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ABSTRACT

Dipoles represent long distance connections between the pres-
sure anomalies of two distant regions that are negatively
correlated with each other. Such dipoles have proven im-
portant for understanding and explaining the variability in
climate in many regions of the world, e.g., the El Nifo cli-
mate phenomenon is known to be responsible for precipi-
tation and temperature anomalies over large parts of the
world. Systematic approaches for dipole detection gener-
ate a large number of candidate dipoles, but there exists no
method to evaluate the significance of the candidate telecon-
nections. In this paper, we present a novel method for test-
ing the statistical significance of the class of spatio-temporal
teleconnection patterns called as dipoles. One of the most
important challenges in addressing significance testing in a
spatio-temporal context is how to address the spatial and
temporal dependencies that show up as high autocorrelation.
We present a novel approach that uses the wild bootstrap
to capture the spatio-temporal dependencies, in the special
use case of teleconnections in climate data. Our approach to
find the statistical significance takes into account the auto-
correlation, the seasonality and the trend in the time series
over a period of time. This framework is applicable to other
problems in spatio-temporal data mining to assess the sig-
nificance of the patterns.

Categories and Subject Descriptors

H.2.8 [Databse Management]: Database Applications—
Data mining
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1. INTRODUCTION

Pressure dipoles are important long distance climate phe-
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Figure 1: Pressure anomaly time series at the two
ends of the Southern Oscillation.

nomena (teleconnection) characterized by anomalies' of op-
posite polarity appearing at two different locations at the
same time. Dipoles are of great importance in understand-
ing climate variability and are known to impact precipitation
and temperature anomalies throughout the globe. Fig. 1
shows the pressure anomaly time series at Tahiti and Dar-
win representing one of the most well-known dipoles - the El
Nino Southern Oscillation which is known to drive precipi-
tation and temperature anomalies worldwide. The anomaly
time series of the two regions are in the opposite direction
representing an oscillation.

Historically, these dipoles have been discovered by direct
observation of some climate phenomenon on land and have
been defined using single point locations [1]. Later on, pat-
tern analysis techniques such as the EOF [2] have been used
to identify individual dipoles over a limited region, such as
Arctic Oscillation (AO). However, there are several limita-
tions associated with EOF and other types of eigenvector
analysis; namely, it only finds a few of the strongest signals
and the physical interpretation of such signals can be dif-
ficult due to the orthogonality of EOFs, whereas signals in
climate are not necessarily orthogonal to each other. Sys-
tematic approaches for dipole discovery have been proposed
in [3, 4, 5]. Kawale et al. [3, 4] present a graph based
approach to find dipoles in the climate data and are able
to match the existing dipole indices used by climate scien-

! Anomalies are computed from raw data by subtracting the
long term monthly means and are widely used in climate
studies to take care of the seasonality in the data.
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Figure 2: Dipole edges with correlation < —0.2 in
the NCEP sea level pressure data taken from [3].

tists with a very high precision and are able to provide re-
gion based definitions for dipoles defined earlier using EOF
analysis. An important utility of the dynamic dipoles de-
fined using this approach is that they are able to capture
the dynamics of the climate phenomenon unlike the existing
approaches that are based on pre-specified regions. Hence
these dynamic dipoles tend to capture greater amount of cli-
mate variability at the global level [3, 4]. Further, they have
been shown to be important in understanding the structure
of the various General Circulation Models (GCMs) which
are used to understand global climate change [3]. It is im-
perative to have a significance testing to rule out spuriously
connected regions, correlated by random chance. This can
help in discovering a new dipole phenomenon, previously
not known to climate scientists. Given the importance of
the teleconnections in influencing extreme weather events
like tropical cyclones, droughts, hurricanes, etc., a previ-
ously unknown connection provides a critical missing link to
the climate scientists.

Systematic approaches for dipole discovery generate a large
number of candidate dipoles, i.e. two regions that are con-
nected by negative correlation in their anomalies, that might
possibly represent a physical phenomenon. Fig. 2 shows the
dipoles generated by the algorithm given in [3]. The edges
represent a connection between the two opposing ends of
the dipoles. The figure captures most of the dipoles known
to climate scientists, however, it also shows a large num-
ber of edges that do not correspond to any known dipole
phenomenon. Some of these might represent mechanisms
unknown to climate scientists, but it is likely that most
of them are spurious patterns. Indeed, because there are
thousands of locations and hence tens of millions of possible
pairs; thus the chances of finding strong negative correla-
tions among pairs or even regions is quite high. To differen-
tiate interesting dipoles (some of which may be unknown)
from spurious ones, a method to evaluate their statistical
significance is required. However, to our knowledge there
are no such approaches in the literature that can incorpo-
rate all the nuances of climate dipoles.

