Classification, which is the task of assigning objects to one of several predefined categories, is a pervasive problem that encompasses many diverse applications. Examples include detecting spam email messages based upon the message header and content, categorizing cells as malignant or benign based upon the results of MRI scans, and classifying galaxies based upon their shapes (see Figure 4.1).

Figure 4.1. Classification of galaxies. The images are from the NASA website.
This chapter introduces the basic concepts of classification, describes some of the key issues such as model overfitting, and presents methods for evaluating and comparing the performance of a classification technique. While it focuses mainly on a technique known as decision tree induction, most of the discussion in this chapter is also applicable to other classification techniques, many of which are covered in Chapter 5.

4.1 Preliminaries

The input data for a classification task is a collection of records. Each record, also known as an instance or example, is characterized by a tuple \((x, y)\), where \(x\) is the attribute set and \(y\) is a special attribute, designated as the class label (also known as category or target attribute). Table 4.1 shows a sample data set used for classifying vertebrates into one of the following categories: mammal, bird, fish, reptile, or amphibian. The attribute set includes properties of a vertebrate such as its body temperature, skin cover, method of reproduction, ability to fly, and ability to live in water. Although the attributes presented in Table 4.1 are mostly discrete, the attribute set can also contain continuous features. The class label, on the other hand, must be a discrete attribute. This is a key characteristic that distinguishes classification from regression, a predictive modeling task in which \(y\) is a continuous attribute. Regression techniques are covered in Appendix D.

Definition 4.1 (Classification). Classification is the task of learning a target function \(f\) that maps each attribute set \(x\) to one of the predefined class labels \(y\).

The target function is also known informally as a classification model. A classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory tool to distinguish between objects of different classes. For example, it would be useful—for both biologists and others—to have a descriptive model that
summarizes the data shown in Table 4.1 and explains what features define a vertebrate as a mammal, reptile, bird, fish, or amphibian.

Predictive Modeling A classification model can also be used to predict the class label of unknown records. As shown in Figure 4.2, a classification model can be treated as a black box that automatically assigns a class label when presented with the attribute set of an unknown record. Suppose we are given the following characteristics of a creature known as a gila monster:

We can use a classification model built from the data set shown in Table 4.1 to determine the class to which the creature belongs.

Classification techniques are most suited for predicting or describing data sets with binary or nominal categories. They are less effective for ordinal categories (e.g., to classify a person as a member of high-, medium-, or low-income group) because they do not consider the implicit order among the categories. Other forms of relationships, such as the subclass–superclass relationships among categories (e.g., humans and apes are primates, which in
turn, is a subclass of mammals) are also ignored. The remainder of this chapter focuses only on binary or nominal class labels.

4.2 General Approach to Solving a Classification Problem

A classification technique (or classifier) is a systematic approach to building classification models from an input data set. Examples include decision tree classifiers, rule-based classifiers, neural networks, support vector machines, and naive Bayes classifiers. Each technique employs a learning algorithm to identify a model that best fits the relationship between the attribute set and class label of the input data. The model generated by a learning algorithm should both fit the input data well and correctly predict the class labels of records it has never seen before. Therefore, a key objective of the learning algorithm is to build models with good generalization capability; i.e., models that accurately predict the class labels of previously unknown records.

Figure 4.3 shows a general approach for solving classification problems. First, a training set consisting of records whose class labels are known must...
4.2 General Approach to Solving a Classification Problem

Table 4.2. Confusion matrix for a 2-class problem.

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class = 1</td>
<td>f_{11}</td>
</tr>
<tr>
<td>Class = 0</td>
<td>f_{01}</td>
</tr>
</tbody>
</table>

be provided. The training set is used to build a classification model, which is subsequently applied to the test set, which consists of records with unknown class labels.

Evaluation of the performance of a classification model is based on the counts of test records correctly and incorrectly predicted by the model. These counts are tabulated in a table known as a confusion matrix. Table 4.2 depicts the confusion matrix for a binary classification problem. Each entry f_{ij} in this table denotes the number of records from class i predicted to be of class j. For instance, f_{01} is the number of records from class 0 incorrectly predicted as class 1. Based on the entries in the confusion matrix, the total number of correct predictions made by the model is $(f_{11} + f_{00})$ and the total number of incorrect predictions is $(f_{10} + f_{01})$.

Although a confusion matrix provides the information needed to determine how well a classification model performs, summarizing this information with a single number would make it more convenient to compare the performance of different models. This can be done using a performance metric such as accuracy, which is defined as follows:

$$\text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}. \quad (4.1)$$

Equivalently, the performance of a model can be expressed in terms of its error rate, which is given by the following equation:

$$\text{Error rate} = \frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}. \quad (4.2)$$

Most classification algorithms seek models that attain the highest accuracy, or equivalently, the lowest error rate when applied to the test set. We will revisit the topic of model evaluation in Section 4.5.
4.3 Decision Tree Induction

This section introduces a decision tree classifier, which is a simple yet widely used classification technique.

4.3.1 How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler version of the vertebrate classification problem described in the previous section. Instead of classifying the vertebrates into five distinct groups of species, we assign them to two categories: mammals and non-mammals.

Suppose a new species is discovered by scientists. How can we tell whether it is a mammal or a non-mammal? One approach is to pose a series of questions about the characteristics of the species. The first question we may ask is whether the species is cold- or warm-blooded. If it is cold-blooded, then it is definitely not a mammal. Otherwise, it is either a bird or a mammal. In the latter case, we need to ask a follow-up question: Do the females of the species give birth to their young? Those that do give birth are definitely mammals, while those that do not are likely to be non-mammals (with the exception of egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem by asking a series of carefully crafted questions about the attributes of the test record. Each time we receive an answer, a follow-up question is asked until we reach a conclusion about the class label of the record. The series of questions and their possible answers can be organized in the form of a decision tree, which is a hierarchical structure consisting of nodes and directed edges. Figure 4.4 shows the decision tree for the mammal classification problem. The tree has three types of nodes:

- A root node that has no incoming edges and zero or more outgoing edges.
- Internal nodes, each of which has exactly one incoming edge and two or more outgoing edges.
- Leaf or terminal nodes, each of which has exactly one incoming edge and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-terminal nodes, which include the root and other internal nodes, contain attribute test conditions to separate records that have different characteristics. For example, the root node shown in Figure 4.4 uses the attribute Body
Temperature to separate warm-blooded from cold-blooded vertebrates. Since all cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals is created as the right child of the root node. If the vertebrate is warm-blooded, a subsequent attribute, Gives Birth, is used to distinguish mammals from other warm-blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been constructed. Starting from the root node, we apply the test condition to the record and follow the appropriate branch based on the outcome of the test. This will lead us either to another internal node, for which a new test condition is applied, or to a leaf node. The class label associated with the leaf node is then assigned to the record. As an illustration, Figure 4.5 traces the path in the decision tree that is used to predict the class label of a flamingo. The path terminates at a leaf node labeled Non-mammals.

4.3.2 How to Build a Decision Tree

In principle, there are exponentially many decision trees that can be constructed from a given set of attributes. While some of the trees are more accurate than others, finding the optimal tree is computationally infeasible because of the exponential size of the search space. Nevertheless, efficient algorithms have been developed to induce a reasonably accurate, albeit suboptimal, decision tree in a reasonable amount of time. These algorithms usually employ a greedy strategy that grows a decision tree by making a series of locally op-
Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by partitioning the training records into successively purer subsets. Let D_t be the set of training records that are associated with node t and $y = \{y_1, y_2, \ldots, y_c\}$ be the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in D_t belong to the same class y_t, then t is a leaf node labeled as y_t.

Step 2: If D_t contains records that belong to more than one class, an **attribute test condition** is selected to partition the records into smaller subsets. A child node is created for each outcome of the test condition and the records in D_t are distributed to the children based on the outcomes. The algorithm is then recursively applied to each child node.

Figure 4.5. Classifying an unlabeled vertebrate. The dashed lines represent the outcomes of applying various attribute test conditions on the unlabeled vertebrate. The vertebrate is eventually assigned to the Non-mammal class.

<table>
<thead>
<tr>
<th>Name</th>
<th>Body temperature</th>
<th>Gives Birth</th>
<th>...</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flamingo</td>
<td>Warm</td>
<td>No</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gives Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
</tr>
</tbody>
</table>

Hunt’s algorithm is the basis of many existing decision tree induction algorithms, including ID3, C4.5, and CART. This section presents a high-level discussion of Hunt’s algorithm and illustrates some of its design issues.
To illustrate how the algorithm works, consider the problem of predicting whether a loan applicant will repay her loan obligations or become delinquent, subsequently defaulting on her loan. A training set for this problem can be constructed by examining the records of previous borrowers. In the example shown in Figure 4.6, each record contains the personal information of a borrower along with a class label indicating whether the borrower has defaulted on loan payments.

The initial tree for the classification problem contains a single node with class label Defaulted = No (see Figure 4.7(a)), which means that most of the borrowers successfully repaid their loans. The tree, however, needs to be refined since the root node contains records from both classes. The records are subsequently divided into smaller subsets based on the outcomes of the Home Owner test condition, as shown in Figure 4.7(b). The justification for choosing this attribute test condition will be discussed later. For now, we will assume that this is the best criterion for splitting the data at this point. Hunt’s algorithm is then applied recursively to each child of the root node. From the training set given in Figure 4.6, notice that all borrowers who are home owners successfully repaid their loans. The left child of the root is therefore a leaf node labeled Defaulted = No (see Figure 4.7(b)). For the right child, we need to continue applying the recursive step of Hunt’s algorithm until all the records belong to the same class. The trees resulting from each recursive step are shown in Figures 4.7(c) and (d).
Hunt’s algorithm will work if every combination of attribute values is present in the training data and each combination has a unique class label. These assumptions are too stringent for use in most practical situations. Additional conditions are needed to handle the following cases:

1. It is possible for some of the child nodes created in Step 2 to be empty; i.e., there are no records associated with these nodes. This can happen if none of the training records have the combination of attribute values associated with such nodes. In this case the node is declared a leaf node with the same class label as the majority class of training records associated with its parent node.

2. In Step 2, if all the records associated with D_t have identical attribute values (except for the class label), then it is not possible to split these records any further. In this case, the node is declared a leaf node with the same class label as the majority class of training records associated with this node.
Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following two issues.

1. **How should the training records be split?** Each recursive step of the tree-growing process must select an attribute test condition to divide the records into smaller subsets. To implement this step, the algorithm must provide a method for specifying the test condition for different attribute types as well as an objective measure for evaluating the goodness of each test condition.

