Rule-Based Classifier

- Classify records by using a collection of “if…then…” rules

- Rule: \((Condition) \rightarrow y\)
 - where
 - \(Condition\) is a conjunctions of attributes
 - \(y\) is the class label
 - \(LHS\): rule antecedent or condition
 - \(RHS\): rule consequent
 - Examples of classification rules:
 - \((\text{Blood Type}=\text{Warm}) \land (\text{Lay Eggs}=\text{Yes}) \rightarrow \text{Birds}\)
 - \((\text{Taxable Income} < 50K) \land (\text{Refund}=\text{Yes}) \rightarrow \text{Evade}=\text{No}\)
Rule-based Classifier (Example)

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>salmon</td>
<td>cold</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>whale</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>komodo</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>bat</td>
<td>warm</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>cat</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>reptiles</td>
</tr>
<tr>
<td>penguin</td>
<td>warm</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>birds</td>
</tr>
<tr>
<td>porcupine</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>fishes</td>
</tr>
<tr>
<td>salamander</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>platypus</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>pel</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>birds</td>
</tr>
</tbody>
</table>

R1: (Give Birth = no) ∧ (Can Fly = yes) → Birds
R2: (Give Birth = no) ∧ (Live in Water = yes) → Fishes
R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals
R4: (Give Birth = no) ∧ (Can Fly = no) → Reptiles
R5: (Live in Water = sometimes) → Amphibians

Application of Rule-Based Classifier

- A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) ∧ (Can Fly = yes) → Birds
R2: (Give Birth = no) ∧ (Live in Water = yes) → Fishes
R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals
R4: (Give Birth = no) ∧ (Can Fly = no) → Reptiles
R5: (Live in Water = sometimes) → Amphibians

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>hawk</td>
<td>warm</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>grizzly bear</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
</tbody>
</table>

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal
Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule

- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule

(\text{Status}=\text{Single}) \rightarrow \text{No}

\text{Coverage} = 40\%, \text{ Accuracy} = 50\%

How does Rule-based Classifier Work?

R1: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{yes}) \rightarrow \text{Birds}
R2: (\text{Give Birth} = \text{no}) \land (\text{Live in Water} = \text{yes}) \rightarrow \text{Fishes}
R3: (\text{Give Birth} = \text{yes}) \land (\text{Blood Type} = \text{warm}) \rightarrow \text{Mammals}
R4: (\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{no}) \rightarrow \text{Reptiles}
R5: (\text{Live in Water} = \text{sometimes}) \rightarrow \text{Amphibians}

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lemur</td>
<td>warm</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>?</td>
</tr>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
<tr>
<td>dogfish shark</td>
<td>cold</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>?</td>
</tr>
</tbody>
</table>

A lemur triggers rule R3, so it is classified as a mammal
A turtle triggers both R4 and R5
A dogfish shark triggers none of the rules
Characteristics of Rule-Based Classifier

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule

- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From Decision Trees To Rules

Classification Rules

- (Refund=Yes) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income<80K) ==> No
- (Refund=No, Marital Status={Single, Divorced}, Taxable Income>80K) ==> Yes
- (Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the tree
Rules Can Be Simplified

Initial Rule: \((\text{Refund}=\text{No}) \land (\text{Status}=\text{Married}) \rightarrow \text{No}\)

Simplified Rule: \((\text{Status}=\text{Married}) \rightarrow \text{No}\)

Effect of Rule Simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set – use voting schemes

- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class
Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

R1: \((\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{yes}) \rightarrow \text{Birds}\)
R2: \((\text{Give Birth} = \text{no}) \land (\text{Live in Water} = \text{yes}) \rightarrow \text{Fishes}\)
R3: \((\text{Give Birth} = \text{yes}) \land (\text{Blood Type} = \text{warm}) \rightarrow \text{Mammals}\)
R4: \((\text{Give Birth} = \text{no}) \land (\text{Can Fly} = \text{no}) \rightarrow \text{Reptiles}\)
R5: \((\text{Live in Water} = \text{sometimes}) \rightarrow \text{Amphibians}\)

