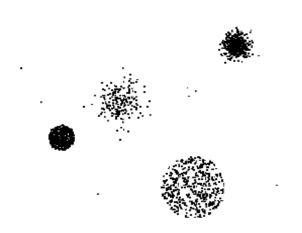
Anomaly Detection

Lecture Notes for Chapter 9

Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data

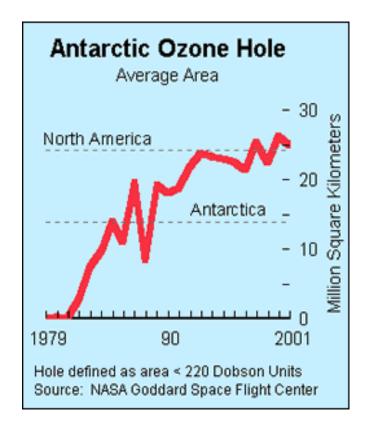


- Natural implication is that anomalies are relatively rare
 - One in a thousand occurs often if you have lots of data
 - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
 - Unusually high blood pressure
 - 200 pound, 2 year old

Importance of Anomaly Detection

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!



Source:

http://www.epa.gov/ozone/science/hole/size.html

Causes of Anomalies

Data from different classes

- Measuring the weights of oranges, but a few grapefruit are mixed in
- Natural variation https://umn.zoom.us/my/kumar001
 - Unusually tall people
- Data errors
 - 200 pound 2 year old

Distinction Between Noise and Anomalies

- Noise doesn't necessarily produce unusual values or objects
- Noise is not interesting
- Noise and anomalies are related but distinct concepts

Model-based vs Model-free

Model-based Approaches

- Model can be parametric or non-parametric
- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

Model-free Approaches

 Anomalies are identified directly from the data without building a model

Often the underlying assumption is that the most of the points in the data are normal

General Issues: Label vs Score

- Some anomaly detection techniques provide only a binary categorization
- Other approaches measure the degree to which an object is an anomaly
 - This allows objects to be ranked
 - Scores can also have associated meaning (e.g., statistical significance)

Anomaly Detection Techniques

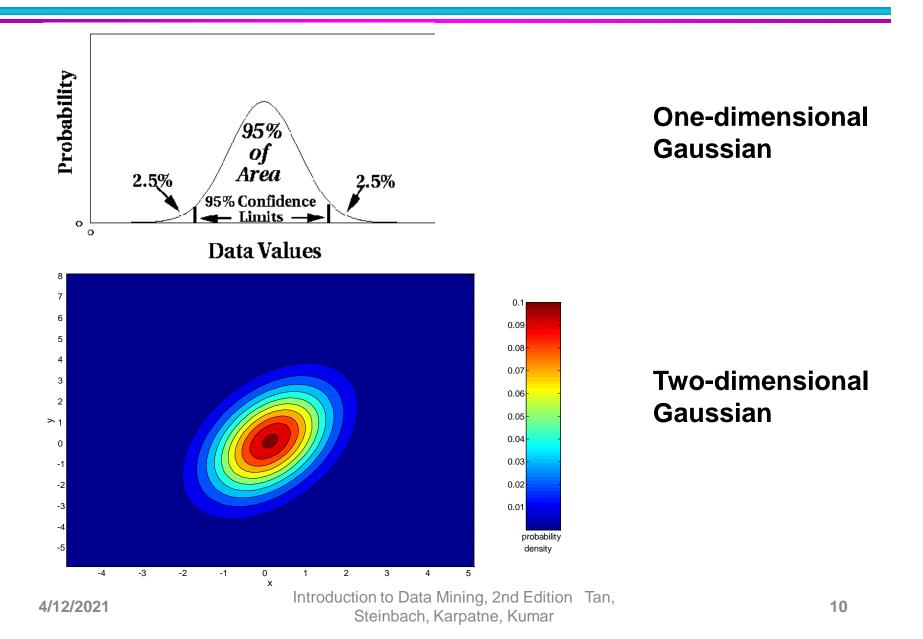
- Statistical Approaches
- Proximity-based
 - Anomalies are points far away from other points
- Clustering-based
 - Points far away from cluster centers are outliers
 - Small clusters are outliers

Reconstruction Based

Statistical Approaches

- **Probabilistic definition of an outlier:** An outlier is an object that has a low probability with respect to a probability distribution model of the data.
- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?

