Data Mining

Chapter 6

Association Analysis: Advance Concepts

Introduction to Data Mining, $2^{\text {nd }}$ Edition
by
Tan, Steinbach, Karpatne, Kumar

1

Data Mining
 Association Analysis: Advanced Concepts

Extensions of Association Analysis to Continuous and Categorical Attributes and Multi-level Rules

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

Gender	\cdots	Age	Annual Income	No of hours spent online per week	No of email accounts	Privacy Concern
Female	\cdots	26	90 K	20	4	Yes
Male	\cdots	51	135 K	10	2	No
Male	\cdots	29	80 K	10	3	Yes
Female	\cdots	45	120 K	15	3	Yes
Female	\cdots	31	95 K	20	5	Yes
Male	\cdots	25	55 K	25	5	Yes
Male	\cdots	37	100 K	10	1	No
Male	\cdots	41	65 K	8	2	No
Female	\cdots	26	85 K	12	1	No
\cdots						

Example of Association Rule:
$\{$ Gender=Male, Age $\in[21,30)\} \rightarrow\{$ No of hours online $\geq 10\}$

Handling Categorical Attributes

- Example: Internet Usage Data

Gender	Level of Education	State	Computer at Home	Online Auction	Chat Online	Online Banking	Privacy Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No
\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots

\{Level of Education=Graduate, Online Banking=Yes\} \rightarrow \{Privacy Concerns $=$ Yes $\}$

Handling Categorical Attributes

- Introduce a new "item" for each distinct attributevalue pair

Male	Female	Education $=$ Graduate	Education = College	Education $=$ High School	\cdots	Privacy $=$ Yes	Privacy $=$ No
0	1	1	0	0	\cdots	1	0
1	0	0	1	0	\cdots	0	1
1	0	1	0	0	\cdots	1	0
0	1	0	1	0	\cdots	1	0
0	1	1	0	0	\cdots	1	0
1	0	0	1	0	\cdots	1	0
1	0	0	0	0	\cdots	0	1
1	0	0	0	1	\cdots	0	1
0	1	1	0	0	\cdots	0	1
\cdots							

Handling Categorical Attributes

- Some attributes can have many possible values
- Many of their attribute values have very low support - Potential solution: Aggregate the low-support attribute values

Handling Categorical Attributes

- Distribution of attribute values can be highly skewed
- Example: 85\% of survey participants own a computer at home - Most records have Computer at home = Yes
- Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home $=\mathrm{Yes}$)
- Potential solution:
- discard the highly frequent items
- Use alternative measures such as h-confidence
- Computational Complexity
- Binarizing the data increases the number of items
- But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
- Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

Handling Continuous Attributes

- Different methods:
- Discretization-based
- Statistics-based
- Non-discretization based
- minApriori
- Different kinds of rules can be produced:
$-\{$ Age $\in[21,30)$, No of hours online $\in[10,20)\}$ \rightarrow \{Chat Online $=$ Yes $\}$
- \{Age $\in[15,30$), Covid-Positive $=$ Yes $\}$ \rightarrow Full_recovery

Discretization-based Methods

9

Discretization-based Methods

- Unsupervised:

- Equal-width binning
- Equal-depth binning <12><34567><89>
- Cluster-based
- Supervised discretization

Continuous attribute, v

	1	2	3	4	5	6	7	8	9
Chat Online = Yes	0	0	20	10	20	0	0	0	0
Chat Online = No	150	100	0	0	0	100	100	150	100

Discretization Issues

- Interval width	Pattern A			Pattern B	Pattern C		High support region		
(a) Original Data		I	20	1		1	1		Age
	10	I		30	401	50	60		
	1				11				
		1			11	1			
		I			11	\|			
	1	I			11	।			
		1			11	I			
	1	I			11	\|			
	1	I			11	,			
(b) $\operatorname{Bin}=30$ years		I			11				
	10	।			401	\|		70	Age
	I				11	\|			
	1	I			11	।			
		1			11	!			
	1	I			11	।			
		I			11	।			
		1			11	I			
		1			11	,			
(c) $\mathrm{Bin}=2$ years		-1	1	-111	11	11	1		
	1,0	I	20	30	401	\| 50	60	70	Age
					11	!			
		\|			11	!			