2. **How should the splitting procedure stop?** A stopping condition is needed to terminate the tree-growing process. A possible strategy is to continue expanding a node until either all the records belong to the same class or all the records have identical attribute values. Although both conditions are sufficient to stop any decision tree induction algorithm, other criteria can be imposed to allow the tree-growing procedure to terminate earlier. The advantages of early termination will be discussed later in Section 4.4.5.

4.3.3 Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an attribute test condition and its corresponding outcomes for different attribute types.

Binary Attributes The test condition for a binary attribute generates two potential outcomes, as shown in Figure 4.8.

![Figure 4.8. Test condition for binary attributes.](image-url)
Nominal Attributes Since a nominal attribute can have many values, its test condition can be expressed in two ways, as shown in Figure 4.9. For a multiway split (Figure 4.9(a)), the number of outcomes depends on the number of distinct values for the corresponding attribute. For example, if an attribute such as marital status has three distinct values—single, married, or divorced—its test condition will produce a three-way split. On the other hand, some decision tree algorithms, such as CART, produce only binary splits by considering all $2^k - 1$ ways of creating a binary partition of k attribute values. Figure 4.9(b) illustrates three different ways of grouping the attribute values for marital status into two subsets.

Ordinal Attributes Ordinal attributes can also produce binary or multiway splits. Ordinal attribute values can be grouped as long as the grouping does not violate the order property of the attribute values. Figure 4.10 illustrates various ways of splitting training records based on the Shirt Size attribute. The groupings shown in Figures 4.10(a) and (b) preserve the order among the attribute values, whereas the grouping shown in Figure 4.10(c) violates this property because it combines the attribute values Small and Large into
the same partition while Medium and Extra Large are combined into another partition.

Continuous Attributes For continuous attributes, the test condition can be expressed as a comparison test \((A < v)\) or \((A \geq v)\) with binary outcomes, or a range query with outcomes of the form \(v_i \leq A < v_{i+1}\), for \(i = 1, \ldots, k\). The difference between these approaches is shown in Figure 4.11. For the binary case, the decision tree algorithm must consider all possible split positions \(v\), and it selects the one that produces the best partition. For the multiway split, the algorithm must consider all possible ranges of continuous values. One approach is to apply the discretization strategies described in Section 2.3.6 on page 57. After discretization, a new ordinal value will be assigned to each discretized interval. Adjacent intervals can also be aggregated into wider ranges as long as the order property is preserved.
4.3.4 Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split the records. These measures are defined in terms of the class distribution of the records before and after splitting.

Let \(p(i|t) \) denote the fraction of records belonging to class \(i \) at a given node \(t \). We sometimes omit the reference to node \(t \) and express the fraction as \(p_i \).

In a two-class problem, the class distribution at any node can be written as \((p_0, p_1)\), where \(p_1 = 1 - p_0 \). To illustrate, consider the test conditions shown in Figure 4.12. The class distribution before splitting is \((0.5, 0.5)\) because there are an equal number of records from each class. If we split the data using the \textbf{Gender} attribute, then the class distributions of the child nodes are \((0.6, 0.4)\) and \((0.4, 0.6)\), respectively. Although the classes are no longer evenly distributed, the child nodes still contain records from both classes. Splitting on the second attribute, \textbf{Car Type}, will result in purer partitions.

The measures developed for selecting the best split are often based on the degree of impurity of the child nodes. The smaller the degree of impurity, the more skewed the class distribution. For example, a node with class distribution \((0, 1)\) has zero impurity, whereas a node with uniform class distribution \((0.5, 0.5)\) has the highest impurity. Examples of impurity measures include

\[
\text{Entropy}(t) = -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t),
\]

\[
\text{Gini}(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2,
\]

\[
\text{Classification error}(t) = 1 - \max_{i} [p(i|t)],
\]

where \(c \) is the number of classes and \(0 \log_2 0 = 0 \) in entropy calculations.
Figure 4.13. Comparison among the impurity measures for binary classification problems.

Figure 4.13 compares the values of the impurity measures for binary classification problems. p refers to the fraction of records that belong to one of the two classes. Observe that all three measures attain their maximum value when the class distribution is uniform (i.e., when $p = 0.5$). The minimum values for the measures are attained when all the records belong to the same class (i.e., when p equals 0 or 1). We next provide several examples of computing the different impurity measures.

<table>
<thead>
<tr>
<th>Node N_1</th>
<th>Count</th>
<th>Class=0</th>
<th>Class=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Gini</td>
<td></td>
<td>$1 - (0/6)^2 - (6/6)^2 = 0$</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
<td>$-(0/6) \log_2(0/6) - (6/6) \log_2(6/6) = 0$</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>$1 - \max[0/6, 6/6] = 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node N_2</th>
<th>Count</th>
<th>Class=0</th>
<th>Class=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Gini</td>
<td></td>
<td>$1 - (1/6)^2 - (5/6)^2 = 0.278$</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
<td>$-(1/6) \log_2(1/6) - (5/6) \log_2(5/6) = 0.650$</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>$1 - \max[1/6, 5/6] = 0.167$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node N_3</th>
<th>Count</th>
<th>Class=0</th>
<th>Class=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gini</td>
<td></td>
<td>$1 - (3/6)^2 - (3/6)^2 = 0.5$</td>
<td></td>
</tr>
<tr>
<td>Entropy</td>
<td></td>
<td>$-(3/6) \log_2(3/6) - (3/6) \log_2(3/6) = 1$</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>$1 - \max[3/6, 3/6] = 0.5$</td>
<td></td>
</tr>
</tbody>
</table>
The preceding examples, along with Figure 4.13, illustrate the consistency among different impurity measures. Based on these calculations, node \(N_1 \) has the lowest impurity value, followed by \(N_2 \) and \(N_3 \). Despite their consistency, the attribute chosen as the test condition may vary depending on the choice of impurity measure, as will be shown in Exercise 3 on page 198.

To determine how well a test condition performs, we need to compare the degree of impurity of the parent node (before splitting) with the degree of impurity of the child nodes (after splitting). The larger their difference, the better the test condition. The gain, \(\Delta \), is a criterion that can be used to determine the goodness of a split:

\[
\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),
\]

where \(I(\cdot) \) is the impurity measure of a given node, \(N \) is the total number of records at the parent node, \(k \) is the number of attribute values, and \(N(v_j) \) is the number of records associated with the child node, \(v_j \). Decision tree induction algorithms often choose a test condition that maximizes the gain \(\Delta \). Since \(I(\text{parent}) \) is the same for all test conditions, maximizing the gain is equivalent to minimizing the weighted average impurity measures of the child nodes. Finally, when entropy is used as the impurity measure in Equation 4.6, the difference in entropy is known as the information gain, \(\Delta_{\text{info}} \).

Splitting of Binary Attributes

Consider the diagram shown in Figure 4.14. Suppose there are two ways to split the data into smaller subsets. Before splitting, the Gini index is 0.5 since there are an equal number of records from both classes. If attribute \(A \) is chosen to split the data, the Gini index of node \(N_1 \) is 0.4898, and for node \(N_2 \), it is 0.480. The weighted average of the Gini index for the descendent nodes is \((7/12) \times 0.4898 + (5/12) \times 0.480 = 0.486 \). Similarly, we can show that the weighted average of the Gini index for attribute \(B \) is 0.375. Since the subsets for attribute \(B \) have a smaller Gini index, it is preferred over attribute \(A \).

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi-way splits, as shown in Figure 4.15. The computation of the Gini index for a binary split is similar to that shown for determining binary attributes. For the first binary grouping of the Car Type attribute, the Gini index of \{Sports,
4.3 Decision Tree Induction

Figure 4.14. Splitting binary attributes.

Figure 4.15. Splitting nominal attributes.

Luxury} is 0.4922 and the Gini index of \{Family\} is 0.3750. The weighted average Gini index for the grouping is equal to

\[
16/20 \times 0.4922 + 4/20 \times 0.3750 = 0.468.
\]

Similarly, for the second binary grouping of \{Sports\} and \{Family, Luxury\}, the weighted average Gini index is 0.167. The second grouping has a lower Gini index because its corresponding subsets are much purer.
For the multiway split, the Gini index is computed for every attribute value. Since $\text{Gini}(ext{Family}) = 0.375$, $\text{Gini}(ext{Sports}) = 0$, and $\text{Gini}(ext{Luxury}) = 0.219$, the overall Gini index for the multiway split is equal to

$$4/20 \times 0.375 + 8/20 \times 0 + 8/20 \times 0.219 = 0.163.$$

The multiway split has a smaller Gini index compared to both two-way splits. This result is not surprising because the two-way split actually merges some of the outcomes of a multiway split, and thus, results in less pure subsets.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition $\text{Annual Income} \leq v$ is used to split the training records for the loan default classification problem. A brute-force method for finding v is to consider every value of the attribute in the N records as a candidate split position. For each candidate v, the data set is scanned once to count the number of records with annual income less than or greater than v. We then compute the Gini index for each candidate and choose the one that gives the lowest value. This approach is computationally expensive because it requires $O(N)$ operations to compute the Gini index at each candidate split position. Since there are N candidates, the overall complexity of this task is $O(N^2)$. To reduce the complexity, the training records are sorted based on their annual income, a computation that requires $O(N \log N)$ time. Candidate split positions are identified by taking the midpoints between two adjacent sorted values: 55, 65, 72, and so on. However, unlike the brute-force approach, we do not have to examine all N records when evaluating the Gini index of a candidate split position.

For the first candidate, $v = 55$, none of the records has annual income less than $55K$. As a result, the Gini index for the descendent node with Annual Income
Income < $55K is zero. On the other hand, the number of records with annual income greater than or equal to $55K is 3 (for class Yes) and 7 (for class No), respectively. Thus, the Gini index for this node is 0.420. The overall Gini index for this candidate split position is equal to $0 \times 0 + 1 \times 0.420 = 0.420$.

For the second candidate, $v = 65$, we can determine its class distribution by updating the distribution of the previous candidate. More specifically, the new distribution is obtained by examining the class label of the record with the lowest annual income (i.e., $60K). Since the class label for this record is No, the count for class No is increased from 0 to 1 (for Annual Income ≤ $65K) and is decreased from 7 to 6 (for Annual Income > $65K). The distribution for class Yes remains unchanged. The new weighted-average Gini index for this candidate split position is 0.400.