Normal Distributions



Grubbs' Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H₀: There is no outlier in data
 - H_A: There is at least one outlier
- Grubbs' test statistic:

$$G = \frac{\max \left| X - \overline{X} \right|}{s}$$

□ Reject H₀ if:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^{2}}{N-2+t_{(\alpha/N,N-2)}^{2}}}$$

Statistically-based – Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let $L_t(D)$ be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistically-based – Likelihood Approach

Data distribution, $D = (1 - \lambda) M + \lambda A$

M is a probability distribution estimated from data

- Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
- A is initially assumed to be uniform distribution
 Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1-\lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$
$$LL_{t}(D) = \left| M_{t} \right| \log(1-\lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \right| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i})$$

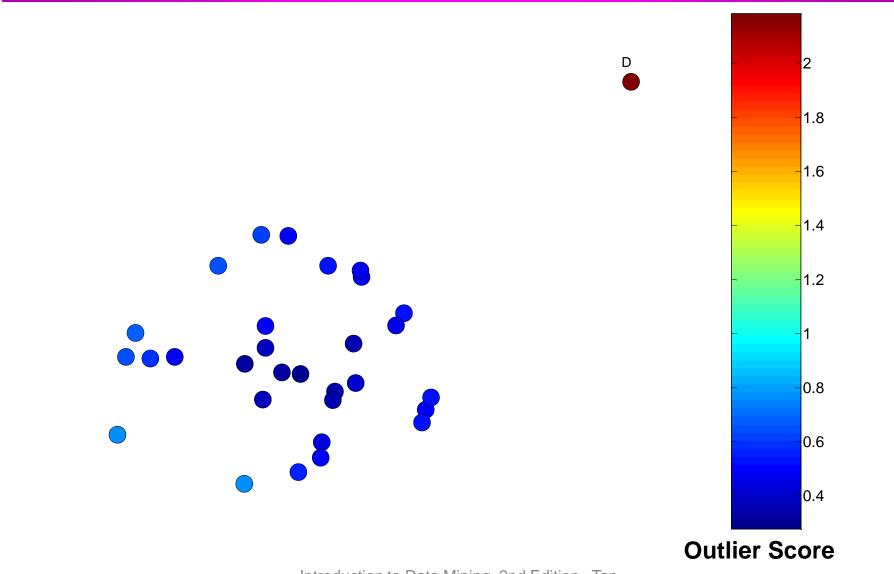
Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- □ In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