Pattern A: Age $\in[10,15) \longrightarrow$ Chat Online $=$ Never
Pattern B: Age $\in[26,41) \longrightarrow$ Chat Online $=$ Never
Pattern C: Age $\in[42,48) \longrightarrow$ Online Banking $=$ Yes
3/15/2021 Introduction to Data Mining, 2 ${ }^{\text {nd }}$ Edition
11
11

Discretization Issues

- Interval too wide (e.g., Bin size=30)
- May merge several disparate patterns - Patterns A and B are merged together
- May lose some of the interesting patterns
- Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
- Pattern A is broken up into two smaller patterns
- Can recover the pattern by merging adjacent subpatterns
- Pattern B is broken up into smaller patterns
- Cannot recover the pattern by merging adjacent subpatterns
- Some windows may not meet support threshold

Discretization: all possible intervals

Number of intervals $=\mathbf{k}$

Total number of Adjacent intervals $=\mathbf{k}(\mathbf{k}-1) / \mathbf{2}$

- Execution time

- If the range is partitioned into k intervals, there are $O\left(k^{2}\right)$ new items
- If an interval $[a, b)$ is frequent, then all intervals that subsume $[a, b)$ must also be frequent
- E.g.: if $\{$ Age $\in[21,25)$, Chat Online=Yes $\}$ is frequent, then $\{$ Age $\in[10,50)$, Chat Online $=$ Yes $\}$ is also frequent
- Improve efficiency:
- Use maximum support to avoid intervals that are too wide

3/15/2021 Introduction to Data Mining, 2 ${ }^{\text {nd }}$ Edition 13
13

Statistics-based Methods

- Example:
\{Income > 100K, Online Banking=Yes\} \rightarrow Age: $\mu=34$
- Rule consequent consists of a continuous variable, characterized by their statistics
- mean, median, standard deviation, etc.
- Approach:
- Withhold the target attribute from the rest of the data
- Extract frequent itemsets from the rest of the attributes
- Binarize the continuous attributes (except for the target attribute)
- For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
- Frequent itemset becomes a rule by introducing the target variable as rule consequent
- Apply statistical test to determine interestingness of the rule

Statistics-based Methods

Gender	\cdots	Age	Annual Income	No of hours spent online per week	No of email accounts	Privacy Concern
	Female	\cdots	26	90 K	20	4
Male	\cdots	51	135 K	10	2	Yes
	Male	\cdots	29	80 K	10	3
Fo						
	Female	\cdots	45	120 K	15	3
Female	\cdots	31	95 K	20	Yes	
Male	\cdots	25	55 K	25	5	Yes
Male	\cdots	37	100 K	10	5	Yes
Male	\cdots	41	65 K	8	1	No
Memale	\cdots	26	85 K	12	2	No
\cdots	\cdots	\cdots	\cdots	\cdots	1	No

Frequent Itemsets:
\{Male, Income > 100K $\}$
\{Income < 30K, No hours $\in[10,15)\}$
\{Income > 100K, Online Banking = Yes\}

Association Rules:
$\{$ Male, Income > 100K $\} \rightarrow$ Age: $\mu=30$
$\{$ Income $<40 K$, No hours $\in[10,15)\} \rightarrow$ Age: $\mu=24$
\{Income > 100K,Online Banking = Yes\}
\rightarrow Age: $\mu=34$

Statistics-based Methods

- How to determine whether an association rule interesting?
- Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$
\mathrm{A} \Rightarrow \mathrm{~B}: \mu \quad \text { versus } \quad \overline{\mathrm{A}} \Rightarrow \mathrm{~B}: \mu^{\prime}
$$

- Statistical hypothesis testing:
- Null hypothesis: $\mathrm{HO}: \mu^{\prime}=\mu+\Delta$

$$
Z=\frac{\mu^{\prime}-\mu-\Delta}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

- Alternative hypothesis: $\mathrm{H} 1: \mu^{\prime}>\mu+\Delta$
- Z has zero mean and variance 1 under null hypothesis

Statistics-based Methods

- Example:
r: Covid-Postive \& Quick_Recovery=Yes \rightarrow Age: $\mu=23$
- Rule is interesting if difference between μ and μ^{\prime} is more than 5 years (i.e., $\Delta=5$)
- For r, suppose $n 1=50, s 1=3.5$
- For r' (complement): $n 2=250, \mathrm{~s} 2=6.5$

$$
Z=\frac{\mu^{\prime}-\mu-\Delta}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{30-23-5}{\sqrt{\frac{3.5^{2}}{50}+\frac{6.5^{2}}{250}}}=3.11
$$

- For 1-sided test at 95\% confidence level, critical Z-value for rejecting null hypothesis is 1.64 .
- Since Z is greater than 1.64 , r is an interesting rule

Min-Apriori

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:
W1 and W2 tends to appear together in the same document

Min-Apriori

- Data contains only continuous attributes of the same "type"
- e.g., frequency of words in a document
- Potential solution:

TID	W1	W2	W3	W4
D1	2	2	0	0
D2	0	0	1	2
D3	2	3	0	0
D4	0	0	1	0
D5	1	1	1	0

- Convert into 0/1 matrix and then apply existing algorithms - lose word frequency information
- Discretization does not apply as users want association among words based on how frequently they co-occur, not if they occur with similar frequencies

Min-Apriori

- How to determine the support of a word?
- If we simply sum up its frequency, support count will be greater than total number of documents!
- Normalize the word vectors - e.g., using L_{1} norms
- Each word has a support equals to 1.0

