Data Mining: Data

Lecture Notes for Chapter 2

Introduction to Data Mining , 2nd Edition by Tan, Steinbach, Kumar

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

1

1

Outline

Attributes and Objects

Types of Data

Data Quality

Similarity and Distance

Data Preprocessing

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

What is Data?

Collection of **data objects** and their **attributes**

An **attribute** is a property or characteristic of an object

- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, dimension, or feature

A collection of attributes describe an *object*

 Object is also known as record, point, case, sample, entity, or instance

Attributes

3

Attribute Values

Attribute values are numbers or symbols assigned to an attribute for a particular object

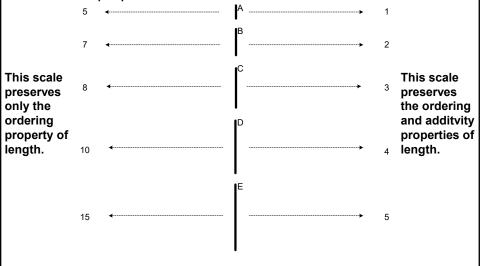
Distinction between attributes and attribute values

- Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
- Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
- But properties of attribute can be different than the properties of the values used to represent the

attribute Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Measurement of Length

The way you measure an attribute may not match the attributes properties.



5

Types of Attributes

There are different types of attributes

- Nominal
 - Examples: ID numbers, eye color, zip codes
- Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
- Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
 - Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Properties of Attribute Values

The type of an attribute depends on which of the following properties/operations it possesses:

Distinctness: = ≠
Order: < >
Differences are meaningful:
* /

Ratios are meaningful

Nominal attribute: distinctness

Ordinal attribute: distinctness & order

Interval attribute: distinctness, order & meaningful differences

Ratio attribute: all 4 properties/operations

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

7

7

Difference Between Ratio and Interval

Is it physically meaningful to say that a temperature of 10 ° is twice that of 5° on

- the Celsius scale?
- the Fahrenheit scale?
- the Kelvin scale?

Consider measuring the height above average

- If Bill's height is three inches above average and Bob's height is six inches above average, then would we say that Bob is twice as tall as Bill?
- Is this situation analogous to that of temperature?

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

	Attribute Type	Description	Examples	Operations
Categorical Qualitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ2 test
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Numeric Quantitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Nu Quar	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

This categorization of attributes is due to S. S. Stevens

C

	Attribute Type	Transformation	Comments
ve	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Qualitative	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Quantitative	Interval	new_value = a * old_value + b where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
ਰ ਹ	Ratio	new_value = a * old_value	Length can be measured in meters or feet.

This categorization of attributes is due to S. S. Stevens

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

11

11

Asymmetric Attributes

Only presence (a non-zero attribute value) is regarded as important

- Words present in documents
- Items present in customer transactions

If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Critiques of the attribute categorization

Incomplete

- Asymmetric binary
- Cyclical
- Multivariate
- Partially ordered
- Partial membership
- Relationships between the data

Real data is approximate and noisy

- This can complicate recognition of the proper attribute type
- Treating one attribute type as another may be approximately correct

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

13

13

Key Messages for Attribute Types

The types of operations you choose should be "meaningful" for the type of data you have

- Distinctness, order, meaningful intervals, and meaningful ratios are only four (among many possible) properties of data
- The data type you see often numbers or strings may not capture all the properties or may suggest properties that are not present
- Analysis may depend on these other properties of the data
 - Many statistical analyses depend only on the distribution
- In the end, what is meaningful can be specific to domain

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Important Characteristics of Data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Sparsity
 - Only presence counts
- Resolution
- Patterns depend on the scale
- Size
- · Type of analysis may depend on size of data

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

15

15

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

17

17

Data Matrix

If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute

Such a data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Document Data

Each document becomes a 'term' vector

- Each term is a component (attribute) of the vector
- The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