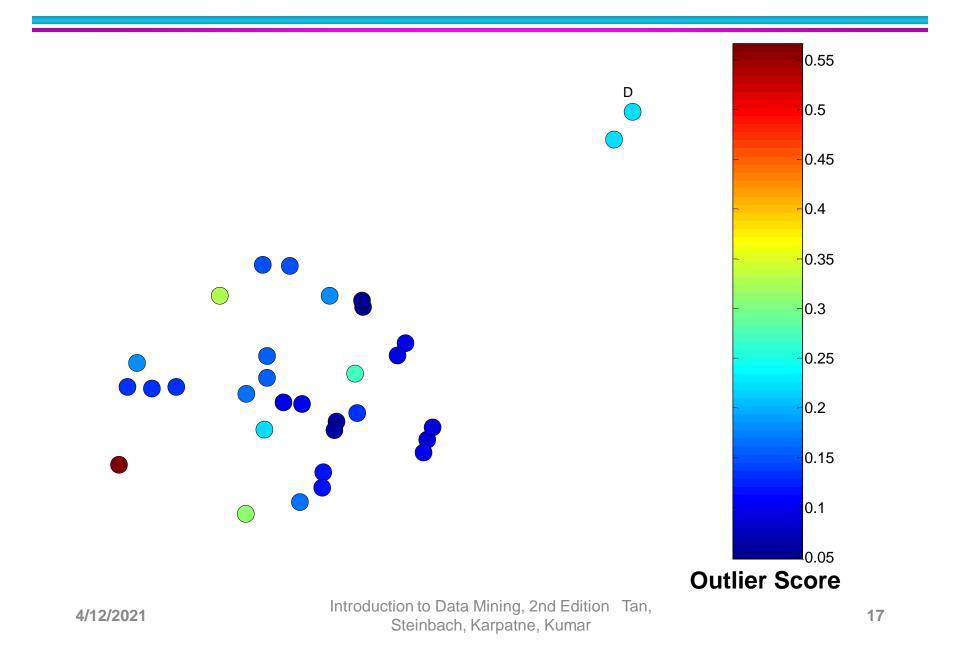
Distance-Based Approaches

The outlier score of an object is the distance to its kth nearest neighbor

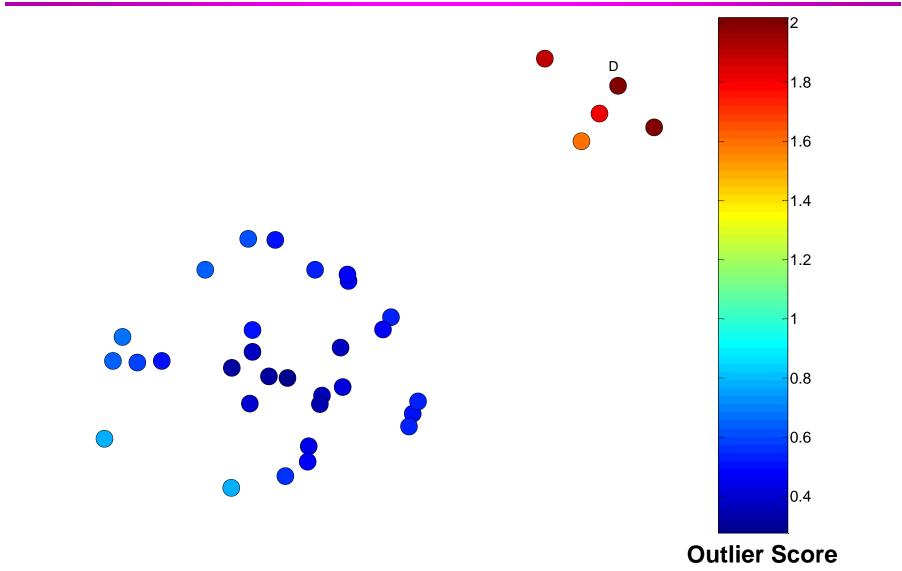
One Nearest Neighbor - One Outlier



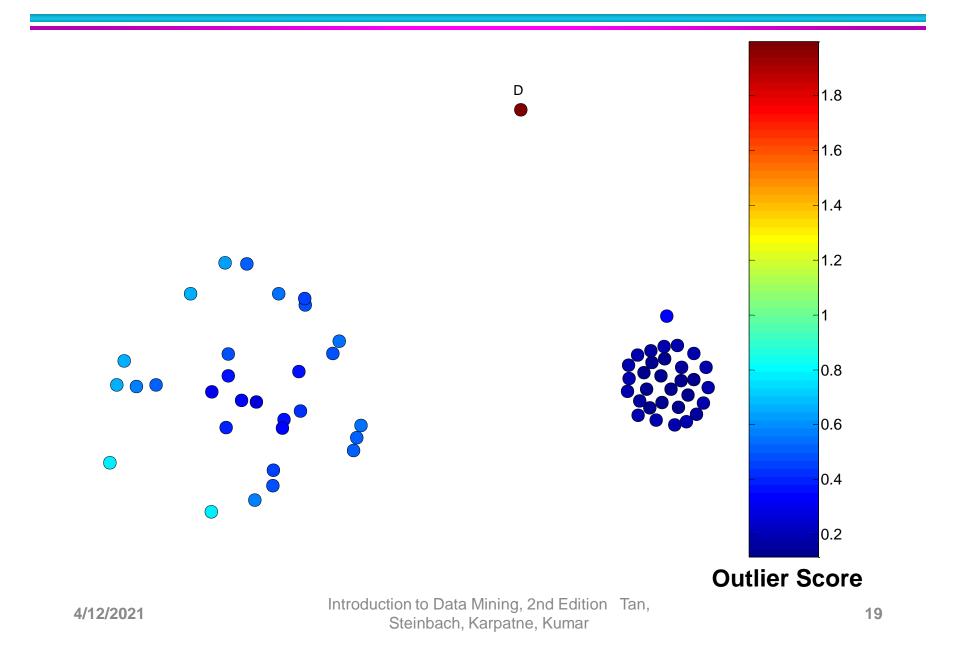
One Nearest Neighbor - Two Outliers



Five Nearest Neighbors - Small Cluster



Five Nearest Neighbors - Differing Density



Strengths/Weaknesses of Distance-Based Approaches

Simple

- Expensive $O(n^2)$
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in highdimensional space