1.1 Challenges in Significance Testing

Statistical significance testing determines whether a given
result is likely to occur by random chance and thus implies
whether a result is of statistical importance, and therefore
would generalize to other contexts. Historically, significance

testing has been widely studied in statistics and there are
several classical analytical hypothesis testing methods avail-
able. Analytical methods of hypothesis testing such as the
t-test generally involve computing a test statistic from the
observed data and computing a probability value to test if
the observed data was derived from a null hypothesis. The
null hypothesis is rejected in favor of the alternate one if the
probability value is below the significance level. However,
a main drawback of these approaches is that they impose a
distribution structure on the data. Technically, t-tests are
valid only for i.i.d. normally distributed data and are very
sensitive to outliers.

An alternate method of significance testing widely used
in data mining is empirical testing using randomization to
determine the null model. Randomization tests proceed by
following the sequence of steps: (i) rearrange or shuffle the
observed value in each sample, (ii) compute the statistics for
the randomized data, (iii) repeat it k times (e.g. 1000), and
(iv) compare the test statistic generated from the original
data and the random distribution to rule out patterns gen-
erated by random chance. The intuition behind generating
a large sample of the datasets is to create a null model from
the data. If the computed test statistics differ widely from
the measurements on random datasets then we can reject
the null hypothesis and declare the result to be significant.

Randomization tests [6] have been successfully used in
many contexts in data mining to find interesting patterns
in graphs [7], association rule mining [8], motif mining [9,
10, 11], etc. In ecology, significance testing has been used to
study the analysis of species nestedness patterns [12] and to
study the diffusion of a spatial phenomenon [13] and spatial
gradients [14]. Monte Carlo tests to test the significance of
spatial patterns has been discussed in [15]. However, there
are many challenges in using randomization tests for spatio-
temporal patterns, some of which are listed below:

1.1.1 Data independence

One of the underlying assumptions in randomization test-
ing is i.i.d. data. However, in the spatio-temporal context,
generally there is a high spatial and temporal autocorrela-
tion and homogeneity, thus violating the assumption of data
independence.

1.1.2  Heteroscedasticity

Heteroscedasticity refers to the problem of different vari-
ances in a sub-population and the tests of randomization
are sensitive to it. Heteroscedasticity exists in Earth sci-
ence data in both space and time, i.e., not only the sub-
population variances may be different for different locations
but they can also vary over time for the same location [16].

1.1.3  Seasonality and trends

In a spatio-temporal context, there are other influencing
factors like seasonality, trends, etc. which greatly impact the
values in a time series. This can make the tests of random-
ization either too liberal or too conservative (Type I vs Type
IT errors). A possible strategy to get rid of trends could be
to de-trend the time series. However, de-trending of non-
stationary time series data itself has several issues and may
result in removing certain dipoles or adding spurious ones,
which might require a detailed investigation [17, 18]. Results
also depend upon the nature of trends, whether unit roots
are present or not, and the nature of possible co-integrating



relations, see Engle and Granger [17, 18] for further details.
Seasonality is generally handled in climate data by creating
an anomaly time series. However, even then there is annual
cycle still left in the anomaly time series of some locations
on the Earth which could result in the formation of spurious
dipoles [19].

1.1.4 Null model

We want the data generating process for drawing random
samples to be as close as possible to the true data gener-
ating process which generated the observed values. While
randomization tests are very often better than simple meth-
ods like the t-test, it is very hard to verify the assumption
that (and is generally not true that) the multiple datasets
created by randomization come from a null model represent-
ing the true data generating process.

1.2 Our Contribution

To the best of our knowledge, there are no existing ap-
proaches for testing the significance of spatio-temporal pat-
terns that systematically model the spatio-temporal data
and handle various aspects like auto-correlation, trends, etc.
In this paper, we provide a systematic approach to test the
significance of the spatio-temporal teleconnection patterns
that overcomes the challenges mentioned above. Our ap-
proach uses the general framework provided by the wild
bootstrap procedure [20, 21] which is traditionally applied
for heteroscedastic problems to present a technique that
takes into account the various aspects of climate data like
auto-correlation, trends, etc. One novel aspect of our ap-
proach is that we translate the space time problem to one
where the errors can be modeled as independent but het-
eroscedastic. We capture the spatial dependence of each
region of a dipole via a unified function and capture the
temporal dependencies through a first order Markovian dis-
tribution. We show the utility of our approach by using it
to test the significance of dipoles generated in the NCEP sea
level pressure dataset. While we mainly use our algorithm to
test the significance of teleconnection patterns, our approach
can be instructive to other pattern mining algorithms in the
spatio-temporal context to test the significance.