19

19

Transaction Data

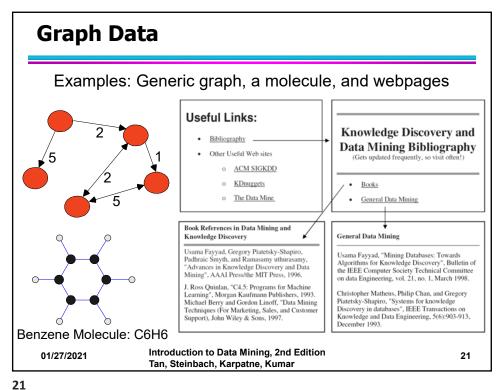
A special type of data, where

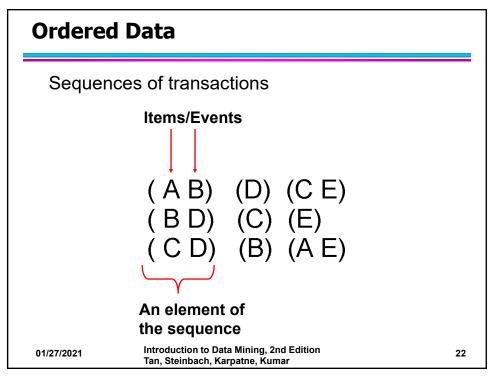
- Each transaction involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
- Can represent transaction data as record data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar





Ordered Data

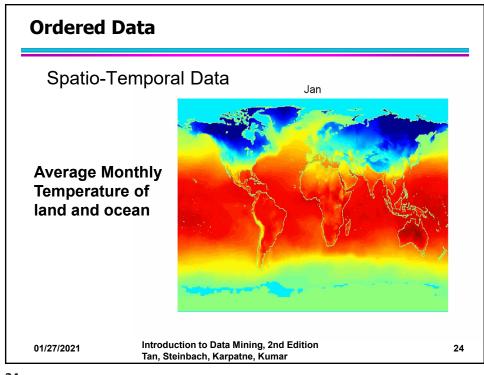
Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGAGGCGGGCCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCGACCAGGG

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

23



Data Quality

Poor data quality negatively affects many data processing efforts

Data mining example: a classification model for detecting people who are loan risks is built using poor data

- Some credit-worthy candidates are denied loans
- More loans are given to individuals that default

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

25

25

Data Quality ...

What kinds of data quality problems?

How can we detect problems with the data?

What can we do about these problems?

Examples of data quality problems:

- Noise and outliers
- Wrong data
- Fake data
- Missing values
- Duplicate data

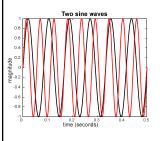
01/27/2021

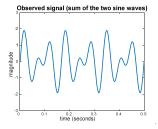
Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

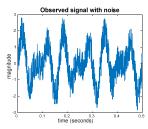
Noise

For objects, noise is an extraneous object For attributes, noise refers to modification of original values

- Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
- The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted







01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

27

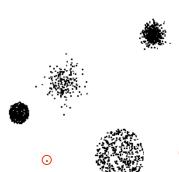
27

Outliers

Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

0

- Case 1: Outliers are noise that interferes with data analysis
- Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection



Causes?

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects or variables
- Estimate missing values
 - ◆ Example: time series of temperature
 - Example: census results
- Ignore the missing value during analysis

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

29

29

Duplicate Data

Data set may include data objects that are duplicates, or almost duplicates of one another

Major issue when merging data from heterogeneous sources

Examples:

Same person with multiple email addresses

Data cleaning

Process of dealing with duplicate data issues

When should duplicate data not be removed?

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Similarity and Dissimilarity Measures

Similarity measure

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity measure

- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

31

31

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min_d}{max_d - min_d}$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Euclidean Distance

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects \mathbf{x} and \mathbf{y} .

Standardization is necessary, if scales differ.