Density-Based Approaches

- Density-based Outlier: The outlier score of an object is the inverse of the density around the object.
 - Can be defined in terms of the k nearest neighbors
 - One definition: Inverse of distance to kth neighbor
 - Another definition: Inverse of the average distance to k neighbors
 - DBSCAN definition

If there are regions of different density, this approach can have problems

Relative Density

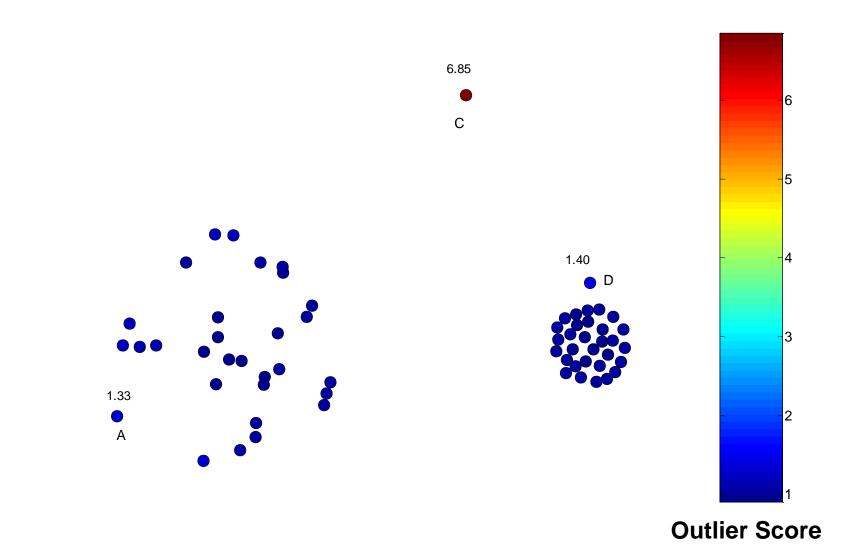
Consider the density of a point relative to that of its k nearest neighbors

□ Let $y_1, ..., y_k$ be the *k* nearest neighbors of *x* $density(\mathbf{x}, k) = \frac{1}{dist(\mathbf{x}, k)} = \frac{1}{dist(\mathbf{x}, \mathbf{y}_k)}$ $relative density(\mathbf{x}, k) = \frac{\sum_{i=1}^k density(y_i, k)/k}{density(x, k)}$ $= \frac{dist(x, k)}{\sum_{i=1}^k dist(y_i, k)/k} = \frac{dist(x, y)}{\sum_{i=1}^k dist(y_i, k)/k}$

Can use average distance instead

4/12/2021

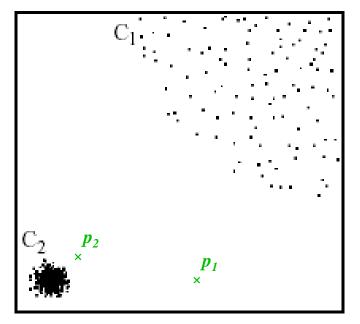
Relative Density Outlier Scores



4/12/2021

Relative Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value



In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers

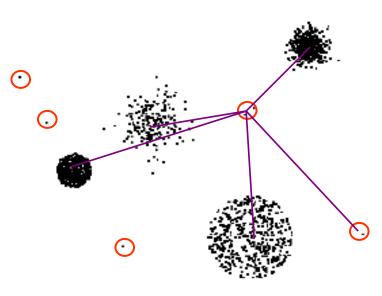
Strengths/Weaknesses of Density-Based Approaches