This procedure is repeated until the Gini index values for all candidates are computed, as shown in Figure 4.16. The best split position corresponds to the one that produces the smallest Gini index, i.e., $v = 97$. This procedure is less expensive because it requires a constant amount of time to update the class distribution at each candidate split position. It can be further optimized by considering only candidate split positions located between two adjacent records with different class labels. For example, because the first three sorted records (with annual incomes $60K, $70K, and $75K) have identical class labels, the best split position should not reside between $60K and $75K. Therefore, the candidate split positions at $v = 55K, 65K, 72K, 87K, 92K, 110K, 122K, 172K, and 230K are ignored because they are located between two adjacent records with the same class labels. This approach allows us to reduce the number of candidate split positions from 11 to 2.

Gain Ratio

Impurity measures such as entropy and Gini index tend to favor attributes that have a large number of distinct values. Figure 4.12 shows three alternative test conditions for partitioning the data set given in Exercise 2 on page 198. Comparing the first test condition, Gender, with the second, Car Type, it is easy to see that Car Type seems to provide a better way of splitting the data since it produces purer descendent nodes. However, if we compare both conditions with Customer ID, the latter appears to produce purer partitions. Yet Customer ID is not a predictive attribute because its value is unique for each record. Even in a less extreme situation, a test condition that results in a large number of outcomes may not be desirable because the number of records associated with each partition is too small to enable us to make any reliable predictions.
Chapter 4 Classification

There are two strategies for overcoming this problem. The first strategy is to restrict the test conditions to binary splits only. This strategy is employed by decision tree algorithms such as CART. Another strategy is to modify the splitting criterion to take into account the number of outcomes produced by the attribute test condition. For example, in the C4.5 decision tree algorithm, a splitting criterion known as gain ratio is used to determine the goodness of a split. This criterion is defined as follows:

\[
\text{Gain ratio} = \frac{\Delta_{\text{info}}}{\text{Split Info}}. \tag{4.7}
\]

Here, Split Info = \(-\sum_{i=1}^{k} P(v_i) \log_2 P(v_i)\) and \(k\) is the total number of splits. For example, if each attribute value has the same number of records, then \(\forall i : P(v_i) = 1/k\) and the split information would be equal to \(\log_2 k\). This example suggests that if an attribute produces a large number of splits, its split information will also be large, which in turn reduces its gain ratio.

4.3.5 Algorithm for Decision Tree Induction

A skeleton decision tree induction algorithm called TreeGrowth is shown in Algorithm 4.1. The input to this algorithm consists of the training records \(E\) and the attribute set \(F\). The algorithm works by recursively selecting the best attribute to split the data (Step 7) and expanding the leaf nodes of the

Algorithm 4.1 A skeleton decision tree induction algorithm.

TreeGrowth \((E, F)\)
1: if stopping_cond\((E, F) = \text{true} \) then
2: \(\text{leaf} = \text{createNode}()\).
3: \(\text{leaf.label} = \text{Classify}(E)\).
4: return leaf.
5: else
6: \(\text{root} = \text{createNode}()\).
7: \(\text{root.test_cond} = \text{find_best_split}(E, F)\).
8: let \(V = \{ v | v \text{ is a possible outcome of root.test_cond} \}\).
9: for each \(v \in V\) do
10: \(E_v = \{ e | \text{root.test_cond}(e) = v \text{ and } e \in E \}\).
11: \(\text{child} = \text{TreeGrowth}(E_v, F)\).
12: add child as descendent of root and label the edge \((\text{root} \rightarrow \text{child})\) as \(v\).
13: end for
14: end if
15: return root.
tree (Steps 11 and 12) until the stopping criterion is met (Step 1). The details of this algorithm are explained below:

1. The `createNode()` function extends the decision tree by creating a new node. A node in the decision tree has either a test condition, denoted as `node.test_cond`, or a class label, denoted as `node.label`.

2. The `find_best_split()` function determines which attribute should be selected as the test condition for splitting the training records. As previously noted, the choice of test condition depends on which impurity measure is used to determine the goodness of a split. Some widely used measures include entropy, the Gini index, and the χ^2 statistic.

3. The `Classify()` function determines the class label to be assigned to a leaf node. For each leaf node t, let $p(i|t)$ denote the fraction of training records from class i associated with the node t. In most cases, the leaf node is assigned to the class that has the majority number of training records:

$$\text{leaf.label} = \arg\max_i p(i|t), \quad (4.8)$$

where the argmax operator returns the argument i that maximizes the expression $p(i|t)$. Besides providing the information needed to determine the class label of a leaf node, the fraction $p(i|t)$ can also be used to estimate the probability that a record assigned to the leaf node t belongs to class i. Sections 5.7.2 and 5.7.3 describe how such probability estimates can be used to determine the performance of a decision tree under different cost functions.

4. The `stopping_cond()` function is used to terminate the tree-growing process by testing whether all the records have either the same class label or the same attribute values. Another way to terminate the recursive function is to test whether the number of records have fallen below some minimum threshold.

After building the decision tree, a `tree-pruning` step can be performed to reduce the size of the decision tree. Decision trees that are too large are susceptible to a phenomenon known as overfitting. Pruning helps by trimming the branches of the initial tree in a way that improves the generalization capability of the decision tree. The issues of overfitting and tree pruning are discussed in more detail in Section 4.4.
4.3.6 An Example: Web Robot Detection

Web usage mining is the task of applying data mining techniques to extract useful patterns from Web access logs. These patterns can reveal interesting characteristics of site visitors; e.g., people who repeatedly visit a Web site and view the same product description page are more likely to buy the product if certain incentives such as rebates or free shipping are offered.

In Web usage mining, it is important to distinguish accesses made by human users from those due to Web robots. A Web robot (also known as a Web crawler) is a software program that automatically locates and retrieves information from the Internet by following the hyperlinks embedded in Web pages. These programs are deployed by search engine portals to gather the documents necessary for indexing the Web. Web robot accesses must be discarded before applying Web mining techniques to analyze human browsing behavior.
4.3 Decision Tree Induction

This section describes how a decision tree classifier can be used to distinguish between accesses by human users and those by Web robots. The input data was obtained from a Web server log, a sample of which is shown in Figure 4.17(a). Each line corresponds to a single page request made by a Web client (a user or a Web robot). The fields recorded in the Web log include the IP address of the client, timestamp of the request, Web address of the requested document, size of the document, and the client’s identity (via the user agent field). A Web session is a sequence of requests made by a client during a single visit to a Web site. Each Web session can be modeled as a directed graph, in which the nodes correspond to Web pages and the edges correspond to hyperlinks connecting one Web page to another. Figure 4.17(b) shows a graphical representation of the first Web session given in the Web server log.

To classify the Web sessions, features are constructed to describe the characteristics of each session. Figure 4.17(c) shows some of the features used for the Web robot detection task. Among the notable features include the depth and breadth of the traversal. Depth determines the maximum distance of a requested page, where distance is measured in terms of the number of hyperlinks away from the entry point of the Web site. For example, the home page http://www.cs.umn.edu/~kumar is assumed to be at depth 0, whereas http://www.cs.umn.edu/kumar/MINDS/MINDS_papers.htm is located at depth 2. Based on the Web graph shown in Figure 4.17(b), the depth attribute for the first session is equal to two. The breadth attribute measures the width of the corresponding Web graph. For example, the breadth of the Web session shown in Figure 4.17(b) is equal to two.

The data set for classification contains 2916 records, with equal numbers of sessions due to Web robots (class 1) and human users (class 0). 10% of the data were reserved for training while the remaining 90% were used for testing. The induced decision tree model is shown in Figure 4.18. The tree has an error rate equal to 3.8% on the training set and 5.3% on the test set.

The model suggests that Web robots can be distinguished from human users in the following way:

1. Accesses by Web robots tend to be broad but shallow, whereas accesses by human users tend to be more focused (narrow but deep).

2. Unlike human users, Web robots seldom retrieve the image pages associated with a Web document.

3. Sessions due to Web robots tend to be long and contain a large number of requested pages.
4. Web robots are more likely to make repeated requests for the same document since the Web pages retrieved by human users are often cached by the browser.

4.3.7 Characteristics of Decision Tree Induction

The following is a summary of the important characteristics of decision tree induction algorithms.

1. Decision tree induction is a nonparametric approach for building classification models. In other words, it does not require any prior assumptions regarding the type of probability distributions satisfied by the class and other attributes (unlike some of the techniques described in Chapter 5).
2. Finding an optimal decision tree is an NP-complete problem. Many decision tree algorithms employ a heuristic-based approach to guide their search in the vast hypothesis space. For example, the algorithm presented in Section 4.3.5 uses a greedy, top-down, recursive partitioning strategy for growing a decision tree.

3. Techniques developed for constructing decision trees are computationally inexpensive, making it possible to quickly construct models even when the training set size is very large. Furthermore, once a decision tree has been built, classifying a test record is extremely fast, with a worst-case complexity of $O(w)$, where w is the maximum depth of the tree.

4. Decision trees, especially smaller-sized trees, are relatively easy to interpret. The accuracies of the trees are also comparable to other classification techniques for many simple data sets.

5. Decision trees provide an expressive representation for learning discrete-valued functions. However, they do not generalize well to certain types of Boolean problems. One notable example is the parity function, whose value is 0 (1) when there is an odd (even) number of Boolean attributes with the value True. Accurate modeling of such a function requires a full decision tree with 2^d nodes, where d is the number of Boolean attributes (see Exercise 1 on page 198).

6. Decision tree algorithms are quite robust to the presence of noise, especially when methods for avoiding overfitting, as described in Section 4.4, are employed.

7. The presence of redundant attributes does not adversely affect the accuracy of decision trees. An attribute is redundant if it is strongly correlated with another attribute in the data. One of the two redundant attributes will not be used for splitting once the other attribute has been chosen. However, if the data set contains many irrelevant attributes, i.e., attributes that are not useful for the classification task, then some of the irrelevant attributes may be accidently chosen during the tree-growing process, which results in a decision tree that is larger than necessary. Feature selection techniques can help to improve the accuracy of decision trees by eliminating the irrelevant attributes during preprocessing. We will investigate the issue of too many irrelevant attributes in Section 4.4.3.
8. Since most decision tree algorithms employ a top-down, recursive partitioning approach, the number of records becomes smaller as we traverse down the tree. At the leaf nodes, the number of records may be too small to make a statistically significant decision about the class representation of the nodes. This is known as the data fragmentation problem. One possible solution is to disallow further splitting when the number of records falls below a certain threshold.

9. A subtree can be replicated multiple times in a decision tree, as illustrated in Figure 4.19. This makes the decision tree more complex than necessary and perhaps more difficult to interpret. Such a situation can arise from decision tree implementations that rely on a single attribute test condition at each internal node. Since most of the decision tree algorithms use a divide-and-conquer partitioning strategy, the same test condition can be applied to different parts of the attribute space, thus leading to the subtree replication problem.