<table>
<thead>
<tr>
<th>Name</th>
<th>Blood Type</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>turtle</td>
<td>cold</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>?</td>
</tr>
</tbody>
</table>

Rule Ordering Schemes

- Rule-based ordering
 - Individual rules are ranked based on their quality
- Class-based ordering
 - Rules that belong to the same class appear together
Building Classification Rules

- **Direct Method:**
 - Extract rules directly from data
 - e.g.: RIPPER, CN2, Holte’s 1R

- **Indirect Method:**
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules

Direct Method: Sequential Covering

1. Start from an empty rule
2. Grow a rule using the Learn-One-Rule function
3. Remove training records covered by the rule
4. Repeat Step (2) and (3) until stopping criterion is met
Example of Sequential Covering

(i) Original Data

(ii) Step 1

Example of Sequential Covering...

(iii) Step 2

(iv) Step 3
Aspects of Sequential Covering

- **Rule Growing**
- **Instance Elimination**
- **Rule Evaluation**
- **Stopping Criterion**
- **Rule Pruning**

Rule Growing

- Two common strategies

(a) General-to-specific

- Refund=No, Status=Single, Income=85K (Class=Yes)

- Refund=No, Status=Single, Income=90K (Class=Yes)

(b) Specific-to-general

- Refund=No, Status=Single, Income=85K (Class=Yes)

- Refund=No, Status=Single, Income=90K (Class=Yes)
Rule Growing (Examples)

- **CN2 Algorithm:**
 - Start from an empty conjunct: \(\{\} \)
 - Add conjuncts that minimizes the entropy measure: \(\{A\}, \{A,B\}, \ldots \)
 - Determine the rule consequent by taking majority class of instances covered by the rule

- **RIPPER Algorithm:**
 - Start from an empty rule: \(\{\} \Rightarrow \text{class} \)
 - Add conjuncts that maximizes FOIL’s information gain measure:
 - \(R_0: \{\} \Rightarrow \text{class} \) (initial rule)
 - \(R_1: \{A\} \Rightarrow \text{class} \) (rule after adding conjunct)
 - \[\text{Gain}(R_0, R_1) = t [\log \frac{p_1}{p_0 + n_0} - \log \frac{p_0}{p_0 + n_0}] \]
 - where \(t \): number of positive instances covered by both \(R_0 \) and \(R_1 \)
 - \(p_0 \): number of positive instances covered by \(R_0 \)
 - \(n_0 \): number of negative instances covered by \(R_0 \)
 - \(p_1 \): number of positive instances covered by \(R_1 \)
 - \(n_1 \): number of negative instances covered by \(R_1 \)

Instance Elimination

- Why do we need to eliminate instances?
 - Otherwise, the next rule is identical to previous rule

- Why do we remove positive instances?
 - Ensure that the next rule is different

- Why do we remove negative instances?
 - Prevent underestimating accuracy of rule
 - Compare rules \(R_2 \) and \(R_3 \) in the diagram
Rule Evaluation

- Metrics:
 - Accuracy = \(\frac{n_c}{n} \)
 - Laplace = \(\frac{n_c + 1}{n + k} \)
 - M-estimate = \(\frac{n_c + kp}{n + k} \)

 \(n \) : Number of instances covered by rule
 \(n_c \) : Number of instances covered by rule
 \(k \) : Number of classes
 \(p \) : Prior probability

Stopping Criterion and Rule Pruning

- Stopping criterion
 - Compute the gain
 - If gain is not significant, discard the new rule

- Rule Pruning
 - Similar to post-pruning of decision trees
 - Reduced Error Pruning:
 - Remove one of the conjuncts in the rule
 - Compare error rate on validation set before and after pruning
 - If error improves, prune the conjunct
Summary of Direct Method

- Grow a single rule
- Remove Instances from rule
- Prune the rule (if necessary)
- Add rule to Current Rule Set
- Repeat

Direct Method: RIPPER

- For 2-class problem, choose one of the classes as positive class, and the other as negative class
 - Learn rules for positive class
 - Negative class will be default class
- For multi-class problem
 - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - Learn the rule set for smallest class first, treat the rest as negative class
 - Repeat with next smallest class as positive class
Direct Method: RIPPER