Simple

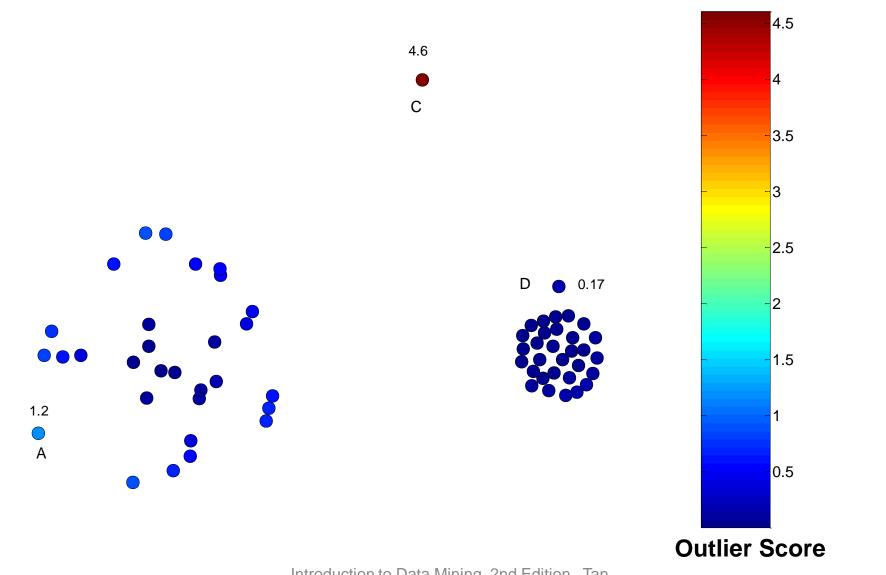
- □ Expensive $O(n^2)$
- Sensitive to parameters
- Density becomes less meaningful in highdimensional space

Clustering-Based Approaches

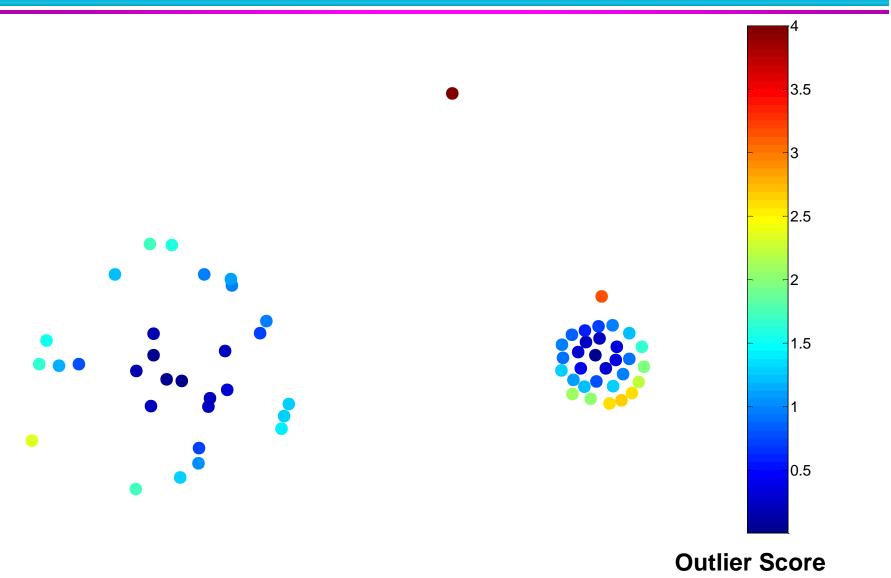
- An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - Outliers can impact the clustering produced
 - For density-based clusters, an object is an outlier if its density is too low
 - Can't distinguish between noise and outliers
 - For graph-based clusters, an object is an outlier if it is not well connected



Distance of Points from Closest Centroids



Relative Distance of Points from Closest Centroid



□ Simple

- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters

Outliers can distort the clusters

Reconstruction-Based Approaches

- Based on assumptions there are patterns in the distribution of the normal class that can be captured using lower-dimensional representations
- Reduce data to lower dimensional data
 - E.g. Use Principal Components Analysis (PCA) or Auto-encoders

Measure the reconstruction error for each object

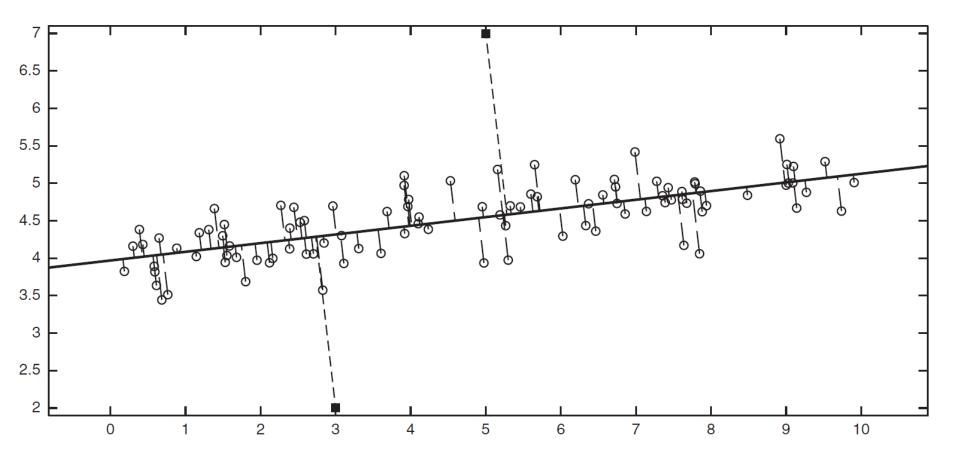
 The difference between original and reduced dimensionality version

