Data Mining

Support Vector Machines

Introduction to Data Mining, $2^{\text {nd }}$ Edition by
Tan, Steinbach, Karpatne, Kumar

Support Vector Machines

- Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution

Support Vector Machines

- Other possible solutions

Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines

- Find hyperplane maximizes the margin $=>\mathrm{B} 1$ is better than B 2

Support Vector Machines

Linear SVM

- Linear model:

$$
f(\vec{x})=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}+\mathrm{b} \leq-1
\end{array}\right.
$$

- Learning the model is equivalent to determining the values of \vec{w} and b
- How to find \vec{w} and b from training data?

Learning Linear SVM

- Objective is to maximize: $\operatorname{Margin}=\frac{2}{\|\vec{w}\|}$
- Which is equivalent to minimizing: $L(\vec{w})=\frac{\|\vec{w}\|^{2}}{2}$
- Subject to the following constraints:

$$
y_{i}=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

or

$$
y_{i}\left(\mathrm{w} \cdot \mathrm{x}_{i}+b\right) \geq 1, \quad i=1,2, \ldots, N
$$

- This is a constrained optimization problem
- Solve it using Lagrange multiplier method

Example of Linear SVM

11

Learning Linear SVM

- Decision boundary depends only on support vectors
- If you have data set with same support vectors, decision boundary will not change
- How to classify using SVM once w and b are found? Given a test record, x_{i}

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

Support Vector Machines

- What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize:

$$
L(w)=\frac{\|\vec{w}\|^{2}}{2}+C\left(\sum_{i=1}^{N} \xi_{i}^{k}\right)
$$

- Subject to:

$$
y_{i}=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b}>1-\xi_{\mathrm{i}} \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1+\xi_{\mathrm{i}}
\end{array}\right.
$$

- If k is 1 or 2 , this leads to similar objective function as linear SVM but with different constraints (see textbook)

Support Vector Machines

- Find the hyperplane that optimizes both factors 10/11/2021 Introduction to Data Mining, $2^{\text {nd }}$ Edition

Nonlinear Support Vector Machines

- What if decision boundary is not linear?

$$
\begin{aligned}
& y\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } \sqrt{\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0.5\right)^{2}}>0.2 \\
-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Nonlinear Support Vector Machines

- Transform data into higher dimensional space

17

Learning Nonlinear SVM

- Optimization problem:

$$
\begin{aligned}
& \min _{w} \frac{\|\mathbf{w}\|^{2}}{2} \\
& y_{i}\left(\boldsymbol{w} \cdot \Phi\left(x_{i}\right)+b\right) \geq 1, \forall\left\{\left(x_{i}, y_{i}\right)\right\}
\end{aligned}
$$

- Which leads to the same set of equations (but involve $\Phi(x)$ instead of x)

$$
\begin{aligned}
L_{D}=\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right) \quad & \mathbf{w}=\sum_{i} \lambda_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \\
& \lambda_{i}\left\{y_{i}\left(\sum_{j} \lambda_{j} y_{j} \Phi\left(\mathbf{x}_{j}\right) \cdot \Phi\left(\mathbf{x}_{i}\right)+b\right)-1\right\}=0,
\end{aligned}
$$

$$
f(\mathbf{z})=\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{z})+b)=\operatorname{sign}\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi(\mathbf{z})+b\right) .
$$

Learning NonLinear SVM

- Issues:
- What type of mapping function Φ should be used?
- How to do the computation in high dimensional space?
- Most computations involve dot product $\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)$
- Curse of dimensionality?

Learning Nonlinear SVM

- Kernel Trick:
$-\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
$-K\left(x_{i}, x_{j}\right)$ is a kernel function (expressed in terms of the coordinates in the original space)
- Examples:

$$
\begin{aligned}
& K(\mathbf{x}, \mathbf{y})=(\mathbf{x} \cdot \mathbf{y}+1)^{p} \\
& K(\mathbf{x}, \mathbf{y})=e^{-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)} \\
& K(\mathbf{x}, \mathbf{y})=\tanh (k \mathbf{x} \cdot \mathbf{y}-\delta)
\end{aligned}
$$

Example of Nonlinear SVM

SVM with polynomial degree 2 kernel

Learning Nonlinear SVM

- Advantages of using kernel:
- Don't have to know the mapping function Φ
- Computing dot product $\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)$ in the original space avoids curse of dimensionality
- Not all functions can be kernels
- Must make sure there is a corresponding Φ in some high-dimensional space
- Mercer's theorem (see textbook)

Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
- Efficient algorithms are available to find the global minima
- Many of the other methods use greedy approaches and find locally optimal solutions
- High computational complexity for building the model
- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- What about categorical variables?