Growing a rule:
- Start from empty rule
- Add conjuncts as long as they improve FOIL’s information gain
- Stop when rule no longer covers negative examples
- Prune the rule immediately using incremental reduced error pruning
- Measure for pruning: \(v = \frac{p-n}{p+n} \)
 - \(p \): number of positive examples covered by the rule in the validation set
 - \(n \): number of negative examples covered by the rule in the validation set
- Pruning method: delete any final sequence of conditions that maximizes \(v \)

Building a Rule Set:
- Use sequential covering algorithm
 - Finds the best rule that covers the current set of positive examples
 - Eliminate both positive and negative examples covered by the rule
- Each time a rule is added to the rule set, compute the new description length
 - stop adding new rules when the new description length is \(d \) bits longer than the smallest description length obtained so far
Direct Method: RIPPER

- Optimize the rule set:
 - For each rule r in the rule set R
 - Consider 2 alternative rules:
 - Replacement rule (r^*): grow new rule from scratch
 - Revised rule (r'): add conjuncts to extend the rule r
 - Compare the rule set for r against the rule set for r^* and r'
 - Choose rule set that minimizes MDL principle
 - Repeat rule generation and rule optimization for the remaining positive examples

Indirect Methods

Rule Set

- $r1$: (P=No,Q=No) \implies -
- $r2$: (P=No,Q=Yes) \implies +
- $r3$: (P,Yes,R=No) \implies +
- $r4$: (P,Yes,R=Yes,Q=No) \implies -
- $r5$: (P,Yes,R=Yes,Q=Yes) \implies +
Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, $r: A \rightarrow y$,
 - consider an alternative rule $r': A' \rightarrow y$ where A' is obtained by removing one of the conjuncts in A
 - Compare the pessimistic error rate for r against all r's
 - Prune if one of the r's has lower pessimistic error rate
 - Repeat until we can no longer improve generalization error

Indirect Method: C4.5rules

- Instead of ordering the rules, order subsets of rules (class ordering)
 - Each subset is a collection of rules with the same rule consequent (class)
 - Compute description length of each subset
 - Description length = $L(error) + g \cdot L(model)$
 - g is a parameter that takes into account the presence of redundant attributes in a rule set (default value = 0.5)
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Give Birth</th>
<th>Lay Eggs</th>
<th>Can Fly</th>
<th>Live In Water</th>
<th>Have Legs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>reptiles</td>
</tr>
<tr>
<td>salmon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>whale</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>komodo</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>reptiles</td>
</tr>
<tr>
<td>bat</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>birds</td>
</tr>
<tr>
<td>cat</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>leopar shark</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>turtle</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>sometimes</td>
<td>reptiles</td>
</tr>
<tr>
<td>penguin</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>sometimes</td>
<td>birds</td>
</tr>
<tr>
<td>porcupine</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>fishes</td>
</tr>
<tr>
<td>salamander</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>sometimes</td>
<td>amphibians</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>reptiles</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>owl</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>birds</td>
</tr>
<tr>
<td>dolphin</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eel</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>birds</td>
</tr>
</tbody>
</table>

C4.5 versus C4.5rules versus RIPPER

C4.5rules:
- (Give Birth=No, Can Fly=Yes) → Birds
- (Give Birth=No, Live in Water=Yes) → Fishes
- (Give Birth=Yes) → Mammals
- (Give Birth=No, Can Fly=No, Live in Water=No) → Reptiles
- () → Amphibians

RIPPER:
- (Live in Water=Yes) → Fishes
- (Have Legs=No) → Reptiles
- (Give Birth=No, Can Fly=No, Live In Water=No) → Reptiles
- (Can Fly=Yes, Give Birth=Yes) → Birds
- () → Mammals
C4.5 versus C4.5rules versus RIPPER

C4.5 and C4.5rules:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Amphibians</th>
<th>Fishes</th>
<th>Reptiles</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishes</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