Reconstruction Error

- Let x be the original data object
- Find the representation of the object in a lower dimensional space
- Project the object back to the original space
- $\hfill\square$ Call this object \hat{x}

Reconstruction $\operatorname{Error}(\mathbf{x}) = \|\mathbf{x} - \hat{\mathbf{x}}\|$ Objects with large reconstruction errors are anomalies

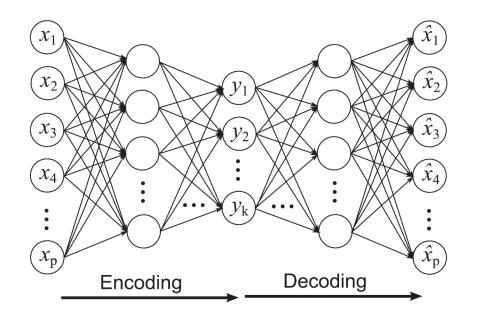
Reconstruction of two-dimensional data



4/12/2021

Basic Architecture of an Autoencoder

- An autoencoder is a multi-layer neural network
- The number of input and output neurons is equal to the number of original attributes.



Strengths and Weaknesses

- Does not require assumptions about distribution of normal class
- Can use many dimensionality reduction approaches
- The reconstruction error is computed in the original space
 - This can be a problem if dimensionality is high

One Class SVM

Uses an SVM approach to classify normal objects

- Uses the given data to construct such a model
- This data may contain outliers
- But the data does not contain class labels
- How to build a classifier given one class?

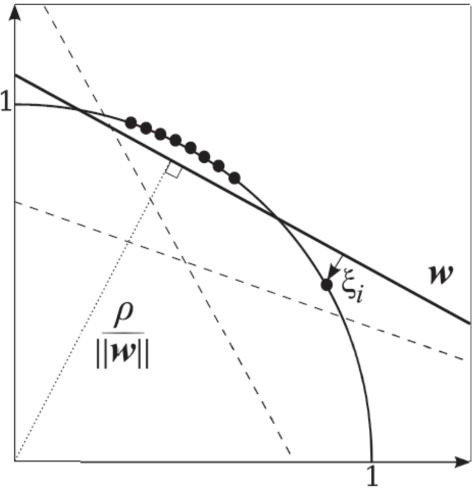
How Does One-Class SVM Work?

- Uses the "origin" trick
- Use a Gaussian kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\frac{||\mathbf{x} - \mathbf{y}||^2}{2\sigma^2}).$$

- Every point mapped to a unit hypersphere $\kappa(\mathbf{x}, \mathbf{x}) = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle = ||\phi(\mathbf{x})||^2 = 1$
- Every point in the same orthant (quadrant) $\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle \ge 0$
- Aim to maximize the distance of the separating plane from the origin