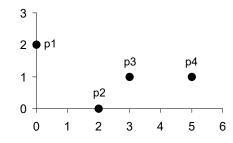
01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

33

33

Euclidean Distance



point	X	y
p1	0	2
p2	2	0
р3	3	1
р4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Minkowski Distance

Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects x and y.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

35

35

Minkowski Distance: Examples

r = 1. City block (Manhattan, taxicab, L₁ norm) distance.

- A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance

 $r \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.

 This is the maximum difference between any component of the vectors

Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
	-	

L1	p1	p2	р3	р4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
р4	6	4	2	0

L2	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
р4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
р4	5	3	2	0

Distance Matrix

01/27/2021

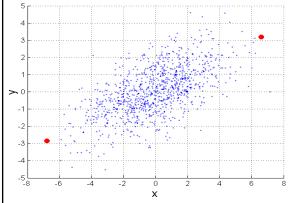
Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

37

37

Mahalanobis Distance

 $mahalanobis(x,y) = ((x-y)^T \Sigma^{-1}(x-y))^{\text{-0.5}}$

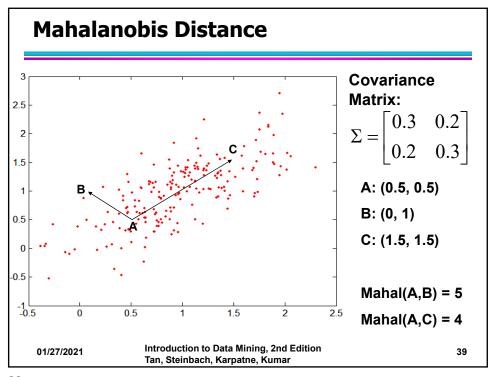


 $\boldsymbol{\Sigma}$ is the covariance matrix

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar



39

Common Properties of a Distance

Distances, such as the Euclidean distance, have some well known properties.

- 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
- 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
- 3. $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x} , \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

A distance that satisfies these properties is a metric

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Common Properties of a Similarity

Similarities, also have some well known properties.

- 1. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$. (does not always hold, e.g., cosine)
- 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

41

41

Similarity Between Binary Vectors

Common situation is that objects, \mathbf{x} and \mathbf{y} , have only binary attributes

Compute similarities using the following quantities

 f_{01} = the number of attributes where x was 0 and y was 1

 f_{10} = the number of attributes where x was 1 and y was 0

 f_{00} = the number of attributes where x was 0 and y was 0

 f_{11} = the number of attributes where x was 1 and y was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes

 $= (f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$

J = number of 11 matches / number of non-zero attributes

 $= (f_{11}) / (f_{01} + f_{10} + f_{11})$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

SMC versus Jaccard: Example

$$\mathbf{x} = 10000000000$$

$$y = 0000001001$$

 $f_{01} = 2$ (the number of attributes where **x** was 0 and **y** was 1)

 $f_{10} = 1$ (the number of attributes where x was 1 and y was 0)

 $f_{00} = 7$ (the number of attributes where x was 0 and y was 0)

 $f_{11} = 0$ (the number of attributes where x was 1 and y was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

43

43

Cosine Similarity

If \mathbf{d}_1 and \mathbf{d}_2 are two document vectors, then

$$\cos(\mathbf{d_1}, \mathbf{d_2}) = \langle \mathbf{d_1}, \mathbf{d_2} \rangle / \|\mathbf{d_1}\| \|\mathbf{d_2}\|,$$

where $<\mathbf{d_1},\mathbf{d_2}>$ indicates inner product or vector dot product of vectors, $\mathbf{d_1}$ and $\mathbf{d_2}$, and $\parallel\mathbf{d}\parallel$ is the length of vector \mathbf{d} .