RIPPER:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Amphibians</th>
<th>Fishes</th>
<th>Reptiles</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fishes</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees
Instance-Based Classifiers

Set of Stored Cases

<table>
<thead>
<tr>
<th>Atr1</th>
<th>………</th>
<th>AtrN</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

• Store the training records
• Use training records to predict the class label of unseen cases

Unseen Case

<table>
<thead>
<tr>
<th>Atr1</th>
<th>………</th>
<th>AtrN</th>
</tr>
</thead>
</table>

Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k “closest” points (nearest neighbors) for performing classification
Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it’s probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram
Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance
 \[d(p, q) = \sqrt{\sum (p_i - q_i)^2} \]

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 \[\text{weight factor, } w = \frac{1}{d^2} \]

Choosing the value of k:
- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes
Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from $10K to $1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

\[
\begin{align*}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{align*}
\]

\[
\begin{align*}
\text{d} & = 1.4142 \\
\text{d} & = 1.4142
\end{align*}
\]

- Solution: Normalize the vectors to unit length
Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features
 - For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each record is assigned a weight factor
 - Number of nearest neighbor, k = 1
Example: PEBLS

Distance between nominal attribute values:

- \(d(\text{Single, Married}) = |2/4 - 0/4| + |2/4 - 4/4| = 1 \)
- \(d(\text{Single, Divorced}) = |2/4 - 1/2| + |2/4 - 1/2| = 0 \)
- \(d(\text{Married, Divorced}) = |0/4 - 1/2| + |4/4 - 1/2| = 1 \)
- \(d(\text{Refund=Yes, Refund=No}) = |0/3 - 3/7| + |3/3 - 4/7| = 6/7 \)

Distance between record X and record Y:

\[
\Delta(X, Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2
\]

where:

\[
w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}
\]

- \(w_X = 1 \) if X makes accurate prediction most of the time
- \(w_X > 1 \) if X is not reliable for making predictions

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Single, Married, Divorced</td>
</tr>
<tr>
<td>No</td>
<td>2, 0, 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0, 3</td>
</tr>
<tr>
<td>No</td>
<td>3, 4</td>
</tr>
</tbody>
</table>
Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:
 \[P(C | A) = \frac{P(A, C)}{P(A)} \]
 \[P(A | C) = \frac{P(A, C)}{P(C)} \]
- Bayes theorem:
 \[P(C | A) = \frac{P(A | C)P(C)}{P(A)} \]

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20

- If a patient has stiff neck, what’s the probability he/she has meningitis?
 \[P(M | S) = \frac{P(S | M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002 \]
Bayesian Classifiers

- Consider each attribute and class label as random variables.

- Given a record with attributes \((A_1, A_2, \ldots, A_n)\)
 - Goal is to predict class \(C\)
 - Specifically, we want to find the value of \(C\) that maximizes \(P(C|A_1, A_2, \ldots, A_n)\)

- Can we estimate \(P(C|A_1, A_2, \ldots, A_n)\) directly from data?

Bayesian Classifiers

- Approach:
 - Compute the posterior probability \(P(C | A_1, A_2, \ldots, A_n)\) for all values of \(C\) using the Bayes theorem

\[
P(C | A_1, A_2, \ldots, A_n) = \frac{P(A_1, A_2, \ldots, A_n | C) P(C)}{P(A_1, A_2, \ldots, A_n)}
\]

 - Choose value of \(C\) that maximizes \(P(C | A_1, A_2, \ldots, A_n)\)
 - Equivalent to choosing value of \(C\) that maximizes \(P(A_1, A_2, \ldots, A_n | C) P(C)\)

- How to estimate \(P(A_1, A_2, \ldots, A_n | C)\)?
Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, \ldots, A_n | C) = P(A_1 | C_j) P(A_2 | C_j) \ldots P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j.
 - New point is classified to C_j if $P(C_j) \Pi P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

- Class: $P(C) = N_c/N$
 - e.g., $P(No) = 7/10$, $P(Yes) = 3/10$

- For discrete attributes:
 $P(A_i | C_k) = \frac{|A_{ik}|}{N_{ck}}$
 - where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
 - Examples:
 $P(\text{Status}=\text{Married}|\text{No}) = 4/7$
 $P(\text{Refund}=\text{Yes}|\text{Yes}) = 0$
How to Estimate Probabilities from Data?