10. The test conditions described so far in this chapter involve using only a single attribute at a time. As a consequence, the tree-growing procedure can be viewed as the process of partitioning the attribute space into disjoint regions until each region contains records of the same class (see Figure 4.20). The border between two neighboring regions of different classes is known as a decision boundary. Since the test condition involves only a single attribute, the decision boundaries are rectilinear; i.e., parallel to the “coordinate axes.” This limits the expressiveness of the
decision tree representation for modeling complex relationships among continuous attributes. Figure 4.21 illustrates a data set that cannot be classified effectively by a decision tree algorithm that uses test conditions involving only a single attribute at a time.
An **oblique decision tree** can be used to overcome this limitation because it allows test conditions that involve more than one attribute. The data set given in Figure 4.21 can be easily represented by an oblique decision tree containing a single node with test condition

\[x + y < 1. \]

Although such techniques are more expressive and can produce more compact trees, finding the optimal test condition for a given node can be computationally expensive.

Constructive induction provides another way to partition the data into homogeneous, nonrectangular regions (see Section 2.3.5 on page 57). This approach creates composite attributes representing an arithmetic or logical combination of the existing attributes. The new attributes provide a better discrimination of the classes and are augmented to the data set prior to decision tree induction. Unlike the oblique decision tree approach, constructive induction is less expensive because it identifies all the relevant combinations of attributes once, prior to constructing the decision tree. In contrast, an oblique decision tree must determine the right attribute combination dynamically, every time an internal node is expanded. However, constructive induction can introduce attribute redundancy in the data since the new attribute is a combination of several existing attributes.

11. Studies have shown that the choice of impurity measure has little effect on the performance of decision tree induction algorithms. This is because many impurity measures are quite consistent with each other, as shown in Figure 4.13 on page 159. Indeed, the strategy used to prune the tree has a greater impact on the final tree than the choice of impurity measure.

4.4 Model Overfitting

The errors committed by a classification model are generally divided into two types: **training errors** and **generalization errors**. Training error, also known as **resubstitution error** or **apparent error**, is the number of misclassification errors committed on training records, whereas generalization error is the expected error of the model on previously unseen records.

Recall from Section 4.2 that a good classification model must not only fit the training data well, it must also accurately classify records it has never
4.4 Model Overfitting

seen before. In other words, a good model must have low training error as well as low generalization error. This is important because a model that fits the training data too well can have a poorer generalization error than a model with a higher training error. Such a situation is known as model overfitting.

Overfitting Example in Two-Dimensional Data For a more concrete example of the overfitting problem, consider the two-dimensional data set shown in Figure 4.22. The data set contains data points that belong to two different classes, denoted as class \circ and class $+$, respectively. The data points for the \circ class are generated from a mixture of three Gaussian distributions, while a uniform distribution is used to generate the data points for the $+$ class. There are altogether 1200 points belonging to the \circ class and 1800 points belonging to the $+$ class. 30% of the points are chosen for training, while the remaining 70% are used for testing. A decision tree classifier that uses the Gini index as its impurity measure is then applied to the training set. To investigate the effect of overfitting, different levels of pruning are applied to the initial, fully-grown tree. Figure 4.23(b) shows the training and test error rates of the decision tree.
Notice that the training and test error rates of the model are large when the size of the tree is very small. This situation is known as **model underfitting**. Underfitting occurs because the model has yet to learn the true structure of the data. As a result, it performs poorly on both the training and the test sets. As the number of nodes in the decision tree increases, the tree will have fewer training and test errors. However, once the tree becomes too large, its test error rate begins to increase even though its training error rate continues to decrease. This phenomenon is known as **model overfitting**.

To understand the overfitting phenomenon, note that the training error of a model can be reduced by increasing the model complexity. For example, the leaf nodes of the tree can be expanded until it perfectly fits the training data. Although the training error for such a complex tree is zero, the test error can be large because the tree may contain nodes that accidently fit some of the noise points in the training data. Such nodes can degrade the performance of the tree because they do not generalize well to the test examples. Figure 4.24 shows the structure of two decision trees with different number of nodes. The tree that contains the smaller number of nodes has a higher training error rate, but a lower test error rate compared to the more complex tree.

Overfitting and underfitting are two pathologies that are related to the model complexity. The remainder of this section examines some of the potential causes of model overfitting.
4.4 Model Overfitting

4.4.1 Overfitting Due to Presence of Noise

Consider the training and test sets shown in Tables 4.3 and 4.4 for the mammal classification problem. Two of the ten training records are mislabeled: bats and whales are classified as non-mammals instead of mammals.

A decision tree that perfectly fits the training data is shown in Figure 4.25(a). Although the training error for the tree is zero, its error rate on

![Figure 4.24. Decision trees with different model complexities.](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>porcupine</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>cat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>bat</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no*</td>
</tr>
<tr>
<td>whale</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no*</td>
</tr>
<tr>
<td>salamander</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>komodo dragon</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>python</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>salmon</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>eagle</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>guppy</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 4.4. An example test set for classifying mammals.

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pigeon</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>elephant</td>
<td>warm-blooded</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>leopard shark</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>turtle</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>penguin</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>eel</td>
<td>cold-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>dolphin</td>
<td>warm-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>spiny anteater</td>
<td>warm-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>gila monster</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

The test set is 30%. Both humans and dolphins were misclassified as non-mammals because their attribute values for \textit{Body Temperature}, \textit{Gives Birth}, and \textit{Four-legged} are identical to the mislabeled records in the training set. Spiny anteaters, on the other hand, represent an exceptional case in which the class label of a test record contradicts the class labels of other similar records in the training set. Errors due to exceptional cases are often unavoidable and establish the minimum error rate achievable by any classifier.
In contrast, the decision tree M_2 shown in Figure 4.25(b) has a lower test error rate (10%) even though its training error rate is somewhat higher (20%). It is evident that the first decision tree, M_1, has overfitted the training data because there is a simpler model with lower error rate on the test set. The Four-legged attribute test condition in model M_1 is spurious because it fits the mislabeled training records, which leads to the misclassification of records in the test set.

4.4.2 Overfitting Due to Lack of Representative Samples

Models that make their classification decisions based on a small number of training records are also susceptible to overfitting. Such models can be generated because of lack of representative samples in the training data and learning algorithms that continue to refine their models even when few training records are available. We illustrate these effects in the example below.

Consider the five training records shown in Table 4.5. All of these training records are labeled correctly and the corresponding decision tree is depicted in Figure 4.26. Although its training error is zero, its error rate on the test set is 30%.

<table>
<thead>
<tr>
<th>Name</th>
<th>Body Temperature</th>
<th>Gives Birth</th>
<th>Four-legged</th>
<th>Hibernates</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>salamander</td>
<td>cold-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>guppy</td>
<td>cold-blooded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>eagle</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>poorwill</td>
<td>warm-blooded</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>platypus</td>
<td>warm-blooded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Humans, elephants, and dolphins are misclassified because the decision tree classifies all warm-blooded vertebrates that do not hibernate as non-mammals. The tree arrives at this classification decision because there is only one training record, which is an eagle, with such characteristics. This example clearly demonstrates the danger of making wrong predictions when there are not enough representative examples at the leaf nodes of a decision tree.
4.4.3 Overfitting and the Multiple Comparison Procedure

Model overfitting may arise in learning algorithms that employ a methodology known as multiple comparison procedure. To understand multiple comparison procedure, consider the task of predicting whether the stock market will rise or fall in the next ten trading days. If a stock analyst simply makes random guesses, the probability that her prediction is correct on any trading day is 0.5. However, the probability that she will predict correctly at least eight out of the ten times is

\[
\frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547,
\]

which seems quite unlikely.

Suppose we are interested in choosing an investment advisor from a pool of fifty stock analysts. Our strategy is to select the analyst who makes the most correct predictions in the next ten trading days. The flaw in this strategy is that even if all the analysts had made their predictions in a random fashion, the probability that at least one of them makes at least eight correct predictions is

\[
1 - (1 - 0.0547)^{50} = 0.9399,
\]

which is very high. Although each analyst has a low probability of predicting at least eight times correctly, putting them together, we have a high probability of finding an analyst who can do so. Furthermore, there is no guarantee in the
future that such an analyst will continue to make accurate predictions through random guessing.

How does the multiple comparison procedure relate to model overfitting? Many learning algorithms explore a set of independent alternatives, \(\{ \gamma_i \} \), and then choose an alternative, \(\gamma_{\text{max}} \), that maximizes a given criterion function. The algorithm will add \(\gamma_{\text{max}} \) to the current model in order to improve its overall performance. This procedure is repeated until no further improvement is observed. As an example, during decision tree growing, multiple tests are performed to determine which attribute can best split the training data. The attribute that leads to the best split is chosen to extend the tree as long as the observed improvement is statistically significant.

Let \(T_0 \) be the initial decision tree and \(T_x \) be the new tree after inserting an internal node for attribute \(x \). In principle, \(x \) can be added to the tree if the observed gain, \(\Delta(T_0, T_x) \), is greater than some predefined threshold \(\alpha \). If there is only one attribute test condition to be evaluated, then we can avoid inserting spurious nodes by choosing a large enough value of \(\alpha \). However, in practice, more than one test condition is available and the decision tree algorithm must choose the best attribute \(x_{\text{max}} \) from a set of candidates, \(\{x_1, x_2, \ldots, x_k\} \), to partition the data. In this situation, the algorithm is actually using a multiple comparison procedure to decide whether a decision tree should be extended. More specifically, it is testing for \(\Delta(T_0, T_{x_{\text{max}}}) > \alpha \) instead of \(\Delta(T_0, T_x) > \alpha \). As the number of alternatives, \(k \), increases, so does our chance of finding \(\Delta(T_0, T_{x_{\text{max}}}) > \alpha \). Unless the gain function \(\Delta \) or threshold \(\alpha \) is modified to account for \(k \), the algorithm may inadvertently add spurious nodes to the model, which leads to model overfitting.

This effect becomes more pronounced when the number of training records from which \(x_{\text{max}} \) is chosen is small, because the variance of \(\Delta(T_0, T_{x_{\text{max}}}) \) is high when fewer examples are available for training. As a result, the probability of finding \(\Delta(T_0, T_{x_{\text{max}}}) > \alpha \) increases when there are very few training records. This often happens when the decision tree grows deeper, which in turn reduces the number of records covered by the nodes and increases the likelihood of adding unnecessary nodes into the tree. Failure to compensate for the large number of alternatives or the small number of training records will therefore lead to model overfitting.