TID	W1	W2	W3	W4	W5							
D1	2	2	0	0	1							
D2	0	0	1	2	2							
D3	2	3	0	0	0							
D4	0	0	1	0	1							
D5	1	1	1	0	2	$\xrightarrow{\text { Normalize }} \quad$	TID	W1	W2	W3	W4	W5
:---	:---	:---	:---	:---	:---	:---						
D1	0.40	0.33	0.00	0.00	0.17							
D2	0.00	0.00	0.33	1.00	0.33							
D3	0.40	0.50	0.00	0.00	0.00							
D4	0.00	0.00	0.33	0.00	0.17							
D5	0.20	0.17	0.33	0.00	0.33							

Min-Apriori

- New definition of support:

$$
\sup (C)=\sum_{i \in T} \min _{j \in C} D(i, j)
$$

TID W1 W2 W3 W4 W5
D1 $0.40 \quad 0.330 .000 .00 \quad 0.17$
D2 $0.00 \quad 0.00 \quad 0.331 .00 \quad 0.33$
D3 0.400 .500 .000 .000 .00
D4 $0.00 \quad 0.00 \quad 0.33 \quad 0.00 \quad 0.17$
D5 $0.20 \quad 0.17 \quad 0.330 .00 \quad 0.33$

Example:
Sup(W1,W2)
$=.33+0+.4+0+0.17$
$=0.9$

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:
$\operatorname{Sup}(W 1)=0.4+0+0.4+0+0.2=1$
Sup(W1, W2) $=0.33+0+0.4+0+0.17=0.9$
$\operatorname{Sup}(W 1, W 2, W 3)=0+0+0+0+0.17=0.17$

Concept Hierarchies

23

Multi-level Association Rules

Why should we incorporate concept hierarchy?

- Rules at lower levels may not have enough support to appear in any frequent itemsets
- Rules at lower levels of the hierarchy are overly specific - e.g., following rules are indicative of association between milk and bread
- skim milk \rightarrow white bread,
-2% milk \rightarrow wheat bread,
- skim milk \rightarrow wheat bread, etc.
- Rules at higher level of hierarchy may be too generic
- e.g., electronics \rightarrow food

Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
- If $\quad \sigma(\mathrm{X} 1 \cup \mathrm{Y} 1) \geq$ minsup,
and $\quad X$ is parent of $X 1, Y$ is parent of $Y 1$
then $\quad \sigma(X \cup Y 1) \geq$ minsup, $\sigma(X 1 \cup Y) \geq$ minsup $\sigma(X \cup Y) \geq$ minsup
- If $\quad \operatorname{conf}(X 1 \Rightarrow Y 1) \geq$ minconf, then $\quad \operatorname{conf}(X 1 \Rightarrow Y) \geq$ minconf

$$
\frac{\sigma\left(x_{1}, y_{1}\right)}{\sigma\left(x_{1}\right)} \leqslant \frac{\sigma\left(x_{1}, y\right)}{\sigma\left(x_{1}\right)}
$$

Multi-level Association Rules

Approach 1:

- Extend current association rule formulation by augmenting each transaction with higher level items

Original Transaction: \{skim milk, wheat bread\}
Augmented Transaction:
\{skim milk, wheat bread, milk, bread, food\}

- Issues:
- Items that reside at higher levels have much higher support counts
- if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Multi-level Association Rules

- Approach 2:
- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on
- Issues:
- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Data Mining
 Association Analysis: Advanced Concepts

Sequential Patterns

Examples of Sequence

- Sequence of different transactions by a customer at an online store:
< \{Digital Camera,iPad\} \{memory card\} \{headphone,iPad cover\} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
$<$ \{clogged resin\} \{outlet valve closure\} \{loss of feedwater\} \{condenser polisher outlet valve shut\} \{booster pumps trip\} \{main waterpump trips\} \{main turbine trips\} \{reactor pressure increases\}>
- Sequence of books checked out at a library:
<\{Fellowship of the Ring\} \{The Two Towers\} \{Return of the King\}>

Sequential Pattern Discovery: Examples

- In telecommunications alarm logs,
- Inverter_Problem:
(Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)
- In point-of-sale transaction sequences,
- Computer Bookstore:
(Intro_To_Visual_C) (C++_Primer) --> (Perl_for_dummies,Tcl_Tk)
- Athletic Apparel Store:
(Shoes) (Racket, Racketball) --> (Sports_Jacket)

Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Element (Transaction)

3/15/2021 Introduction to Data Mining, $2^{\text {nd }}$ Editio
31
31

Sequence Data

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
A	10	$2,3,5$
A	20	1,6
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$1,2,7,8$
B	28	1,6
C	14	$1,7,8$

Market- basket Data

Events
$2,3,5$
1,6
1
$4,5,6$
2
$1,2,7,8$
1,6
$1,7,8$

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
A	10	$2,3,5$
A	20	1,6
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$1,2,7,8$
B	28	1,6
C	14	$1,7,8$