- For continuous attributes:
 - **Discretize** the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - **Two-way split**: \((A < v) \) or \((A > v)\)
 - choose only one of the two splits as new attribute
 - **Probability density estimation**:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability \(P(A_i|c)\)

Normal distribution:

\[
P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(A_i - \mu)^2}{2\sigma^2}}
\]

- One for each \((A_i, c_j)\) pair

- For \((\text{Income}, \text{Class} = \text{No})\):
 - If \(\text{Class} = \text{No}\)
 - sample mean = 110
 - sample variance = 2975

\[
P(\text{Income} = 120 \mid \text{No}) = \frac{1}{\sqrt{2\pi(54.54)}} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072
\]
Example of Naïve Bayes Classifier

Given a Test Record:

\[X = (\text{Refund} = \text{No}, \text{Married}, \text{Income} = 120K) \]

naive Bayes Classifier:

\[
P(\text{Refund=Yes}|\text{No}) = 3/7
\]

\[
P(\text{Refund=No}|\text{No}) = 4/7
\]

\[
P(\text{Refund=Yes}|\text{Yes}) = 0
\]

\[
P(\text{Refund=No}|\text{Yes}) = 1
\]

\[
P(\text{Marital Status}=\text{Single}|\text{No}) = 2/7
\]

\[
P(\text{Marital Status}=\text{Divorced}|\text{No}) = 1/7
\]

\[
P(\text{Marital Status}=\text{Married}|\text{No}) = 4/7
\]

\[
P(\text{Marital Status}=\text{Single}|\text{Yes}) = 2/7
\]

\[
P(\text{Marital Status}=\text{Divorced}|\text{Yes}) = 1/7
\]

\[
P(\text{Marital Status}=\text{Married}|\text{Yes}) = 0
\]

For taxable income:

If class=No:

- sample mean=110
- sample variance=2975

If class=Yes:

- sample mean=90
- sample variance=25

\[
P(X|\text{Class}=\text{No}) = P(\text{Refund=No}|\text{Class}=\text{No})
\]

\[
\times P(\text{Married}|\text{Class}=\text{No})
\]

\[
\times P(\text{Income}=120K|\text{Class}=\text{No})
\]

\[
= 4/7 \times 4/7 \times 0.0072 = 0.0024
\]

\[
P(X|\text{Class}=\text{Yes}) = P(\text{Refund=No}|\text{Class}=\text{Yes})
\]

\[
\times P(\text{Married}|\text{Class}=\text{Yes})
\]

\[
\times P(\text{Income}=120K|\text{Class}=\text{Yes})
\]

\[
= 1 \times 0 \times 1.2 \times 10^{-9} = 0
\]

Since \[P(X|\text{No})P(\text{No}) > P(X|\text{Yes})P(\text{Yes}) \]

Therefore \[P(\text{No}|X) > P(\text{Yes}|X) \]

\[\Rightarrow \text{Class} = \text{No} \]

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero

- Probability estimation:

\[
\text{Original} : P(A_i | C) = \frac{N_{ic}}{N_c}
\]

\[
\text{Laplace} : P(A_i | C) = \frac{N_{ic} + 1}{N_c + p}
\]

\[
\text{m - estimate} : P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}
\]

\[c: \text{number of classes} \]

\[p: \text{prior probability} \]

\[m: \text{parameter} \]
Example of Naïve Bayes Classifier

<table>
<thead>
<tr>
<th>Name</th>
<th>Give Birth</th>
<th>Can Fly</th>
<th>Live in Water</th>
<th>Have Legs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>python</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>salmon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>whale</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>frog</td>
<td>no</td>
<td>no</td>
<td>sometimes</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>komodo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>cat</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>eagle</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>bat</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>pigeon</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>porcupine</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>non-mammals</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
<tr>
<td>dolphin</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>mammals</td>
</tr>
<tr>
<td>gila monster</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>non-mammals</td>
</tr>
<tr>
<td>platypus</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>mammals</td>
</tr>
</tbody>
</table>