4.4.4 Estimation of Generalization Errors

Although the primary reason for overfitting is still a subject of debate, it is generally agreed that the complexity of a model has an impact on model overfitting, as was illustrated in Figure 4.23. The question is, how do we
determine the right model complexity? The ideal complexity is that of a model that produces the lowest generalization error. The problem is that the learning algorithm has access only to the training set during model building (see Figure 4.3). It has no knowledge of the test set, and thus, does not know how well the tree will perform on records it has never seen before. The best it can do is to estimate the generalization error of the induced tree. This section presents several methods for doing the estimation.

Using Resubstitution Estimate

The resubstitution estimate approach assumes that the training set is a good representation of the overall data. Consequently, the training error, otherwise known as resubstitution error, can be used to provide an optimistic estimate for the generalization error. Under this assumption, a decision tree induction algorithm simply selects the model that produces the lowest training error rate as its final model. However, the training error is usually a poor estimate of generalization error.

Example 4.1. Consider the binary decision trees shown in Figure 4.27. Assume that both trees are generated from the same training data and both make their classification decisions at each leaf node according to the majority class. Note that the left tree, T_L, is more complex because it expands some of the leaf nodes in the right tree, T_R. The training error rate for the left tree is $e(T_L) = 4/24 = 0.167$, while the training error rate for the right tree is

![Decision Tree, T_L](image1) ![Decision Tree, T_R](image2)

Figure 4.27. Example of two decision trees generated from the same training data.
4.4 Model Overfitting 181

\[e(T_R) = \frac{6}{24} = 0.25. \] Based on their resubstitution estimate, the left tree is considered better than the right tree.

Incorporating Model Complexity

As previously noted, the chance for model overfitting increases as the model becomes more complex. For this reason, we should prefer simpler models, a strategy that agrees with a well-known principle known as **Occam’s razor** or the **principle of parsimony**:

Definition 4.2. Occam’s Razor: Given two models with the same generalization errors, the simpler model is preferred over the more complex model.

Occam’s razor is intuitive because the additional components in a complex model stand a greater chance of being fitted purely by chance. In the words of Einstein, “Everything should be made as simple as possible, but not simpler.”

Next, we present two methods for incorporating model complexity into the evaluation of classification models.

Pessimistic Error Estimate The first approach explicitly computes generalization error as the sum of training error and a penalty term for model complexity. The resulting generalization error can be considered its pessimistic error estimate. For instance, let \(n(t) \) be the number of training records classified by node \(t \) and \(e(t) \) be the number of misclassified records. The pessimistic error estimate of a decision tree \(T \), \(e_g(T) \), can be computed as follows:

\[
e_g(T) = \frac{\sum_{t=1}^{k} [e(t_i) + \Omega(t_i)]}{\sum_{i=1}^{k} n(t_i)} = \frac{e(T) + \Omega(T)}{N_t},
\]

where \(k \) is the number of leaf nodes, \(e(T) \) is the overall training error of the decision tree, \(N_t \) is the number of training records, and \(\Omega(t_i) \) is the penalty term associated with each node \(t_i \).

Example 4.2. Consider the binary decision trees shown in Figure 4.27. If the penalty term is equal to 0.5, then the pessimistic error estimate for the left tree is

\[
e_g(T_L) = \frac{4 + 7 \times 0.5}{24} = \frac{7.5}{24} = 0.3125
\]

and the pessimistic error estimate for the right tree is

\[
e_g(T_R) = \frac{6 + 4 \times 0.5}{24} = \frac{8}{24} = 0.3333.
\]
Chapter 4 Classification

Thus, the left tree has a better pessimistic error rate than the right tree. For binary trees, a penalty term of 0.5 means a node should always be expanded into its two child nodes as long as it improves the classification of at least one training record because expanding a node, which is equivalent to adding 0.5 to the overall error, is less costly than committing one training error.

If $\Omega(t) = 1$ for all the nodes t, the pessimistic error estimate for the left tree is $e_g(T_L) = 11/24 = 0.458$, while the pessimistic error estimate for the right tree is $e_g(T_R) = 10/24 = 0.417$. The right tree therefore has a better pessimistic error rate than the left tree. Thus, a node should not be expanded into its child nodes unless it reduces the misclassification error for more than one training record.

Minimum Description Length Principle Another way to incorporate model complexity is based on an information-theoretic approach known as the minimum description length or MDL principle. To illustrate this principle, consider the example shown in Figure 4.28. In this example, both A and B are given a set of records with known attribute values x. In addition, person A knows the exact class label for each record, while person B knows none of this information. B can obtain the classification of each record by requesting that A transmits the class labels sequentially. Such a message would require $\Theta(n)$ bits of information, where n is the total number of records.

Alternatively, A may decide to build a classification model that summarizes the relationship between x and y. The model can be encoded in a compact

![Figure 4.28. The minimum description length (MDL) principle.](image-url)
form before being transmitted to B. If the model is 100% accurate, then the cost of transmission is equivalent to the cost of encoding the model. Otherwise, A must also transmit information about which record is classified incorrectly by the model. Thus, the overall cost of transmission is

\[Cost(model, data) = Cost(model) + Cost(data|model), \]

where the first term on the right-hand side is the cost of encoding the model, while the second term represents the cost of encoding the mislabeled records. According to the MDL principle, we should seek a model that minimizes the overall cost function. An example showing how to compute the total description length of a decision tree is given by Exercise 9 on page 202.

Estimating Statistical Bounds

The generalization error can also be estimated as a statistical correction to the training error. Since generalization error tends to be larger than training error, the statistical correction is usually computed as an upper bound to the training error, taking into account the number of training records that reach a particular leaf node. For instance, in the C4.5 decision tree algorithm, the number of errors committed by each leaf node is assumed to follow a binomial distribution. To compute its generalization error, we must determine the upper bound limit to the observed training error, as illustrated in the next example.

Example 4.3. Consider the left-most branch of the binary decision trees shown in Figure 4.27. Observe that the left-most leaf node of \(T_R \) has been expanded into two child nodes in \(T_L \). Before splitting, the error rate of the node is \(\frac{2}{7} = 0.286 \). By approximating a binomial distribution with a normal distribution, the following upper bound of the error rate \(e \) can be derived:

\[
\begin{align*}
e_{upper}(N, e, \alpha) &= \frac{e + \frac{z^2_{\alpha/2}}{2N} + \frac{z_{\alpha/2}}{2} \sqrt{\frac{e(1-e)}{N}} + \frac{z^2_{\alpha/2}}{4N^2}}{1 + \frac{z^2_{\alpha/2}}{N}}, \tag{4.10}
\end{align*}
\]

where \(\alpha \) is the confidence level, \(z_{\alpha/2} \) is the standardized value from a standard normal distribution, and \(N \) is the total number of training records used to compute \(e \). By replacing \(\alpha = 25\% \), \(N = 7 \), and \(e = 2/7 \), the upper bound for the error rate is \(e_{upper}(7, 2/7, 0.25) = 0.503 \), which corresponds to \(7 \times 0.503 = 3.521 \) errors. If we expand the node into its child nodes as shown in \(T_L \), the training error rates for the child nodes are \(1/4 = 0.250 \) and \(1/3 = 0.333 \),...
Using Equation 4.10, the upper bounds of these error rates are
\[e_{\text{upper}}(4, 1/4, 0.25) = 0.537 \text{ and } e_{\text{upper}}(3, 1/3, 0.25) = 0.650, \]
respectively. The overall training error of the child nodes is
\[4 \times 0.537 + 3 \times 0.650 = 4.098, \]
which is larger than the estimated error for the corresponding node in \(T_R \).

Using a Validation Set

In this approach, instead of using the training set to estimate the generalization error, the original training data is divided into two smaller subsets. One of the subsets is used for training, while the other, known as the validation set, is used for estimating the generalization error. Typically, two-thirds of the training set is reserved for model building, while the remaining one-third is used for error estimation.

This approach is typically used with classification techniques that can be parameterized to obtain models with different levels of complexity. The complexity of the best model can be estimated by adjusting the parameter of the learning algorithm (e.g., the pruning level of a decision tree) until the empirical model produced by the learning algorithm attains the lowest error rate on the validation set. Although this approach provides a better way for estimating how well the model performs on previously unseen records, less data is available for training.

4.4.5 Handling Overfitting in Decision Tree Induction

In the previous section, we described several methods for estimating the generalization error of a classification model. Having a reliable estimate of generalization error allows the learning algorithm to search for an accurate model without overfitting the training data. This section presents two strategies for avoiding model overfitting in the context of decision tree induction.

Prepruning (Early Stopping Rule) In this approach, the tree-growing algorithm is halted before generating a fully grown tree that perfectly fits the entire training data. To do this, a more restrictive stopping condition must be used; e.g., stop expanding a leaf node when the observed gain in impurity measure (or improvement in the estimated generalization error) falls below a certain threshold. The advantage of this approach is that it avoids generating overly complex subtrees that overfit the training data. Nevertheless, it is difficult to choose the right threshold for early termination. Too high of a threshold will result in underfitted models, while a threshold that is set too low may not be sufficient to overcome the model overfitting problem. Furthermore,
even if no significant gain is obtained using one of the existing attribute test conditions, subsequent splitting may result in better subtrees.

Post-pruning In this approach, the decision tree is initially grown to its maximum size. This is followed by a tree-pruning step, which proceeds to trim the fully grown tree in a bottom-up fashion. Trimming can be done by replacing a subtree with (1) a new leaf node whose class label is determined from the majority class of records affiliated with the subtree, or (2) the most frequently used branch of the subtree. The tree-pruning step terminates when no further improvement is observed. Post-pruning tends to give better results than prepruning because it makes pruning decisions based on a fully grown tree, unlike prepruning, which can suffer from premature termination of the tree-growing process. However, for post-pruning, the additional computations needed to grow the full tree may be wasted when the subtree is pruned.

Figure 4.29 illustrates the simplified decision tree model for the Web robot detection example given in Section 4.3.6. Notice that the subtrees rooted at
depth = 1 have been replaced by one of the branches involving the attribute ImagePages. This approach is also known as subtree raising. The depth > 1 and MultiAgent = 0 subtree has been replaced by a leaf node assigned to class 0. This approach is known as subtree replacement. The subtree for depth > 1 and MultiAgent = 1 remains intact.

