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Anomaly/Outlier Detection

0 What are anomalies/outliers?

— The set of data points that are _ ) . 3
considerably different than the R A
remainder of the data ® “#~

0 Natural implication Is that
anomalies are relatively rare

— One in a thousand occurs often if you have lots of data
— Context Is important, e.g., freezing temps in July

0 Can be important or a nuisance
— Unusually high blood pressure
— 200 pound, 2 year old
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Importance of Anomaly Detection

Ozone Depletion History

o In 1985 three researchers (Farman, Antarctic Ozone Hole
Gardinar and Shanklin) were Average Area
puzzled by data gathered by the -30
British Antarctic Survey showing that e e o
ozone levels for Antarcticahad | T, c
dropped 10% below normal levels 20 2
___________ Alslels =
o Why did the Nimbus 7 satellite, - 10 {%
which had instruments aboard for =
recording ozone levels, not record B =
similarly low ozone concentrations? el
1979 a0 2001
0 The ozone concentrations recorded B A e
by the satellite were so low they

were being treated as outliers by a

computer program and discarded! Source:

http://www.epa.gov/ozone/science/hole/size.html
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Causes of Anomalies

0 Data from different classes

— Measuring the weights of oranges, but a few grapefruit
are mixed in

0 Natural variation

https://lumn.zoom.us/my/kumar001

— Unusually tall people

0 Data errors
— 200 pound 2 year old
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Distinction Between Noise and Anomalies

0 Noise doesn’t necessarily produce unusual values or
objects

0 Noise is not interesting

0 Noise and anomalies are related but distinct concepts
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Model-based vs Model-free

0 Model-based Approaches

+ Model can be parametric or non-parametric
¢ Anomalies are those points that don't fit well
¢ Anomalies are those points that distort the model

0 Model-free Approaches

¢ Anomalies are identified directly from the data without
building a model

0Often the underlying assumption is that the
most of the points in the data are normal
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General Issues: Label vs Score

0 Some anomaly detection techniques provide only a
binary categorization

0 Other approaches measure the degree to which an
object is an anomaly
— This allows objects to be ranked

— Scores can also have associated meaning (e.g., statistical
significance)
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Anomaly Detection Techniques

0 Statistical Approaches

0 Proximity-based
— Anomalies are points far away from other points

0 Clustering-based
— Points far away from cluster centers are outliers
— Small clusters are outliers

0 Reconstruction Based
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Statistical Approaches

Probabilistic definition of an outlier: An outlier is an object that
has a low probability with respect to a probability distribution
model of the data.

0 Usually assume a parametric model describing the distribution
of the data (e.g., normal distribution)

0 Apply a statistical test that depends on
— Data distribution
— Parameters of distribution (e.g., mean, variance)
— Number of expected outliers (confidence limit)

0 Issues
— ldentifying the distribution of a data set
+ Heavy tailed distribution
— Number of attributes

— |Is the data a mixture of distributions?
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Normal Distributions
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Grubbs’ Test

0 Detect outliers in univariate data

0 Assume data comes from normal distribution

0 Detects one outlier at a time, remove the outlier,
and repeat

— H,: There is no outlier in data
— H,: There is at least one outlier

0 Grubbs’ test statistic: G- max‘x —Y‘
S

0 Reject H, If:

2
G > (N _l) t(a/N,N—Z)

JN N =2+t

(x/N,N=-2)
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Statistically-based — Likelihood Approach

0 Assume the data set D contains samples from a
mixture of two probabillity distributions:
— M (majority distribution)
— A (anomalous distribution)

0 General Approach:

— Initially, assume all the data points belong to M
— Let L(D) be the log likelihood of D at time t

— For each point x; that belongs to M, move it to A
¢ Let L, (D) be the new log likelihood.
¢ Compute the difference, A = L(D) — L,; (D)

¢ If A>c (some threshold), then x, is declared as an anomaly
and moved permanently from M to A
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Statistically-based — Likelihood Approach

0 Data distribution,D=(1-A) M+ A A
0 M is a probability distribution estimated from data

— Can be based on any modeling method (naive Bayes,
maximum entropy, etc.)

0 A is initially assumed to be uniform distribution
0 Likelihood at time t:

(D)= H Py (%) = ((1—&)““ [1 PMt<xi)j[ﬂ“H PA\(xi)]

XiEMt XiE/A\t

LL,(D) =|M,|log(1— )+ > _log R, (x,)+|A|log A+ > logP, (x;)

XiEMt XiEA[

Introduction to Data Mining, 2nd Edition Tan,

4/12/2021 Steinbach, Karpatne, Kumar

13



Strengths/Weaknesses of Statistical Approaches

0 Firm mathematical foundation
0 Can be very efficient
0 Good results if distribution is known

0 In many cases, data distribution may not be known

0 For high dimensional data, it may be difficult to estimate
the true distribution

0 Anomalies can distort the parameters of the distribution
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Distance-Based Approaches

0 The outlier score of an object is the distance to
its kth nearest neighbor
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One Nearest Neighbor - One Outlier
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One Nearest Neighbor - Two Outliers
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Five Nearest Neighbors - Small Cluster
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Five Nearest Neighbors - Differing Density

Outlier Score
19
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Strengths/Weaknesses of Distance-Based Approaches

0 Simple

0 Expensive — O(n?)
0 Sensitive to parameters

0 Sensitive to variations in density

0 Distance becomes less meaningful in high-
dimensional space
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Density-Based Approaches

0 Density-based Outlier: The outlier score of an
object is the inverse of the density around the
object.

— Can be defined in terms of the k nearest neighbors
— One definition: Inverse of distance to kth neighbor