Example:

$$d_1 = 3205000200$$

$$d_2 = 1000000102$$

$$<$$
d₁, **d2**>= $3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$

$$|\mathbf{d}_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481^{-0.5}$$

$$\parallel \mathbf{d}_2 \parallel = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.449$$

 $\cos(\mathbf{d_1}, \, \mathbf{d_2}) = 0.3150$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Correlation measures the linear relationship between objects

$$corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard_deviation(\mathbf{x}) * standard_deviation(\mathbf{y})} = \frac{s_{xy}}{s_x s_y}, (2.11)$$

where we are using the following standard statistical notation and definitions

covariance(
$$\mathbf{x}, \mathbf{y}$$
) = $s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$ (2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2}$

standard_deviation(
$$\mathbf{y}$$
) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$

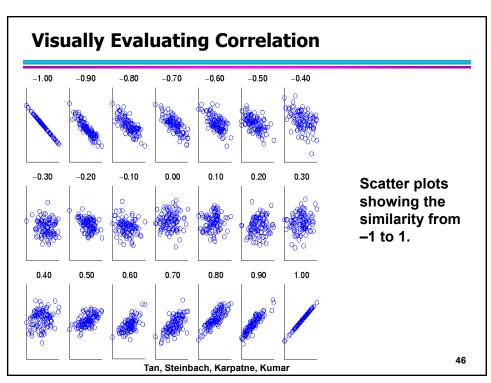
$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 is the mean of \mathbf{x}

$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$$
 is the mean of \mathbf{y}

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

45

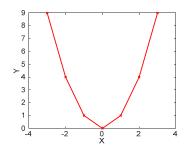


Drawback of Correlation

$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

 $\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$

$$y_{\rm i} = x_{\rm i}^2$$



mean(
$$\mathbf{x}$$
) = 0, mean(\mathbf{y}) = 4
std(\mathbf{x}) = 2.16, std(\mathbf{y}) = 3.74

$$corr = (-3)(5) + (-2)(0) + (-1)(-3) + (0)(-4) + (1)(-3) + (2)(0) + 3(5) / (6 * 2.16 * 3.74)$$

$$= 0$$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

47

47

Correlation vs Cosine vs Euclidean Distance

Compare the three proximity measures according to their behavior under variable transformation

scaling: multiplication by a value

- translation: adding a constant

Property	Cosine	Correlation	Euclidean Distance
Invariant to scaling (multiplication)	Yes	Yes	No
Invariant to translation (addition)	No	Yes	No

Consider the example

- $\mathbf{x} = (1, 2, 4, 3, 0, 0, 0), \mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$
- $y_s = y * 2$ (scaled version of y), $y_t = y + 5$ (translated version)

Measure	(x , y)	(x , y _s)	(x, y_t)
Cosine	0.9667	0.9667	0.7940
Correlation	0.9429	0.9429	0.9429
Euclidean Distance	1.4142	5.8310	14.2127

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Correlation vs cosine vs Euclidean distance

Choice of the right proximity measure depends on the domain What is the correct choice of proximity measure for the following situations?

- Comparing documents using the frequencies of words
 - Documents are considered similar if the word frequencies are similar
- Comparing the temperature in Celsius of two locations
 - Two locations are considered similar if the temperatures are similar in magnitude
- Comparing two time series of temperature measured in Celsius
 - Two time series are considered similar if their "shape" is similar, i.e., they
 vary in the same way over time, achieving minimums and maximums at
 similar times, etc.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

49

49

Comparison of Proximity Measures

Domain of application

- Similarity measures tend to be specific to the type of attribute and data
- Record data, images, graphs, sequences, 3D-protein structure, etc. tend to have different measures

However, one can talk about various properties that you would like a proximity measure to have

- Symmetry is a common one
- Tolerance to noise and outliers is another
- Ability to find more types of patterns?
- Many others possible

The measure must be applicable to the data and produce results that agree with domain knowledge

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Information Based Measures

Information theory is a well-developed and fundamental disciple with broad applications

Some similarity measures are based on information theory

- Mutual information in various versions
- Maximal Information Coefficient (MIC) and related measures
- General and can handle non-linear relationships
- Can be complicated and time intensive to compute