4.5 Evaluating the Performance of a Classifier

Section 4.4.4 described several methods for estimating the generalization error of a model during training. The estimated error helps the learning algorithm to do model selection; i.e., to find a model of the right complexity that is not susceptible to overfitting. Once the model has been constructed, it can be applied to the test set to predict the class labels of previously unseen records. It is often useful to measure the performance of the model on the test set because such a measure provides an unbiased estimate of its generalization error. The accuracy or error rate computed from the test set can also be used to compare the relative performance of different classifiers on the same domain. However, in order to do this, the class labels of the test records must be known. This section reviews some of the methods commonly used to evaluate the performance of a classifier.

4.5.1 Holdout Method

In the holdout method, the original data with labeled examples is partitioned into two disjoint sets, called the training and the test sets, respectively. A classification model is then induced from the training set and its performance is evaluated on the test set. The proportion of data reserved for training and for testing is typically at the discretion of the analysts (e.g., 50-50 or two-thirds for training and one-third for testing). The accuracy of the classifier can be estimated based on the accuracy of the induced model on the test set.

The holdout method has several well-known limitations. First, fewer labeled examples are available for training because some of the records are withheld for testing. As a result, the induced model may not be as good as when all the labeled examples are used for training. Second, the model may be highly dependent on the composition of the training and test sets. The smaller the training set size, the larger the variance of the model. On the other hand, if the training set is too large, then the estimated accuracy computed from the smaller test set is less reliable. Such an estimate is said to have a wide confidence interval. Finally, the training and test sets are no longer independent.
of each other. Because the training and test sets are subsets of the original data, a class that is overrepresented in one subset will be underrepresented in the other, and vice versa.

4.5.2 Random Subsampling

The holdout method can be repeated several times to improve the estimation of a classifier’s performance. This approach is known as random subsampling. Let acc_i be the model accuracy during the i^{th} iteration. The overall accuracy is given by $acc_{sub} = \frac{\sum_{i=1}^{k} acc_i}{k}$. Random subsampling still encounters some of the problems associated with the holdout method because it does not utilize as much data as possible for training. It also has no control over the number of times each record is used for testing and training. Consequently, some records might be used for training more often than others.

4.5.3 Cross-Validation

An alternative to random subsampling is cross-validation. In this approach, each record is used the same number of times for training and exactly once for testing. To illustrate this method, suppose we partition the data into two equal-sized subsets. First, we choose one of the subsets for training and the other for testing. We then swap the roles of the subsets so that the previous training set becomes the test set and vice versa. This approach is called a two-fold cross-validation. The total error is obtained by summing up the errors for both runs. In this example, each record is used exactly once for training and once for testing. The k-fold cross-validation method generalizes this approach by segmenting the data into k equal-sized partitions. During each run, one of the partitions is chosen for testing, while the rest of them are used for training. This procedure is repeated k times so that each partition is used for testing exactly once. Again, the total error is found by summing up the errors for all k runs. A special case of the k-fold cross-validation method sets $k = N$, the size of the data set. In this so-called leave-one-out approach, each test set contains only one record. This approach has the advantage of utilizing as much data as possible for training. In addition, the test sets are mutually exclusive and they effectively cover the entire data set. The drawback of this approach is that it is computationally expensive to repeat the procedure N times. Furthermore, since each test set contains only one record, the variance of the estimated performance metric tends to be high.
4.5.4 Bootstrap

The methods presented so far assume that the training records are sampled without replacement. As a result, there are no duplicate records in the training and test sets. In the bootstrap approach, the training records are sampled with replacement; i.e., a record already chosen for training is put back into the original pool of records so that it is equally likely to be redrawn. If the original data has N records, it can be shown that, on average, a bootstrap sample of size N contains about 63.2% of the records in the original data. This approximation follows from the fact that the probability a record is chosen by a bootstrap sample is $1 - (1 - 1/N)^N$. When N is sufficiently large, the probability asymptotically approaches $1 - e^{-1} = 0.632$. Records that are not included in the bootstrap sample become part of the test set. The model induced from the training set is then applied to the test set to obtain an estimate of the accuracy of the bootstrap sample, ϵ_i. The sampling procedure is then repeated b times to generate b bootstrap samples.

There are several variations to the bootstrap sampling approach in terms of how the overall accuracy of the classifier is computed. One of the more widely used approaches is the .632 bootstrap, which computes the overall accuracy by combining the accuracies of each bootstrap sample (ϵ_i) with the accuracy computed from a training set that contains all the labeled examples in the original data (acc_s):

$$\text{Accuracy, acc}_{\text{boot}} = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times \epsilon_i + 0.368 \times acc_s).$$ \hspace{1cm} (4.11)

4.6 Methods for Comparing Classifiers

It is often useful to compare the performance of different classifiers to determine which classifier works better on a given data set. However, depending on the size of the data, the observed difference in accuracy between two classifiers may not be statistically significant. This section examines some of the statistical tests available to compare the performance of different models and classifiers.

For illustrative purposes, consider a pair of classification models, M_A and M_B. Suppose M_A achieves 85% accuracy when evaluated on a test set containing 30 records, while M_B achieves 75% accuracy on a different test set containing 5000 records. Based on this information, is M_A a better model than M_B?
The preceding example raises two key questions regarding the statistical significance of the performance metrics:

1. Although M_A has a higher accuracy than M_B, it was tested on a smaller test set. How much confidence can we place on the accuracy for M_A?

2. Is it possible to explain the difference in accuracy as a result of variations in the composition of the test sets?

The first question relates to the issue of estimating the confidence interval of a given model accuracy. The second question relates to the issue of testing the statistical significance of the observed deviation. These issues are investigated in the remainder of this section.

4.6.1 Estimating a Confidence Interval for Accuracy

To determine the confidence interval, we need to establish the probability distribution that governs the accuracy measure. This section describes an approach for deriving the confidence interval by modeling the classification task as a binomial experiment. Following is a list of characteristics of a binomial experiment:

1. The experiment consists of N independent trials, where each trial has two possible outcomes: success or failure.

2. The probability of success, p, in each trial is constant.

An example of a binomial experiment is counting the number of heads that turn up when a coin is flipped N times. If X is the number of successes observed in N trials, then the probability that X takes a particular value is given by a binomial distribution with mean Np and variance $Np(1 - p)$:

$$P(X = v) = \binom{N}{p} p^v (1 - p)^{N-v}.$$

For example, if the coin is fair ($p = 0.5$) and is flipped fifty times, then the probability that the head shows up 20 times is

$$P(X = 20) = \binom{50}{20} 0.5^{20} (1 - 0.5)^{30} = 0.0419.$$

If the experiment is repeated many times, then the average number of heads expected to show up is $50 \times 0.5 = 25$, while its variance is $50 \times 0.5 \times 0.5 = 12.5$.
The task of predicting the class labels of test records can also be considered as a binomial experiment. Given a test set that contains N records, let X be the number of records correctly predicted by a model and p be the true accuracy of the model. By modeling the prediction task as a binomial experiment, X has a binomial distribution with mean Np and variance $Np(1-p)$. It can be shown that the empirical accuracy, $acc = X/N$, also has a binomial distribution with mean p and variance $p(1-p)/N$ (see Exercise 12). Although the binomial distribution can be used to estimate the confidence interval for acc, it is often approximated by a normal distribution when N is sufficiently large. Based on the normal distribution, the following confidence interval for acc can be derived:

$$P\left(-Z_{\alpha/2} \leq \frac{acc - p}{\sqrt{p(1-p)/N}} \leq Z_{1-\alpha/2}\right) = 1 - \alpha,$$ \hspace{1cm} (4.12)

where $Z_{\alpha/2}$ and $Z_{1-\alpha/2}$ are the upper and lower bounds obtained from a standard normal distribution at confidence level $(1 - \alpha)$. Since a standard normal distribution is symmetric around $Z = 0$, it follows that $Z_{\alpha/2} = Z_{1-\alpha/2}$. Rearranging this inequality leads to the following confidence interval for p:

$$\frac{2 \times N \times acc + Z_{\alpha/2}^2 \pm Z_{\alpha/2} \sqrt{Z_{\alpha/2}^2 + 4Nacc - 4Nacc^2}}{2(N + Z_{\alpha/2}^2)}. \hspace{1cm} (4.13)$$

The following table shows the values of $Z_{\alpha/2}$ at different confidence levels:

<table>
<thead>
<tr>
<th>$1 - \alpha$</th>
<th>0.99</th>
<th>0.98</th>
<th>0.95</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{\alpha/2}$</td>
<td>2.58</td>
<td>2.33</td>
<td>1.96</td>
<td>1.65</td>
<td>1.28</td>
<td>1.04</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Example 4.4. Consider a model that has an accuracy of 80% when evaluated on 100 test records. What is the confidence interval for its true accuracy at a 95% confidence level? The confidence level of 95% corresponds to $Z_{\alpha/2} = 1.96$ according to the table given above. Inserting this term into Equation 4.13 yields a confidence interval between 71.1% and 86.7%. The following table shows the confidence interval when the number of records, N, increases:

<table>
<thead>
<tr>
<th>N</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence</td>
<td>0.584</td>
<td>0.670</td>
<td>0.711</td>
<td>0.763</td>
<td>0.774</td>
<td>0.789</td>
</tr>
<tr>
<td>Interval</td>
<td>-0.919</td>
<td>-0.888</td>
<td>-0.867</td>
<td>-0.833</td>
<td>-0.824</td>
<td>-0.811</td>
</tr>
</tbody>
</table>

Note that the confidence interval becomes tighter when N increases.
4.6.2 Comparing the Performance of Two Models

Consider a pair of models, M_1 and M_2, that are evaluated on two independent test sets, D_1 and D_2. Let n_1 denote the number of records in D_1 and n_2 denote the number of records in D_2. In addition, suppose the error rate for M_1 on D_1 is e_1 and the error rate for M_2 on D_2 is e_2. Our goal is to test whether the observed difference between e_1 and e_2 is statistically significant.

