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Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines

• One Possible Solution

10/11/2021 Introduction to Data Mining, 2nd Edition 4

Support Vector Machines

• Another possible solution
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Support Vector Machines

• Other possible solutions
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Support Vector Machines

• Which one is better? B1 or B2?

• How do you define better?
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Support Vector Machines

• Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines
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Linear SVM

• Linear model: 

• Learning the model is equivalent to determining 
the values of 

– How to find             from training data?
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Learning Linear SVM

• Objective is to maximize:

– Which is equivalent to minimizing:

– Subject to the following constraints:

or

 This is a constrained optimization problem

– Solve it using Lagrange multiplier method
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Example of Linear SVM

x1 x2 y 
0.3858 0.4687 1 65.5261
0.4871 0.611 -1 65.5261
0.9218 0.4103 -1 0
0.7382 0.8936 -1 0
0.1763 0.0579 1 0
0.4057 0.3529 1 0
0.9355 0.8132 -1 0
0.2146 0.0099 1 0

Support vectors
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Learning Linear SVM

• Decision boundary depends only on support 
vectors

– If you have data set with same support 
vectors, decision boundary will not change

– How to classify using SVM once w and b are 
found? Given a test record, xi
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Support Vector Machines

• What if the problem is not linearly separable?
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Support Vector Machines

• What if the problem is not linearly separable?
– Introduce slack variables

 Need to minimize:

 Subject to: 

 If k is 1 or 2, this leads to similar objective function 
as linear SVM but with different constraints (see 
textbook)
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Support Vector Machines

• Find the hyperplane that optimizes both factors
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Nonlinear Support Vector Machines

• What if decision boundary is not linear?
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Nonlinear Support Vector Machines

• Transform data into higher dimensional space
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Decision boundary:
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Learning Nonlinear SVM

• Optimization problem:

• Which leads to the same set of equations (but 
involve (x) instead of x)
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Learning NonLinear SVM

• Issues:

– What type of mapping function  should be 
used?

– How to do the computation in high 
dimensional space?
 Most computations involve dot product (xi) (xj) 

 Curse of dimensionality?
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Learning Nonlinear SVM

• Kernel Trick:

– (xi) (xj) = K(xi, xj) 

– K(xi, xj) is a kernel function (expressed in 
terms of the coordinates in the original space)

 Examples:
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Example of Nonlinear SVM

SVM with polynomial 
degree 2 kernel
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Learning Nonlinear SVM

• Advantages of using kernel:

– Don’t have to know the mapping function 
– Computing dot product (xi) (xj) in the 

original space avoids curse of dimensionality

• Not all functions can be kernels

– Must make sure there is a corresponding  in 
some high-dimensional space

– Mercer’s theorem (see textbook)
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Characteristics of SVM

• The learning problem is formulated as a convex optimization problem

– Efficient algorithms are available to find the global minima 

– Many of the other methods use greedy approaches and find locally 
optimal solutions

– High computational complexity for building the model

• Robust to noise

• Overfitting is handled by maximizing the margin of the decision boundary, 

• SVM can handle irrelevant and redundant attributes better than many 
other techniques

• The user needs to provide the type of kernel function and cost function

• Difficult to handle missing values

• What about categorical variables?
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