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

51

51

Information and Probability

Information relates to possible outcomes of an event

 transmission of a message, flip of a coin, or measurement of a piece of data

The more certain an outcome, the less information that it contains and vice-versa

- For example, if a coin has two heads, then an outcome of heads provides no information
- More quantitatively, the information is related the probability of an outcome
 - The smaller the probability of an outcome, the more information it provides and vice-versa
- Entropy is the commonly used measure

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Entropy

For

- a variable (event), X,
- with *n* possible values (outcomes), $x_1, x_2 ..., x_n$
- each outcome having probability, $p_1, p_2 ..., p_n$
- the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Entropy is between 0 and $\log_2 n$ and is measured in bits

 Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

53

53

Entropy Examples

For a coin with probability p of heads and probability q = 1 - p of tails

$$H = -p\log_2 p - q\log_2 q$$

- For p= 0.5, q = 0.5 (fair coin) H = 1
- For p = 1 or q = 1, H = 0

What is the entropy of a fair four-sided die?

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Entropy for Sample Data: Example

Hair Color	Count	p	-plog ₂ p
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Maximum entropy is $log_2 5 = 2.3219$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

55

55

Entropy for Sample Data

Suppose we have

- a number of observations (m) of some attribute, X,
 e.g., the hair color of students in the class,
- where there are n different possible values
- And the number of observation in the i^{th} category is m_i
- Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

For continuous data, the calculation is harder

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Mutual Information

Information one variable provides about another

Formally, I(X,Y) = H(X) + H(Y) - H(X,Y), where

H(X,Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{i} \sum_{j} p_{ij} \log_2 p_{ij}$$

Where p_{ij} is the probability that the $i^{\rm th}$ value of X and the $j^{\rm th}$ value of Y occur together

For discrete variables, this is easy to compute

Maximum mutual information for discrete variables is $\log_2(\min(n_X, n_Y))$, where $n_X(n_Y)$ is the number of values of X(Y)

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

57

57

Mutual Information Example

Student Status	Count	p	-plog₂p
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	p	-plog₂p
Α	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	p	-plog₂p
Undergrad	Α	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	Α	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	2.2710

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Maximal Information Coefficient

Reshef, David N., Yakir A. Reshef, Hilary K. Finucane, Sharon R. Grossman, Gilean McVean, Peter J. Turnbaugh, Eric S. Lander, Michael Mitzenmacher, and Pardis C. Sabeti. "Detecting novel associations in large data sets." *science* 334, no. 6062 (2011): 1518-1524.

Applies mutual information to two continuous variables

Consider the possible binnings of the variables into discrete categories

- $n_X \times n_Y \leq N^{0.6}$ where
 - n_X is the number of values of X
 - n_Y is the number of values of Y
 - N is the number of samples (observations, data objects)

Compute the mutual information

- Normalized by $log_2(min(n_X, n_Y))$

Take the highest value

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

59

59

General Approach for Combining Similarities

Sometimes attributes are of many different types, but an overall similarity is needed.

- 1: For the k^{th} attribute, compute a similarity, $s_k(\mathbf{x}, \mathbf{y})$, in the range [0, 1].
- 2: Define an indicator variable, δ_k , for the k^{th} attribute as follows:
 - δ_k = 0 if the k^{th} attribute is an asymmetric attribute and both objects have a value of 0, or if one of the objects has a missing value for the kth attribute

$$\delta_k$$
 = 1 otherwise 3. Compute $\operatorname{similarity}(\mathbf{x},\mathbf{y}) = \frac{\sum_{k=1}^n \delta_k s_k(\mathbf{x},\mathbf{y})}{\sum_{k=1}^n \delta_k}$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Using Weights to Combine Similarities

May not want to treat all attributes the same.

- Use non-negative weights ω_k

-
$$similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

61

61

Data Preprocessing

Aggregation

Sampling

Discretization and Binarization

Attribute Transformation

Dimensionality Reduction

Feature subset selection

Feature creation

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Aggregation

Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
- More "stable" data aggregated data tends to have less variability

Table 2.4. Data set containing information about customer purchases.