Assuming that n_1 and n_2 are sufficiently large, the error rates e_1 and e_2 can be approximated using normal distributions. If the observed difference in the error rate is denoted as $d = e_1 - e_2$, then d is also normally distributed with mean d_t, its true difference, and variance, σ^2_d. The variance of d can be computed as follows:

$$\sigma^2_d \simeq \hat{\sigma}^2_d = \frac{e_1(1 - e_1)}{n_1} + \frac{e_2(1 - e_2)}{n_2}, \quad (4.14)$$

where $e_1(1 - e_1)/n_1$ and $e_2(1 - e_2)/n_2$ are the variances of the error rates. Finally, at the $(1 - \alpha)\%$ confidence level, it can be shown that the confidence interval for the true difference d_t is given by the following equation:

$$d_t = d \pm z_{\alpha/2} \hat{\sigma}_d. \quad (4.15)$$

Example 4.5. Consider the problem described at the beginning of this section. Model M_A has an error rate of $e_1 = 0.15$ when applied to $N_1 = 30$ test records, while model M_B has an error rate of $e_2 = 0.25$ when applied to $N_2 = 5000$ test records. The observed difference in their error rates is $d = |0.15 - 0.25| = 0.1$. In this example, we are performing a two-sided test to check whether $d_t = 0$ or $d_t \neq 0$. The estimated variance of the observed difference in error rates can be computed as follows:

$$\hat{\sigma}^2_d = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

or $\hat{\sigma}_d = 0.0655$. Inserting this value into Equation 4.15, we obtain the following confidence interval for d_t at 95% confidence level:

$$d_t = 0.1 \pm 1.96 \times 0.0655 = 0.1 \pm 0.128.$$

As the interval spans the value zero, we can conclude that the observed difference is not statistically significant at a 95% confidence level. \qed
At what confidence level can we reject the hypothesis that \(d_t = 0 \)? To do this, we need to determine the value of \(Z_{\alpha/2} \) such that the confidence interval for \(d_t \) does not span the value zero. We can reverse the preceding computation and look for the value \(Z_{\alpha/2} \) such that \(d > Z_{\alpha/2} \bar{\sigma}_d \). Replacing the values of \(d \) and \(\bar{\sigma}_d \) gives \(Z_{\alpha/2} < 1.527 \). This value first occurs when \((1 - \alpha) \geq 0.936\) (for a two-sided test). The result suggests that the null hypothesis can be rejected at confidence level of 93.6% or lower.

4.6.3 Comparing the Performance of Two Classifiers

Suppose we want to compare the performance of two classifiers using the \(k \)-fold cross-validation approach. Initially, the data set \(D \) is divided into \(k \) equal-sized partitions. We then apply each classifier to construct a model from \(k - 1 \) of the partitions and test it on the remaining partition. This step is repeated \(k \) times, each time using a different partition as the test set.

Let \(M_{ij} \) denote the model induced by classification technique \(L_i \) during the \(j^{th} \) iteration. Note that each pair of models \(M_{1j} \) and \(M_{2j} \) are tested on the same partition \(j \). Let \(e_{1j} \) and \(e_{2j} \) be their respective error rates. The difference between their error rates during the \(j^{th} \) fold can be written as \(d_j = e_{1j} - e_{2j} \). If \(k \) is sufficiently large, then \(d_j \) is normally distributed with mean \(d_{cv} \), which is the true difference in their error rates, and variance \(\sigma_{cv}^2 \). Unlike the previous approach, the overall variance in the observed differences is estimated using the following formula:

\[
\hat{\sigma}_{d_{cv}}^2 = \frac{\sum_{j=1}^{k} (d_j - \bar{d})^2}{k(k - 1)},
\]

where \(\bar{d} \) is the average difference. For this approach, we need to use a \(t \)-distribution to compute the confidence interval for \(d_{cv}^t \):

\[
d_{cv}^t = \bar{d} \pm t_{(1 - \alpha), k - 1} \hat{\sigma}_{d_{cv}}.
\]

The coefficient \(t_{(1 - \alpha), k - 1} \) is obtained from a probability table with two input parameters, its confidence level \((1 - \alpha)\) and the number of degrees of freedom, \(k - 1 \). The probability table for the \(t \)-distribution is shown in Table 4.6.

Example 4.6. Suppose the estimated difference in the accuracy of models generated by two classification techniques has a mean equal to 0.05 and a standard deviation equal to 0.002. If the accuracy is estimated using a 30-fold cross-validation approach, then at a 95% confidence level, the true accuracy difference is

\[
d_{cv}^t = 0.05 \pm 2.04 \times 0.002.
\]
Since the confidence interval does not span the value zero, the observed difference between the techniques is statistically significant.

\section*{4.7 Bibliographic Notes}

Early classification systems were developed to organize a large collection of objects. For example, the Dewey Decimal and Library of Congress classification systems were designed to catalog and index the vast number of library books. The categories are typically identified in a manual fashion, with the help of domain experts.

Automated classification has been a subject of intensive research for many years. The study of classification in classical statistics is sometimes known as \textit{discriminant analysis}, where the objective is to predict the group membership of an object based on a set of predictor variables. A well-known classical method is Fisher’s linear discriminant analysis \cite{117}, which seeks to find a linear projection of the data that produces the greatest discrimination between objects that belong to different classes.

Many pattern recognition problems also require the discrimination of objects from different classes. Examples include speech recognition, handwritten character identification, and image classification. Readers who are interested in the application of classification techniques for pattern recognition can refer to the survey articles by Jain et al. \cite{122} and Kulkarni et al. \cite{128} or classic pattern recognition books by Bishop \cite{107}, Duda et al. \cite{114}, and Fukunaga \cite{118}. The subject of classification is also a major research topic in the fields of neural networks, statistical learning, and machine learning. An in-depth treat-
An overview of decision tree induction algorithms can be found in the survey articles by Buntine [110], Moret [137], Murthy [138], and Safavian et al. [147]. Examples of some well-known decision tree algorithms include CART [108], ID3 [143], C4.5 [145], and CHAID [125]. Both ID3 and C4.5 employ the entropy measure as their splitting function. An in-depth discussion of the C4.5 decision tree algorithm is given by Quinlan [145]. Besides explaining the methodology for decision tree growing and tree pruning, Quinlan [145] also described how the algorithm can be modified to handle data sets with missing values. The CART algorithm was developed by Breiman et al. [108] and uses the Gini index as its splitting function. CHAID [125] uses the statistical χ^2 test to determine the best split during the tree-growing process.

The decision tree algorithm presented in this chapter assumes that the splitting condition is specified one attribute at a time. An oblique decision tree can use multiple attributes to form the attribute test condition in the internal nodes [121, 152]. Breiman et al. [108] provide an option for using linear combinations of attributes in their CART implementation. Other approaches for inducing oblique decision trees were proposed by Heath et al. [121], Murthy et al. [139], Cantú-Paz and Kamath [111], and Utgoff and Brodley [152]. Although oblique decision trees help to improve the expressiveness of a decision tree representation, learning the appropriate test condition at each node is computationally challenging. Another way to improve the expressiveness of a decision tree without using oblique decision trees is to apply a method known as **constructive induction** [132]. This method simplifies the task of learning complex splitting functions by creating compound features from the original attributes.

Besides the top-down approach, other strategies for growing a decision tree include the bottom-up approach by Landeweerd et al. [130] and Pattipati and Alexandridis [142], as well as the bidirectional approach by Kim and Landgrebe [126]. Schuermann and Doster [150] and Wang and Suen [154] proposed using a **soft splitting criterion** to address the data fragmentation problem. In this approach, each record is assigned to different branches of the decision tree with different probabilities.

Model overfitting is an important issue that must be addressed to ensure that a decision tree classifier performs equally well on previously unknown records. The model overfitting problem has been investigated by many authors including Breiman et al. [108], Schaffer [148], Mingers [135], and Jensen and Cohen [123]. While the presence of noise is often regarded as one of the
primary reasons for overfitting [135, 140], Jensen and Cohen [123] argued that overfitting is the result of using incorrect hypothesis tests in a multiple comparison procedure.

Schapire [149] defined generalization error as “the probability of misclassifying a new example” and test error as “the fraction of mistakes on a newly sampled test set.” Generalization error can therefore be considered as the expected test error of a classifier. Generalization error may sometimes refer to the true error [136] of a model, i.e., its expected error for randomly drawn data points from the same population distribution where the training set is sampled. These definitions are in fact equivalent if both the training and test sets are gathered from the same population distribution, which is often the case in many data mining and machine learning applications.

The Occam’s razor principle is often attributed to the philosopher William of Occam. Domingos [113] cautioned against the pitfall of misinterpreting Occam’s razor as comparing models with similar training errors, instead of generalization errors. A survey on decision tree-pruning methods to avoid overfitting is given by Breslow and Aha [109] and Esposito et al. [116]. Some of the typical pruning methods include reduced error pruning [144], pessimistic error pruning [144], minimum error pruning [141], critical value pruning [134], cost-complexity pruning [108], and error-based pruning [145]. Quinlan and Rivest proposed using the minimum description length principle for decision tree pruning in [146].

Kohavi [127] had performed an extensive empirical study to compare the performance metrics obtained using different estimation methods such as random subsampling, bootstrapping, and k-fold cross-validation. Their results suggest that the best estimation method is based on the ten-fold stratified cross-validation. Efron and Tibshirani [115] provided a theoretical and empirical comparison between cross-validation and a bootstrap method known as the 632+ rule.

Current techniques such as C4.5 require that the entire training data set fit into main memory. There has been considerable effort to develop parallel and scalable versions of decision tree induction algorithms. Some of the proposed algorithms include SLIQ by Mehta et al. [131], SPRINT by Shafer et al. [151], CMP by Wang and Zaniolo [153], CLOUDS by Alsabti et al. [106], RainForest by Gehrke et al. [119], and ScalParC by Joshi et al. [124]. A general survey of parallel algorithms for data mining is available in [129].
Chapter 4 Classification

Bibliography

4.8 Exercises

1. Draw the full decision tree for the parity function of four Boolean attributes, $A, B, C,$ and D. Is it possible to simplify the tree?

2. Consider the training examples shown in Table 4.7 for a binary classification problem.

 (a) Compute the Gini index for the overall collection of training examples.
 (b) Compute the Gini index for the Customer ID attribute.
 (c) Compute the Gini index for the Gender attribute.
 (d) Compute the Gini index for the Car Type attribute using multiway split.
 (e) Compute the Gini index for the Shirt Size attribute using multiway split.
 (f) Which attribute is better, Gender, Car Type, or Shirt Size?
 (g) Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.

3. Consider the training examples shown in Table 4.8 for a binary classification problem.

 (a) What is the entropy of this collection of training examples with respect to the positive class?
Table 4.7. Data set for Exercise 2.