Market- basket Data

Events
$2,3,5$
1,6
1
$4,5,6$
2
$1,2,7,8$
1,6
$1,7,8$

Formal Definition of a Sequence

- A sequence is an ordered list of elements

$$
s=\left\langle e_{1} e_{2} e_{3} \ldots\right\rangle
$$

- Each element contains a collection of events (items)

$$
e_{i}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

Length of a sequence, |s|, is given by the number of elements in the sequence

- A k-sequence is a sequence that contains k events (items)
$-<\{a, b\}\{a\}>$ has a length of 2 and it is a 3-sequence

Formal Definition of a Subsequence

- A sequence $t:<a_{1} a_{2} \ldots a_{n}>$ is contained in another sequence $s:<b_{1}$ $b_{2} \ldots b_{m}>(m \geq n)$ if there exist integers $i_{1}<i_{2}<\ldots<i_{n}$ such that $a_{1} \subseteq b_{i 1}, a_{2} \subseteq b_{i 2}, \ldots, a_{n} \subseteq b_{\text {in }}$
- Illustrative Example:

$\mathrm{s}:$	b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{5}$
$\mathrm{t}:$		a_{1}	a_{2}		a_{3}

t is a subsequence of s if $a_{1} \subseteq b_{2}, a_{2} \subseteq b_{3}, a_{3} \subseteq b_{5}$.

Data sequence	Subsequence	Contain?
$<\{2,4\}\{3,5,6\}\{8\}>$	$<\{2\}\{8\}>$	Yes
$<\{1,2\}\{3,4\}>$	$<\{1\}\{2\}>$	No
$<\{2,4\}\{2,4\}\{2,5\}>$	$<\{2\}\{4\}>$	Yes
$<\{2,4\}\{2,5\}\{4,5\}>$	$<\{2\}\{4\}\{5\}>$	No
$<\{2,4\}\{2,5\}\{4,5\}>$	$<\{2\}\{5\}\{5\}>$	Yes
$<\{2,4\}\{2,5\}\{4,5\}>$	$<\{2,4,5\}>$	No

Sequential Pattern Mining: Definition

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \geq minsup)
- Given:
- a database of sequences
- a user-specified minimum support threshold, minsup
- Task:
- Find all subsequences with support \geq minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Minsup $=50 \%$	
Examples of Frequent Subsequences:	
$<\{1,2\}>$	$\mathrm{s}=60 \%$
$<\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{2,4\}>$	$\mathrm{s}=80 \%$
$<\{3\}\{5\}>$	$\mathrm{s}=80 \%$
$<\{1\}\{2\}>$	$\mathrm{s}=80 \%$
$<\{2\}\{2\}>$	$\mathrm{s}=60 \%$
$<\{1\}\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{2\}\{2,3\}>$	$\mathrm{s}=60 \%$
$<\{1,2\}\{2,3\}>$	$\mathrm{s}=60 \%$

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
A	10	$2,3,5$
A	20	1,6
A	23	1
B	11	$4,5,6$
B	17	2
B	21	$1,2,7,8$
B	28	1,6
C	14	$1,7,8$

$\{2\}->\{1\}$
$\operatorname{conf}(\{2\} \rightarrow\{1\})=\frac{\sigma(\{2\}\{1\})}{\sigma(\{2\})}$

Market- basket Data

Events
$2,3,5$
1,6
1
$4,5,6$
2
$1,2,7,8$
1,6
$1,7,8$

$(1,8)->(7)$
$\operatorname{conf}(1,8) \rightarrow(7))=\frac{\sigma(1,7,8)}{\sigma(\{1,8\})}$

Extracting Sequential Patterns

Given n events: $i_{1}, i_{2}, i_{3}, \ldots, i_{n}$

- Candidate 1-subsequences:

$$
<\left\{i_{1}\right\}>,<\left\{i_{2}\right\}>,<\left\{i_{3}\right\}>, \ldots,<\left\{i_{n}\right\}>
$$

Candidate 2-subsequences:

$$
\begin{aligned}
& <\left\{\mathrm{i}_{1}, \mathrm{i}_{2}\right\}>,<\left\{\mathrm{i}_{1}, \mathrm{i}_{3}\right\}>, \ldots, \\
& <\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{1}\right\}>,<\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{2}\right\}>, \ldots,<\left\{\mathrm{i}_{n}\right\}\left\{\mathrm{i}_{n}\right\}>
\end{aligned}
$$

- Candidate 3-subsequences:

$$
\begin{aligned}
& <\left\{i_{1}, i_{2}, i_{3}\right\}>,<\left\{i_{1}, i_{2}, i_{4}\right\}>, \ldots, \\
& <\left\{i_{1}, i_{2}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}, i_{2}\right\}\left\{i_{2}\right\}>, \ldots, \\
& <\left\{i_{1}\right\}\left\{i_{1}, i_{2}\right\}>,<\left\{i_{1}\right\}\left\{i_{1}, i_{3}\right\}>, \ldots, \\
& <\left\{i_{1}\right\}\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{1}\right\}\left\{i_{2}\right\}>, \ldots
\end{aligned}
$$

Extracting Sequential Patterns: Simple example

- Given 2 events: a, b
- Candidate 1-subsequences:
< $\{a\}>,<\{b\}>$.