Two-dimensional One Class SVM



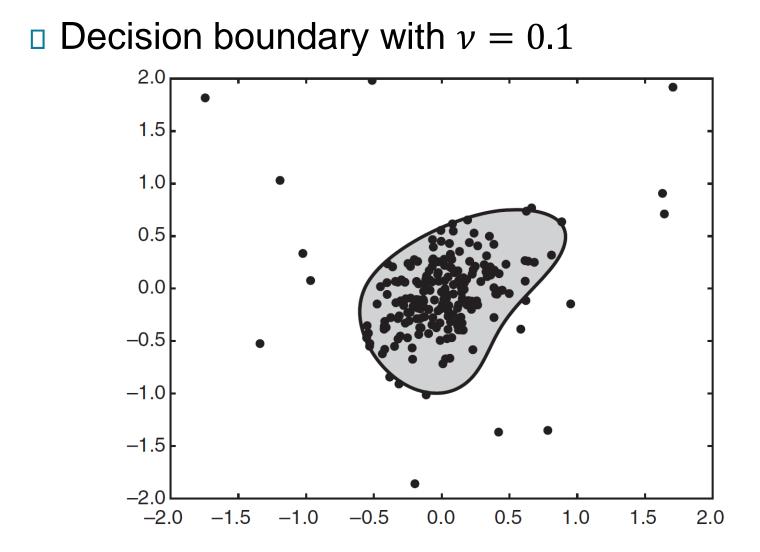
Equations for One-Class SVM

- **Equation of hyperplane** $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \rho$
- $\Box \phi$ is the mapping to high dimensional space
- **Weight vector is** $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i)$
- \Box v is fraction of outliers
- Optimization condition is the following

$$\min_{\mathbf{w}, \rho, \xi} \frac{1}{2} ||\mathbf{w}||^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i,$$

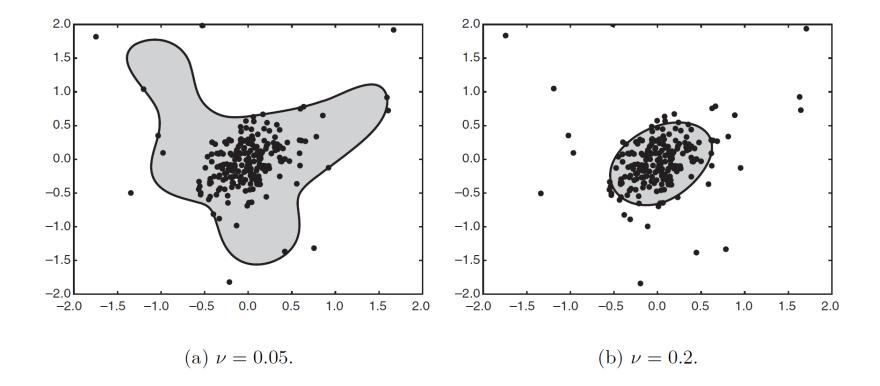
subject to: $\langle \mathbf{w}, \phi(\mathbf{x_i}) \rangle \ge \rho - \xi_i, \ \xi_i \ge 0$

Finding Outliers with a One-Class SVM



Finding Outliers with a One-Class SVM

• Decision boundary with $\nu = 0.05$ and $\nu = 0.2$



Strengths and Weaknesses

Strong theoretical foundation

```
\square Choice of v is difficult
```

Computationally expensive

Information Theoretic Approaches

Key idea is to measure how much information decreases when you delete an observation

$$Gain(x) = Info(D) - Info(D \setminus x)$$

- Anomalies should show higher gain
- Normal points should have less gain

Information Theoretic Example

Survey of height and weight for 100 participants

weight	height	Frequency
low	low	20
low	medium	15
medium	medium	40
high	high	20
high	low	5

Eliminating last group give a gain of 2.08 - 1.89 = 0.19

Strengths and Weaknesses

Solid theoretical foundation

Theoretically applicable to all kinds of data

Difficult and computationally expensive to implement in practice

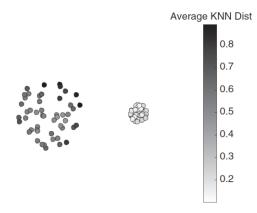
Evaluation of Anomaly Detection

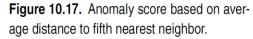
- If class labels are present, then use standard evaluation approaches for rare class such as precision, recall, or false positive rate
 - FPR is also know as false alarm rate
- For unsupervised anomaly detection use measures provided by the anomaly method
 - E.g. reconstruction error or gain

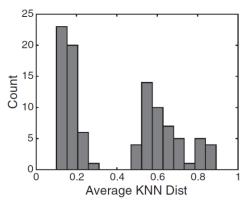
Can also look at histograms of anomaly scores.

Distribution of Anomaly Scores

Anomaly scores should show a tail







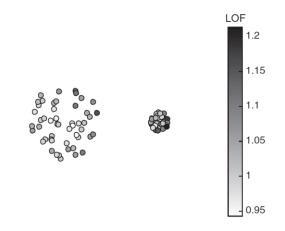


Figure 10.18. Anomaly score based on LOF using five nearest neighbors.