— Another definition: Inverse of the average distance to k
neighbors

— DBSCAN definition

0 If there are regions of different density, this
approach can have problems
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Relative Density

0 Consider the density of a point relative to that of
Its k nearest neighbors

0 Lety,, ...,y be the k nearest neighbors of x
1

dist(x, k) _ dist(x,yy)

Zé;l density(yik)/k
density(x,k)

density(x, k) =

relative density(x, k) =

_ dist(x,k) _ dist(x,y)
X dist(ypk)/k X dist(ypk)/k

0 Can use average distance instead
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Relative Density Outlier Scores
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Relative Density-based: LOF approach

For each point, compute the density of its local neighborhood

Compute local outlier factor (LOF) of a sample p as the average of
the ratios of the density of sample p and the density of its nearest
neighbors

Outliers are points with largest LOF value

Cp- -

In the NN approach, p, is
not considered as outlier,
while LOF approach find

both p, and p, as outliers
(4 P2

" pl

4/12/2021
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Strengths/Weaknesses of Density-Based Approaches

0 Simple
0 Expensive — O(n?)
0 Sensitive to parameters

0 Density becomes less meaningful in high-
dimensional space
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Clustering-Based Approaches

0 An object is a cluster-based
outlier if it does not strongly
belong to any cluster

— For prototype-based clusters, an
object is an outlier if it is not close ©
enough to a cluster center S

¢ Outliers can impact the clustering produced

— For density-based clusters, an object
IS an outlier if its density is too low

¢ Can't distinguish between noise and outliers

— For graph-based clusters, an object
IS an outlier if it is not well connected
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Distance of Points from Closest Centroids
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Relative Distance of Points from Closest Centroid
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Strengths/Weaknesses of Clustering-Based Approaches

0 Simple

0 Many clustering technigues can be used

0 Can be difficult to decide on a clustering
technique

0 Can be difficult to decide on number of clusters

0 Qutliers can distort the clusters
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Reconstruction-Based Approaches

0 Based on assumptions there are patterns in the
distribution of the normal class that can be
captured using lower-dimensional
representations

0 Reduce data to lower dimensional data

— E.g. Use Principal Components Analysis (PCA) or
Auto-encoders

0 Measure the reconstruction error for each object

— The difference between original and reduced
dimensionality version
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Reconstruction Error

0 Let x be the original data object

0 Find the representation of the object in a lower
dimensional space

0 Project the object back to the original space
0 Call this object X

Reconstruction Error(x)= ||x — X||

0 ODbjects with large reconstruction errors are
anomalies
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Reconstruction of two-dimensional data
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Basic Architecture of an Autoencoder

0 An autoencoder is a multi-layer neural network

0 The number of input and output neurons is equal
to the number of original attributes.

N (O
X .}}q@(/ 4\""0’5
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D
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Introduction to Data Mining, 2nd Edition

4/12/2021 Tan, Steinbach, Karpatne, Kumar

33



Strengths and Weaknesses

0 Does not require assumptions about distribution
of normal class

0 Can use many dimensionality reduction
approaches

0 The reconstruction error is computed in the
original space
— This can be a problem if dimensionality is high
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One Class SVM

0 Uses an SVM approach to classify normal objects

0 Uses the given data to construct such a model

0 This data may contain outliers

0 But the data does not contain class labels

0 How to build a classifier given one class?
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How Does One-Class SVM Work?

0 Uses the “origin” trick
1 Use a Gaussian kernel — stxy) =esp(- =315,
— Every point mapped to a unit hypersphere

K(x,%) = (6(x), 6(x)) = |lo(x)||* =1

— Every point in the same orthant (quadrant)

k(X y) = (9(x),0(y)) = 0

0 Aim to maximize the distance of the separating
plane from the origin
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Two-dimensional One Class SVM
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Equations for One-Class SVM

0 Equation of hyperplane  (w.o(x)) = p

0 ¢ Is the mapping to high dimensional space
0 Weight vector is wziaicb(xi)

0 v is fraction of outliers

0 Optimization condition is the following

.1 5 1 —
Jin Il = e+ 03 6

subject to: (w,p(x3)) > p—&, & >0
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Finding Outliers with a One-Class SVM

0 Decision boundary with v = 0.1
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Finding Outliers with a One-Class SVM

0 Decision boundary with v = 0.05 and v = 0.2
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Strengths and Weaknesses

0 Strong theoretical foundation

0 Choice of v iIs difficult

0 Computationally expensive
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Information Theoretic Approaches

0 Key idea Is to measure how much information
decreases when you delete an observation

Gain(x) = Info(D) — Info(D \ x)

0 Anomalies should show higher gain

0 Normal points should have less gain
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Information Theoretic Example

0 Survey of heig

Nt and weight for 100 participants

weight | height | Frequency
low low 20
low medium 15
medium | medium 40
high high 20
high low 5

0 Eliminating last group give a gain of
2.08 -1.89=0.19
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Strengths and Weaknesses

0 Solid theoretical foundation

0 Theoretically applicable to all kinds of data

0 Difficult and computationally expensive to
Implement in practice
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Evaluation of Anomaly Detection

0 If class labels are present, then use standard
evaluation approaches for rare class such as
precision, recall, or false positive rate

— FPR is also know as false alarm rate

0 For unsupervised anomaly detection use
measures provided by the anomaly method

— E.g. reconstruction error or gain

0 Can also look at histograms of anomaly scores.
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Distribution of Anomaly Scores

0 Anomaly scores should show a tall
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