(a,b)

Item-set patterns

- Candidate 2-subsequences:

$$
<\{a\}\{a\}>,<\{a\}\{b\}>,<\{b\}\{a\}>,<\{b\}\{b\}>,<\{a, b\}>.
$$

Candidate 3-subsequences:
$<\{a\}\{a\}\{a\}>,<\{a\}\{a\}\{b\}>,<\{a\}\{b\}\{a\}>,<\{a\}\{b\}\{b\}>$,
$<\{b\}\{b\}\{b\}>,<\{b\}\{b\}\{a\}>,<\{b\}\{a\}\{b\}>,<\{b\}\{a\}\{a\}>$
$<\{a, b\}\{a\}>,<\{a, b\}\{b\}>,<\{a\}\{a, b\}>,<\{b\}\{a, b\}>$

Generalized Sequential Pattern (GSP)

- Step 1:
- Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
- Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
- Prune candidate k-sequences that contain infrequent $(k-1)$-subsequences
- Support Counting:
- Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
- Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

- Base case (k=2):
- Merging two frequent 1 -sequences $<\left\{i_{1}\right\}>$ and $<\left\{i_{2}\right\}>$ will produce the following candidate 2-sequences: $<\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{1}\right\}>,<\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{2}\right\}>,<\left\{\mathrm{i}_{2}\right\}\left\{\mathrm{i}_{2}\right\}>,<\left\{\mathrm{i}_{2}\right\}\left\{\mathrm{i}_{1}\right\}>$ and $<\left\{i_{1}, i_{2}\right\}>$. (Note: $<\left\{i_{1}\right\}>$ can be merged with itself to produce: $<\left\{i_{1}\right\}\left\{i_{1}\right\}>$)
- General case ($k>2$):
- A frequent $(k-1)$-sequence w_{1} is merged with another frequent $(k-1)$-sequence w_{2} to produce a candidate k-sequence if the subsequence obtained by removing an event from the first element in w_{1} is the same as the subsequence obtained by removing an event from the last element in W_{2}

Candidate Generation

- Base case (k=2):
- Merging two frequent 1 -sequences $<\left\{i_{1}\right\}>$ and $<\left\{i_{2}\right\}>$ will produce the following candidate 2-sequences: $<\left\{i_{1}\right\}\left\{i_{1}\right\}>,<\left\{i_{1}\right\}\left\{i_{2}\right\}>,<\left\{i_{2}\right\}\left\{i_{2}\right\}>,<\left\{i_{2}\right\}\left\{i_{1}\right\}>$ and $\left\langle\left\{\mathrm{i}_{1} \mathrm{i}_{2}\right\}>\right.$. (Note: $\left\langle\left\{\mathrm{i}_{1}\right\}>\right.$ can be merged with itself to produce: $\left\langle\left\{\mathrm{i}_{1}\right\}\left\{\mathrm{i}_{1}\right\}>\right.$)
- General case ($k>2$):
- A frequent ($k-1$)-sequence w_{1} is merged with another frequent ($k-1$)-sequence w_{2} to produce a candidate k-sequence if the subsequence obtained by removing an event from the first element in w_{1} is the same as the subsequence obtained by removing an event from the last element in w_{2}
- The resulting candidate after merging is given by extending the sequence w_{1} as follows-
- If the last element of w_{2} has only one event, append it to w_{1}
- Otherwise add the event from the last element of w_{2} (which is absent in the last element of w_{1}) to the last element of w_{1}

Candidate Generation Examples

- Merging $w_{1}=<\{123\}\{46\}>$ and $w_{2}=<\{23\}\{46\}\{5\}>$ produces the candidate sequence < \{1 23$\}\{46\}\{5\}>$ because the last element of w_{2} has only one event
- Merging $w_{1}=<\{1\}\{23\}\{4\}>$ and $w_{2}=<\{23\}\{45\}>$ produces the candidate sequence $<\{1\}\{23\}\{45\}>$ because the last element in w_{2} has more than one event
- Merging $\mathrm{w}_{1}=<\{123\}>$ and $\mathrm{w}_{2}=<\{234\}>$
produces the candidate sequence < \{1 234$\}>$ because the last element in w_{2} has more than one event
- We do not have to merge the sequences $\mathrm{w}_{1}=<\{1\}\{26\}\{4\}>$ and $\mathrm{w}_{2}=<\{1\}\{2\}\{45\}>$ to produce the candidate $<\{1\}\{26\}\{45\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_{1} with $<\{26\}\{45\}>$

Candidate Generation: Examples (ctd)

- Can < $\{a\},\{b\},\{c\}>$ merge with $<\{b\},\{c\},\{f\}>$
- Can $<\{a\},\{b\},\{c\}>$ merge with $<\{b, c\},\{f\}>$?
- Can $<\{a\},\{b\},\{c\}>$ merge with $<\{b\},\{c, f\}>$?
- Can < $\{a, b\},\{c\}>$ merge with $<\{b\},\{c, f\}>$?
- Can < $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}>$ merge with < $\{\mathrm{b}, \mathrm{c}, \mathrm{f}\}>$?
- Can < $a \mathrm{a}\}>$ merge with < a$\}>$?

