (k = 0; k < n; k++)
cli*n+j] += ali*n + k]*b[k*n + j];
}
i
c a b
= *
. | —
Cache Miss Analysis
m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
n
m Second iteration: —
. . e
= Again:
n/8 + n =9n/8 misses _ o

8 wide
m Total misses:
" 9n/8 *n2=(9/8) * n?

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (1 = j; J1 < 3+B; j++)
for (k1 = k; k1 < k+B; k++)

clil*n+jl] += a[il*n + k1]*b[kl*n + j1];

—EEEEE =
+

Block size Bx B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

m Second (block) iteration:

= Same as first iteration | [[T |
= 2n/B * B%/8 =nB/4

m Total misses:
= nB/4 * (n/B)? = n3/(4B)

—>—-}

Block size Bx B

Concluding Observations

m Programmer can optimize for cache performance
= How data structures are organized
® How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”

= Getting absolute optimum performance is very platform specific

= Cache sizes, line sizes, associativities, etc.

= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

m First (block) iteration:
= B?/8 misses for each block W HEEEEE
= 2n/B* B2/8 =nB/4

(omitting matrix c)

= Afterwards in cache n EEEEE
(schematic)

Summary

= No blocking: (9/8) * n?
m Blocking: 1/(4B) * n3

n/B blocks

*
—INNEN

Block size B x B

|
*I

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= Input data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