Transaction ID	Item	Store Location	Date	Price	
:	:	:	:	:	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	
:	:	:	:	:	

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

63

63

Example: Precipitation in Australia

This example is based on precipitation in Australia from the period 1982 to 1993.

The next slide shows

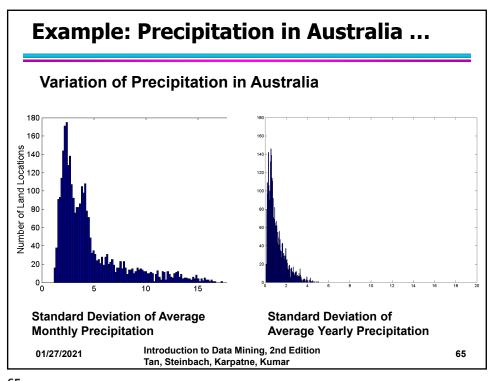
- A histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, and
- A histogram for the standard deviation of the average yearly precipitation for the same locations.

The average yearly precipitation has less variability than the average monthly precipitation.

All precipitation measurements (and their standard deviations) are in centimeters.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar



65

Sampling

Sampling is the main technique employed for data reduction.

 It is often used for both the preliminary investigation of the data and the final data analysis.

Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.

Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Sampling ...

The key principle for effective sampling is the following:

- Using a sample will work almost as well as using the entire data set, if the sample is representative
- A sample is representative if it has approximately the same properties (of interest) as the original set of data

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

67

67

Sample Size

8000 points

2000 Points

500 Points

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Types of Sampling

Simple Random Sampling

- There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - ◆ In sampling with replacement, the same object can be picked up more than once

Stratified sampling

Split the data into several partitions; then draw random samples from each partition

01/27/2021

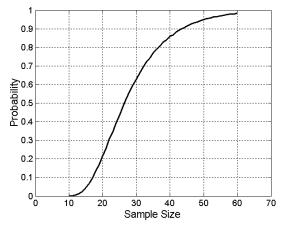
Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

69

69

Sample Size

What sample size is necessary to get at least one object from each of 10 equal-sized groups.



01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Discretization

Discretization is the process of converting a continuous attribute into an ordinal attribute

- A potentially infinite number of values are mapped into a small number of categories
- Discretization is used in both unsupervised and supervised settings

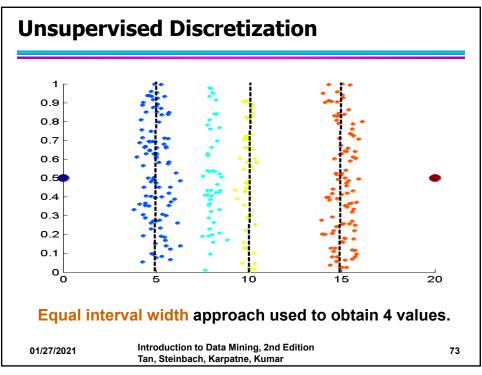
01/27/2021

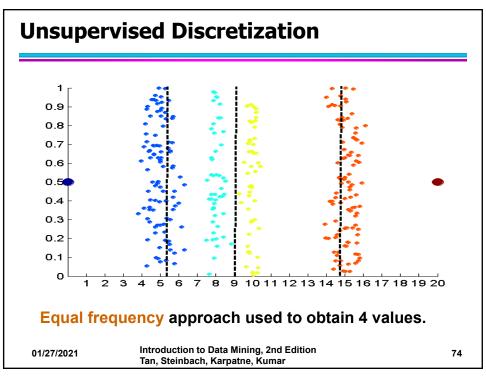
Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