Candidate Generation: Examples (ctd)

- < $\{a\},\{b\},\{c\}>$ can be merged with < $\{b\},\{c\},\{f\}>$ to produce $<\{a\},\{b\},\{c\},\{f\}>$
- <\{a\},\{b\},\{c\}> cannot be merged with <\{b,c\},\{f\}>
- <\{a\},\{b\},\{c\}> can be merged with <\{b\},\{c,f\}> to produce <\{a\},\{b\},\{c,f\}>
- <\{a,b\},\{c\}> can be merged with <\{b\},\{c,f\}> to produce <\{a,b\},\{c,f\}>
- <\{a,b,c\}> can be merged with <\{b,c,f\}> to produce <\{a,b,c,f\}>
- < $\{a\}\{b\}\{a\}>$ can be merged with < $\{b\}\{a\}\{b\}>$ to produce $<\{a\},\{b\},\{a\},\{b\}>$
- <\{b\}\{a\}\{b\}> can be merged with <\{a\}\{b\}\{a\}> to produce $<\{b\},\{a\},\{b\},\{a\}>$

GSP Example

Frequent
3-sequences
$<\{1\}\{2\}\{3\}>$
$<\{1\}\{25\}>$
$<\{1\}\{5\}\{3\}>$
$<\{2\}\{3\}\{4\}>$
$<\{25\}\{3\}>$
$<\{3\}\{4\}\{5\}>$
< $\{5\}\{34\}>$

GSP Example

Frequent
3-sequences

Candidate
Pruning

$$
<\{1\}\{25\}\{3\}>
$$

Timing Constraints (I)

x_{g} : max-gap
n_{g} : min-gap
\mathbf{m}_{s} : maximum span
$x_{g}=2, n_{g}=0, m_{s}=4$

Data sequence, \mathbf{d}	Sequential Pattern, s	d contains s?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{6\}\{5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1\}\{4\}>$	No
$<\{1\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{2\}\{3\}\{5\}>$	Yes
$<\{1,2\}\{3\}\{2,3\}\{3,4\}\{2,4\}\{4,5\}>$	$<\{1,2\}\{5\}>$	No

3/15/2021 Introduction to Data Mining, $2^{\text {nd }}$ Edition

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns
- Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints
- Question:
- Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
A	1	$1,2,4$
A	2	2,3
A	3	5
B	1	1,2
B	2	$2,3,4$
C	1	1,2
C	2	$2,3,4$
C	3	$2,4,5$
D	1	2
D	2	3,4
D	3	4,5
E	1	1,3
E	2	$2,4,5$

Suppose:
$x_{g}=1$ (max-gap)
$\mathrm{n}_{\mathrm{g}}=0$ (min-gap)
$\mathrm{m}_{\mathrm{s}}=5$ (maximum span)
minsup $=60 \%$
$<\{2\}\{5\}>$ support $=40 \%$
but
$<\{2\}\{3\}\{5\}>$ support $=60 \%$

Problem exists because of max-gap constraint
No such problem if max-gap is infinite
3/15/2021

Contiguous Subsequences

- s is a contiguous subsequence of

$$
\left.\left.w=\left\langle e_{1}\right\rangle<e_{2}\right\rangle \ldots<e_{k}\right\rangle
$$

if any of the following conditions hold:

1. s is obtained from w by deleting an item from either e_{1} or e_{k}
2. s is obtained from w by deleting an item from any element e_{i} that contains at least 2 items
3. s is a contiguous subsequence of s ' and s ' is a contiguous subsequence of w (recursive definition)

- Examples: $s=<\{1\}\{2\}>$
- is a contiguous subsequence of
$<\{1\}\{23\}>,<\{12\}\{2\}\{3\}>$, and $<\{34\}\{12\}\{23\}\{4\}>$
- is not a contiguous subsequence of
$<\{1\}\{3\}\{2\}>$ and $<\{2\}\{1\}\{3\}\{2\}>$

53

Modified Candidate Pruning Step

Without maxgap constraint:

- A candidate k-sequence is pruned if at least one of its ($k-1$)-subsequences is infrequent
- With maxgap constraint:
- A candidate k-sequence is pruned if at least one of its contiguous ($k-1$)-subsequences is infrequent

Timing Constraints (II)

x_{g} : max-gap
n_{g} : min-gap
ws: window size
m_{s} : maximum span
$x_{g}=2, n_{g}=0, w s=1, m_{s}=5$