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>Gender</th>
<th>Car Type</th>
<th>Shirt Size</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>Family</td>
<td>Small</td>
<td>C0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Sports</td>
<td>Medium</td>
<td>C0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Sports</td>
<td>Medium</td>
<td>C0</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>Sports</td>
<td>Large</td>
<td>C0</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>Sports</td>
<td>Extra Large</td>
<td>C0</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Sports</td>
<td>Extra Large</td>
<td>C0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>Sports</td>
<td>Small</td>
<td>C0</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>Sports</td>
<td>Small</td>
<td>C0</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>Sports</td>
<td>Medium</td>
<td>C0</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>Luxury</td>
<td>Large</td>
<td>C0</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>Family</td>
<td>Large</td>
<td>C1</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>Family</td>
<td>Extra Large</td>
<td>C1</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>Family</td>
<td>Medium</td>
<td>C1</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>Luxury</td>
<td>Extra Large</td>
<td>C1</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>Luxury</td>
<td>Small</td>
<td>C1</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>Luxury</td>
<td>Small</td>
<td>C1</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>Luxury</td>
<td>Medium</td>
<td>C1</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Luxury</td>
<td>Medium</td>
<td>C1</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>Luxury</td>
<td>Medium</td>
<td>C1</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>Luxury</td>
<td>Large</td>
<td>C1</td>
</tr>
</tbody>
</table>

Table 4.8. Data set for Exercise 3.

<table>
<thead>
<tr>
<th>Instance</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>Target Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>1.0</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>6.0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>5.0</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>4.0</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>7.0</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>3.0</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>8.0</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>F</td>
<td>7.0</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>T</td>
<td>5.0</td>
<td>−</td>
</tr>
</tbody>
</table>

(b) What are the information gains of a_1 and a_2 relative to these training examples?

(c) For a_3, which is a continuous attribute, compute the information gain for every possible split.
Chapter 4 Classification

(d) What is the best split (among \(a_1\), \(a_2\), and \(a_3\)) according to the information gain?

(e) What is the best split (between \(a_1\) and \(a_2\)) according to the classification error rate?

(f) What is the best split (between \(a_1\) and \(a_2\)) according to the Gini index?

4. Show that the entropy of a node never increases after splitting it into smaller successor nodes.

5. Consider the following data set for a binary class problem.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Class Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Calculate the information gain when splitting on \(A\) and \(B\). Which attribute would the decision tree induction algorithm choose?

(b) Calculate the gain in the Gini index when splitting on \(A\) and \(B\). Which attribute would the decision tree induction algorithm choose?

(c) Figure 4.13 shows that entropy and the Gini index are both monotonously increasing on the range \([0, 0.5]\) and they are both monotonously decreasing on the range \([0.5, 1]\). Is it possible that information gain and the gain in the Gini index favor different attributes? Explain.

6. Consider the following set of training examples.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>No. of Class C1 Examples</th>
<th>No. of Class C2 Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>
(a) Compute a two-level decision tree using the greedy approach described in this chapter. Use the classification error rate as the criterion for splitting. What is the overall error rate of the induced tree?

(b) Repeat part (a) using X as the first splitting attribute and then choose the best remaining attribute for splitting at each of the two successor nodes. What is the error rate of the induced tree?

(c) Compare the results of parts (a) and (b). Comment on the suitability of the greedy heuristic used for splitting attribute selection.

7. The following table summarizes a data set with three attributes A, B, C and two class labels $+$, $−$. Build a two-level decision tree.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Number of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$+$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>25</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) According to the classification error rate, which attribute would be chosen as the first splitting attribute? For each attribute, show the contingency table and the gains in classification error rate.

(b) Repeat for the two children of the root node.

(c) How many instances are misclassified by the resulting decision tree?

(d) Repeat parts (a), (b), and (c) using C as the splitting attribute.

(e) Use the results in parts (c) and (d) to conclude about the greedy nature of the decision tree induction algorithm.

8. Consider the decision tree shown in Figure 4.30.

(a) Compute the generalization error rate of the tree using the optimistic approach.

(b) Compute the generalization error rate of the tree using the pessimistic approach. (For simplicity, use the strategy of adding a factor of 0.5 to each leaf node.)

(c) Compute the generalization error rate of the tree using the validation set shown above. This approach is known as **reduced error pruning**.
9. Consider the decision trees shown in Figure 4.31. Assume they are generated from a data set that contains 16 binary attributes and 3 classes, \(C_1 \), \(C_2 \), and \(C_3 \).

(a) Decision tree with 7 errors

(b) Decision tree with 4 errors

Figure 4.31. Decision trees for Exercise 9.
Compute the total description length of each decision tree according to the minimum description length principle.

- The total description length of a tree is given by:
 \[\text{Cost}(\text{tree}, \text{data}) = \text{Cost}(\text{tree}) + \text{Cost}(\text{data|tree}). \]

- Each internal node of the tree is encoded by the ID of the splitting attribute. If there are \(m \) attributes, the cost of encoding each attribute is \(\log_2 m \) bits.
- Each leaf is encoded using the ID of the class it is associated with. If there are \(k \) classes, the cost of encoding a class is \(\log_2 k \) bits.
- \(\text{Cost}(\text{tree}) \) is the cost of encoding all the nodes in the tree. To simplify the computation, you can assume that the total cost of the tree is obtained by adding up the costs of encoding each internal node and each leaf node.
- \(\text{Cost}(\text{data|tree}) \) is encoded using the classification errors the tree commits on the training set. Each error is encoded by \(\log_2 n \) bits, where \(n \) is the total number of training instances.

Which decision tree is better, according to the MDL principle?

10. While the .632 bootstrap approach is useful for obtaining a reliable estimate of model accuracy, it has a known limitation [127]. Consider a two-class problem, where there are equal number of positive and negative examples in the data. Suppose the class labels for the examples are generated randomly. The classifier used is an unpruned decision tree (i.e., a perfect memorizer). Determine the accuracy of the classifier using each of the following methods.

 (a) The holdout method, where two-thirds of the data are used for training and the remaining one-third are used for testing.
 (b) Ten-fold cross-validation.
 (c) The .632 bootstrap method.
 (d) From the results in parts (a), (b), and (c), which method provides a more reliable evaluation of the classifier's accuracy?

11. Consider the following approach for testing whether a classifier A beats another classifier B. Let \(N \) be the size of a given data set, \(p_A \) be the accuracy of classifier A, \(p_B \) be the accuracy of classifier B, and \(p = (p_A + p_B) / 2 \) be the average accuracy for both classifiers. To test whether classifier A is significantly better than B, the following Z-statistic is used:

 \[Z = \frac{p_A - p_B}{\sqrt{\frac{2p(1-p)}{N}}} \]

 Classifier A is assumed to be better than classifier B if \(Z > 1.96 \).
Table 4.9 compares the accuracies of three different classifiers, decision tree classifiers, naïve Bayes classifiers, and support vector machines, on various data sets. (The latter two classifiers are described in Chapter 5.)

Table 4.9. Comparing the accuracy of various classification methods.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Size ((N))</th>
<th>Decision Tree (%)</th>
<th>naïve Bayes (%)</th>
<th>Support vector machine (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anneal</td>
<td>898</td>
<td>92.09</td>
<td>79.62</td>
<td>87.19</td>
</tr>
<tr>
<td>Australia</td>
<td>690</td>
<td>85.51</td>
<td>76.81</td>
<td>84.78</td>
</tr>
<tr>
<td>Auto</td>
<td>205</td>
<td>81.95</td>
<td>58.05</td>
<td>70.73</td>
</tr>
<tr>
<td>Breast</td>
<td>699</td>
<td>95.14</td>
<td>95.99</td>
<td>96.42</td>
</tr>
<tr>
<td>Cleve</td>
<td>303</td>
<td>76.24</td>
<td>83.50</td>
<td>84.49</td>
</tr>
<tr>
<td>Credit</td>
<td>690</td>
<td>85.80</td>
<td>77.54</td>
<td>85.07</td>
</tr>
<tr>
<td>Diabetes</td>
<td>768</td>
<td>72.40</td>
<td>75.91</td>
<td>76.82</td>
</tr>
<tr>
<td>German</td>
<td>1000</td>
<td>70.90</td>
<td>74.70</td>
<td>74.40</td>
</tr>
<tr>
<td>Glass</td>
<td>214</td>
<td>67.29</td>
<td>48.59</td>
<td>59.81</td>
</tr>
<tr>
<td>Heart</td>
<td>270</td>
<td>80.00</td>
<td>84.07</td>
<td>83.70</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>155</td>
<td>81.94</td>
<td>83.23</td>
<td>87.10</td>
</tr>
<tr>
<td>Horse</td>
<td>368</td>
<td>85.33</td>
<td>78.80</td>
<td>82.61</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>351</td>
<td>89.17</td>
<td>82.34</td>
<td>88.89</td>
</tr>
<tr>
<td>Iris</td>
<td>150</td>
<td>94.67</td>
<td>95.33</td>
<td>96.00</td>
</tr>
<tr>
<td>Labor</td>
<td>57</td>
<td>78.95</td>
<td>94.74</td>
<td>92.98</td>
</tr>
<tr>
<td>Led7</td>
<td>3200</td>
<td>73.34</td>
<td>73.16</td>
<td>73.56</td>
</tr>
<tr>
<td>Lymphography</td>
<td>148</td>
<td>77.03</td>
<td>83.11</td>
<td>86.49</td>
</tr>
<tr>
<td>Pima</td>
<td>768</td>
<td>74.35</td>
<td>76.04</td>
<td>76.95</td>
</tr>
<tr>
<td>Sonar</td>
<td>208</td>
<td>78.85</td>
<td>69.71</td>
<td>76.92</td>
</tr>
<tr>
<td>Tic-tac-toe</td>
<td>958</td>
<td>83.72</td>
<td>70.04</td>
<td>98.33</td>
</tr>
<tr>
<td>Vehicle</td>
<td>846</td>
<td>71.04</td>
<td>45.04</td>
<td>74.94</td>
</tr>
<tr>
<td>Wine</td>
<td>178</td>
<td>94.38</td>
<td>96.63</td>
<td>98.88</td>
</tr>
<tr>
<td>Zoo</td>
<td>101</td>
<td>93.07</td>
<td>93.07</td>
<td>96.04</td>
</tr>
</tbody>
</table>

Summarize the performance of the classifiers given in Table 4.9 using the following 3 × 3 table:

<table>
<thead>
<tr>
<th>win-loss-draw</th>
<th>Decision tree</th>
<th>Naïve Bayes</th>
<th>Support vector machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision tree</td>
<td>0 - 0 - 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td></td>
<td>0 - 0 - 23</td>
<td></td>
</tr>
<tr>
<td>Support vector machine</td>
<td></td>
<td></td>
<td>0 - 0 - 23</td>
</tr>
</tbody>
</table>

Each cell in the table contains the number of wins, losses, and draws when comparing the classifier in a given row to the classifier in a given column.
12. Let X be a binomial random variable with mean Np and variance $Np(1 - p)$. Show that the ratio X/N also has a binomial distribution with mean p and variance $p(1 - p)/N$.