A: attributes
M: mammals
N: non-mammals

\[
P(A|M) = \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06
\]

\[
P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042
\]

\[
P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021
\]

\[
P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027
\]

P(A|M)P(M) > P(A|N)P(N)
\[\Rightarrow\] Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)
Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.

\[Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0) \]

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$
Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links.
- Output node sums up each of its input value according to the weights of its links.
- Compare output node against some threshold \(t \).

\[
\sum_{i} w_i X_i - t = Y = I \text{ or } Y = \text{sign} \left(\sum_{i} w_i X_i - t \right)
\]

General Structure of ANN

Training ANN means learning the weights of the neurons.
Algorithm for learning ANN

- Initialize the weights \((w_0, w_1, \ldots, w_k)\)

- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Objective function:
 \[E = \sum_i \left[Y_i - f(w_i, X_i) \right]^2 \]
 - Find the weights \(w_i\)'s that minimize the above objective function
 - e.g., backpropagation algorithm (see lecture notes)

Support Vector Machines

- Find a linear hyperplane (decision boundary) that will separate the data
Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution
Support Vector Machines

- Other possible solutions

Which one is better? B1 or B2?
How do you define better?
Find hyperplane maximizes the margin => B1 is better than B2

\[
\begin{align*}
\mathbf{w} \cdot \mathbf{x} + b &= 0 \\
\mathbf{w} \cdot \mathbf{x} + b &= -1
\end{align*}
\]

\[
\hat{\mathbf{w}} \cdot \mathbf{x} + b = \pm 1
\]

\[
f(\mathbf{x}) = \begin{cases}
1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b \geq 1 \\
-1 & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq -1
\end{cases}
\]

Margin = \frac{2}{||\mathbf{w}||^2}
Support Vector Machines

- We want to maximize: \[\text{Margin} = \frac{2}{||\vec{w}||^2} \]
 - Which is equivalent to minimizing: \[L(w) = \frac{||\vec{w}||^2}{2} \]
 - But subjected to the following constraints:
 \[f(\bar{x}_i) = \begin{cases}
 1 & \text{if } \vec{w} \cdot \bar{x}_i + b \geq 1 \\
 -1 & \text{if } \vec{w} \cdot \bar{x}_i + b \leq -1
 \end{cases} \]
 - This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

What if the problem is not linearly separable?
Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:
 \[L(w) = \frac{||w||^2}{2} + C \sum_{i=1}^{N} \xi_i \]
 - Subject to:
 \[f(\vec{x}_i) = \begin{cases}
 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \geq 1 - \xi_i \\
 -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \leq -1 + \xi_i
 \end{cases} \]

Nonlinear Support Vector Machines

- What if decision boundary is not linear?
Nonlinear Support Vector Machines

- Transform data into higher dimensional space

Ensemble Methods

- Construct a set of classifiers from the training data

- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
General Idea

Step 1: Create Multiple Data Sets

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$
\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1 - \varepsilon)^{25-i} = 0.06
$$
Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging
 - Boosting

Bagging

- Sampling with replacement

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- Build classifier on each bootstrap sample
- Each sample has probability \((1 - 1/n)^n\) of being selected
Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all \(N \) records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Records that are wrongly classified will have their weights increased
Records that are classified correctly will have their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 6 8 10 4 5 6 3 4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds
Example: AdaBoost

- Base classifiers: \(C_1, C_2, \ldots, C_T \)

- Error rate:

\[
\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)
\]

- Importance of a classifier:

\[
\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)
\]

Example: AdaBoost

- Weight update:

\[
w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}
\]

where \(Z_j \) is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to \(1/n \) and the resampling procedure is repeated

- Classification:

\[
C^*(x) = \arg \max_y \sum_{j=1}^{T} \alpha_j \delta(C_j(x) = y)
\]
Boosting

Round 1

α = 1.9459

Boosting

Round 2

α = 2.9323

Boosting

Round 3

α = 3.8744

Overall