Data sequence, \mathbf{d}	Sequential Pattern, s	\mathbf{d} contains s?
$<\{2,4\}\{3,5,6\}\{4,7\}\{4,5\}\{8\}>$	$<\{3,4,5\}>$	Yes
$<\{1\}\{2\}\{3\}\{4\}\{5\}>$	$<\{1,2\}\{3,4\}>$	No
$<\{1,2\}\{2,3\}\{3,4\}\{4,5\}>$	$<\{1,2\}\{3,4\}>$	Yes

55

Modified Support Counting Step

- Given a candidate sequential pattern: < \{a, c\}>
- Any data sequences that contain
$<\ldots\{a c\} \ldots>$,
$<\ldots\{a\} \ldots\{c\} \ldots>\quad$ (where time $(\{c\})-\operatorname{time}(\{a\}) \leq w s)$
$<\ldots\{c\} \ldots\{a\} \ldots>$ (where time $(\{a\})-\operatorname{time}(\{c\}) \leq w s)$
will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
- Example:
- monitoring network traffic events for attacks
- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
- This problem is also known as frequent episode mining

General Support Counting Schemes

Data Mining
 Association Analysis: Advanced Concepts

Subgraph Mining

59

Frequent Subgraph Mining

- Extends association analysis to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(b) Subgraph
(a) Labeled Graph
(c) Induced Subgraph

61
61

Representing Transactions as Graphs

Each transaction is a clique of items

Transaction Id	Items
1	$\{A, B, C, D\}$
2	$\{A, B, E\}$
3	$\{B, C\}$
4	$\{A, B, D, E\}$
5	$\{B, C, D\}$

Representing Graphs as Transactions

63

Challenges

- Node may contain duplicate labels
- Support and confidence
- How to define them?
- Additional constraints imposed by pattern structure
- Support and confidence are not the only constraints
- Assumption: frequent subgraphs must be connected
- Apriori-like approach:
- Use frequent k-subgraphs to generate frequent $(k+1)$ subgraphs
What is k ?

Challenges...

- Support:

- number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
- Vertex growing:
- k is the number of vertices
- Edge growing:
- k is the number of edges

Vertex Growing

G1

G2

$\mathrm{G} 3=\mathrm{join}(\mathrm{G} 1, \mathrm{G} 2)$

$$
M_{c 1}=\left(\begin{array}{llll}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
q & 0 & 0 & 0
\end{array}\right)
$$

$$
M_{c 2}=\left(\begin{array}{llll}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0
\end{array}\right)
$$

$$
M_{G 3}=\left(\begin{array}{ccccc}
0 & p & p & q & 0 \\
p & 0 & r & 0 & 0 \\
p & r & 0 & 0 & r \\
q & 0 & 0 & 0 & ? \\
0 & 0 & r & ? & 0
\end{array}\right)
$$

Edge Growing

67
67

Apriori-like Algorithm

Find frequent 1-subgraphs

- Repeat
- Candidate generation
- Use frequent (k-1)-subgraphs to generate candidate k-subgraph
- Candidate pruning
- Prune candidate subgraphs that contain infrequent ($k-1$)-subgraphs
- Support counting
- Count the support of each remaining candidate
- Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

G1

	$(\mathrm{a}, \mathrm{b}, \mathrm{p})$	$(\mathrm{a}, \mathrm{b}, \mathrm{q})$	$(\mathrm{a}, \mathrm{b}, \mathrm{r})$	$(\mathrm{b}, \mathrm{c}, \mathrm{p})$	$(\mathrm{b}, \mathrm{c}, \mathrm{q})$	$(\mathrm{b}, \mathrm{c}, \mathrm{r})$	\ldots	$(\mathrm{d}, \mathrm{e}, \mathrm{r})$
G1	1	0	0	0	0	1	\ldots	0
G2	1	0	0	0	0	0	\ldots	0
G3	0	0	1	1	0	0	\ldots	0
G4	0	0	0	0	0	0	\ldots	0

G4

Example

Minimum support count $=2$
$\mathrm{k}=1$
a b
(c)
d
(e)

Frequent
Subgraphs

Frequent
Subgraphs
c. p d c p e

Candidate Generation

- In Apriori:
- Merging two frequent k-itemsets will produce a candidate ($k+1$)-itemset
- In frequent subgraph mining (vertex/edge growing)
- Merging two frequent k-subgraphs may produce more than one candidate $(k+1)$-subgraph

Multiplicity of Candidates (Vertex Growing)

G1
$+$

G2
$\mathrm{G} 3=\mathrm{join}(\mathrm{G} 1, \mathrm{G} 2)$
$M_{G 1}=\left(\begin{array}{llll}0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0\end{array}\right) \quad M_{G 2}=\left(\begin{array}{cccc}0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0\end{array}\right)$

$$
M_{o s}=\left(\begin{array}{lllll}
0 & p & p & 0 & q \\
p & 0 & r & 0 & 0 \\
p & r & 0 & r & 0 \\
0 & 0 & r & 0 & ? \\
q & 0 & 0 & ? & 0
\end{array}\right)
$$