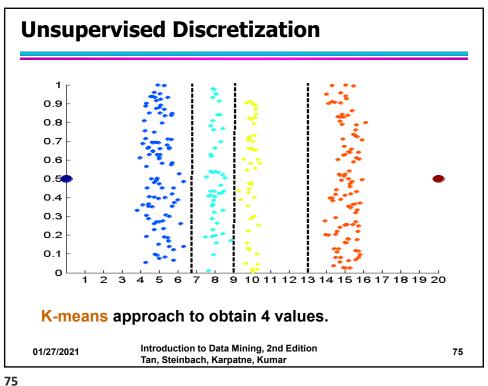
71

71

Unsupervised Discretization 0.9 8.0 0.7 0.6 0.5 0.3 0.2 0.1 0 Data consists of four groups of points and two outliers. Data is onedimensional, but a random y component is added to reduce overlap. Introduction to Data Mining, 2nd Edition 01/27/2021 72 Tan, Steinbach, Karpatne, Kumar







/ 3

- Many classification algorithms work best if both the independent and dependent variables have only a few values
- We give an illustration of the usefulness of discretization using the following example.

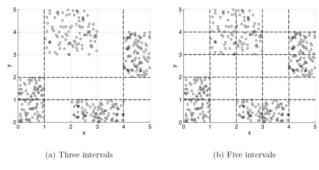


Figure 2.14. Discretizing x and y attributes for four groups (classes) of points.

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Binarization

Binarization maps a continuous or categorical attribute into one or more binary variables

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

77

77

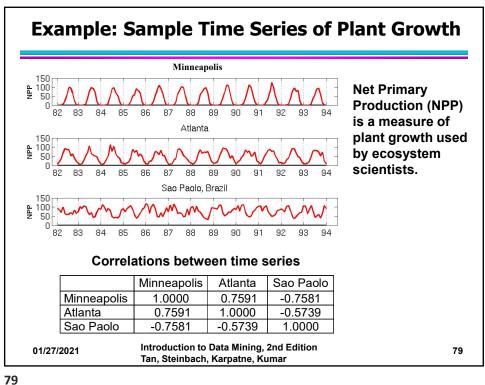
Attribute Transformation

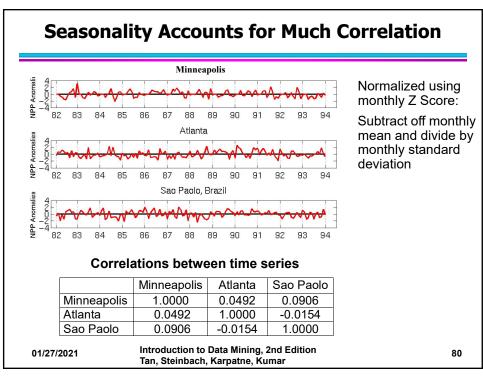
An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values

- Simple functions: x^k, log(x), e^x, |x|
- Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality
- In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

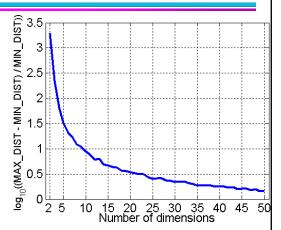




Curse of Dimensionality

When dimensionality increases, data becomes increasingly sparse in the space that it occupies

Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful



- ·Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

81

81

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

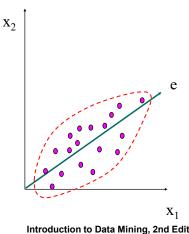
- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Dimensionality Reduction: PCA

Goal is to find a projection that captures the largest amount of variation in data



01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

83

83

Dimensionality Reduction: PCA

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Feature Subset Selection

Another way to reduce dimensionality of data Redundant features

- Duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- Contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Many techniques developed, especially for classification

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

85

85

Feature Creation

Create new attributes that can capture the important information in a data set much more efficiently than the original attributes

Three general methodologies:

- Feature extraction
 - Example: extracting edges from images
- Feature construction
 - Example: dividing mass by volume to get density
- Mapping data to new space
 - Example: Fourier and wavelet analysis

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