Multiplicity of Candidates (Edge growing)

- Case 1: identical vertex labels

 $+$

Multiplicity of Candidates (Edge growing)

Case 2: Core contains identical labels

Multiplicity of Candidates (Edge growing)

Case 3: Core multiplicity

3/15/2021 Introduction to Data Mining, $2^{\text {nd }}$ Edition
75
75

Topological Equivalence

G1

G2

G3

Candidate Generation by Edge Growing

- Case 1: $a \neq c$ and $b \neq d$

Candidate Generation by Edge Growing

- Case 2: $a=c$ and $b \neq d$

Candidate Generation by Edge Growing

- Case 3: $a \neq c$ and $b=d$

G3 $=\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$

Candidate Generation by Edge Growing

- Case 4: $a=c$ and $b=d$
G3 = Merge(G1,G2)

$\mathrm{G} 3=\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$

Graph Isomorphism

- A graph is isomorphic if it is topologically equivalent to another graph

3/15/2021 Introduction to Data Mining, 2 ${ }^{\text {nd }}$ Edition
81
81

Graph Isomorphism

- Test for graph isomorphism is needed:
- During candidate generation step, to determine whether a candidate has been generated
- During candidate pruning step, to check whether its ($k-1$)-subgraphs are frequent
- During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

$\mathrm{A}(1) \quad \mathrm{A}(2)$		A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
	A(1)	1	1	1	0	1	0	0	0
	A(2)	1	1	0	1	0	1	0	0
	A(3)	1	0	1	1	0	0	1	0
	A(4)	0	1	1	1	0	0	0	1
	B(5)	1	0	0	0	1	1	1	0
	B(6)	0	1	0	0	1	1	0	1
	B(7)	0	0	1	0	1	0	1	1
	B(8)	0	0	0	1	0	1	1	1
		A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
	A(1)	1	1	0	1	0	1	0	0
	A(2)	1	1	1	0	0	0	1	0
	A(3)	0	1	1	1	1	0	0	0
	A(4)	1	0	1	1	0	0	0	1
	B(5)	0	0	1	0	1	0	1	1
	B(6)	1	0	0	0	0	1	1	1
	B(7)	0	1	0	0	1	1	1	0
	B(8)	0	0	0	1	1	1	0	1

- The same graph can be represented in many ways

3/15/2021 Introduction to Data Mining, $2^{\text {nd }}$ Edition
83
83

Graph Isomorphism

- Use canonical labeling to handle isomorphism
- Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
- Example:
- Lexicographically largest adjacency matrix

3/15/2021

Example of Canonical Labeling (Kuramochi \& Karypis, ICDM 2001)

- Graph:

- Adjacency matrix representation:

id	a	b	c	d
label	v_{0}	v_{0}	v_{1}	v_{0}
a	0	e_{0}	0	0
b	e_{0}	0	e_{0}	e_{1}
c	0	e_{0}	0	0
d	0	e_{1}	0	0

85

Example of Canonical Labeling
 (Kuramochi \& Karypis, ICDM 2001)

- Order based on vertex degree:

id label partition	v_{0}	c	d	b
v_{1}	v_{0}	v_{0}		
a	0	0	0	e_{0}
c	0	0	0	e_{0}
d	0	0	0	e_{1}
b	e_{0}	e_{0}	e_{1}	0

- Order based on vertex labels:

id	d	a	c	b
label	v_{0}	v_{0}	v_{1}	v_{0}
partition	0		1	2
d	0	0	0	e_{1}
a	0	0	0	e_{0}
c	0	0	0	e_{0}
b	e_{1}	e_{0}	e_{0}	0

Example of Canonical Labeling (Kuramochi \& Karypis, ICDM 2001)

- Find canonical label:

id	d	a	c	b
label	v_{0}	v_{0}	v_{1}	v_{0}
partition	0		1	2
d	0	0	0	e_{1}
a	0	0	0	e_{0}
c	0	0	0	e_{0}
b	e_{0}	e_{1}	e_{0}	0

id label partition	$\begin{array}{cc} a & d \\ v_{0} & v_{0} \\ & 0 \\ \hline \end{array}$	$\begin{gathered} c \\ v_{1} \\ 1 \end{gathered}$	$\begin{gathered} b \\ v_{0} \\ 2 \end{gathered}$
a	00	0	e_{0}
d	$0 \quad 0$	0	e_{1}
c	0	0	e_{0}
b	$e_{0} \quad e_{1}$	e_{0}	0

$$
\underset{\substack{\text { (Canonical Label) }}}{000 e_{1} \mathbf{e}_{0} \mathbf{e}_{0}} \quad>\quad 000 \mathbf{e}_{0} \mathbf{e}_{1} \mathbf{e}_{0}
$$