2. PROPOSED APPROACH

As we saw in the previous section, a significance testing
based on randomizing time series would not be appropriate
for climate data. Instead, it would be more desirable to
compute the significance amongst those random series that
preserve the same properties as the underlying climate data
time series. Our approach for randomization is inspired from
the wild bootstrap procedure [20, 21]. The wild bootstrap
is a technique where random weights are multiplied to the
residuals from the data after fitting a statistical model, then
artificial datasets are created using these randomly weighted
residuals, and inference is based on repeating the statistical
model fitting exercise on these artificial datasets. The wild
bootstrap has been mathematically proven to be consistent,
and successfully applied to a variety of problems where the
data may be heteroscedastic in nature, and the parameter
dimension may be large compared to the sample size.

We present a novel approach that uses the wild bootstrap
and capture the spatio-temporal dependencies, in the special
use case of teleconnections in climate data. First, we develop
a small area or state-space type decomposition of the spatio-

temporal data to extract the underlying time series that
governs teleconnection patterns, against the background of
local noise variations. Our approach implicitly takes into
account the space dependence of the data as we require each
end of the dipole (consisting of many single point locations)
to share the same global component. We account for the
time dependencies by incorporating an auto-regressive term
assuming a first order Markovian dependency in our time
series decomposition. Once we extract out the properties
(or dominant signals), we test the significance by examining
the residual correlation at both the ends of the dipole and
thus it helps us in identifying that the negative correlation
between the two regions at the two ends is indeed coming
from an underlying phenomenon or is just an artifact of the
dominant properties. We assign a degree of confidence to our
conclusions using a test of randomization. Further details of
our approach are mentioned in the following subsections:

2.1 Notation

Let A and B represent the two ends of the dipole and let
na and np represent the number of points at the two ends.

Let X;t t=1,...,T,i=1,...,n4 represent the time series
for T time steps at the na points of region A. Similarly, let
Yut=1,...,T,i=1,...,np represent the time series for T’

time steps at the np points of region B.

2.2 Step 1: Time Series Decomposition

The first step in the significance testing of dipoles is a
temporal decomposition that captures the spatial as well as
the temporal bindings of the two ends of the dipoles. We
begin by noting two key properties of the dipole anomaly
time series.

1. Trend: Many locations on Earth experience a general
linear trend in their anomalies over time. For some lo-
cations, the trend increases and for some it decreases
over time and this pattern can vary with different mag-
nitude at different locations.

2. Seasonality: Typically, Earth science data has sea-
sonality in it. Apart from the annual seasonality which
is accounted for by constructing the anomaly time se-
ries, the data typically has sinusoidal patterns of var-
ious periodicities and of varying strengths across re-
gions. If we examine the periodicities of the anomaly
time series using the power spectrum, we see that quite
of few of them have a period of 12 months [19].

In order to model these two key characteristics of dipole
locations, we propose a temporal function f(t), defined as
follows:

(1)

The function f(t) captures the trend through the 8t com-
ponent and the seasonality through the 7 sin(-) component.
The a component ensures that the constant effect due to al-
titude, latitude and other unknown phenomena is also cap-
tured. f(-) only captures the temporal fluctuations at a
given location independent of any spatial or temporal bind-
ings.

Recall that a dipole consists of two regions, A and B, with
opposite climate phenomenon. All the locations in a given
region have a highly positive correlation in their anomalies

f(t) = a+ Bt +ysin (M)
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and they are driven by the same underlying phenomenon.
Let that underlying phenomenon for a specific end of dipole
(say A) be indicated by U, where size of U is T' x 1. This
results in the following linear heteroscedastic decomposition:

Viea Xi =U +1r; (2)

where 7; is the error term representing the local phenomenon
at a location ¢ € A. Moreover, depending on how far a
location i lies from the dipole center, its anomaly time se-
ries would be influenced accordingly. Let w(i) indicate the
weight or influence of U on X;. The goal in this case is to
reduce the residue of a given region.

SE, =Tr [(X U)W (X — Ul)] (3)

where X is a T'x N matrix with column 7 indicating anomaly
time series of location ¢ € A, 1 is a matrix of size 1 x N with
all elements = 1, W is a diagonal matrix with W;; = w(q).

Equation 2 allows us to capture the spatial bindings of
a dipole region and provides a unified anomaly time series
U. It does not capture the temporal correlations of U. In
order to do this, we consider the following auto-regressive
formulation:

U= ft)+olUi—1 — ft—1)] + e (4)

Similar to equation 3, we aim to reduce the residue ¢, such
that the decomposition captures all the spatial and temporal
properties of the dipole. We define the squared error of € as

SE. = (Vi = ¢Vi-1)? (5)

t

where V; = Uy — f(t). The mathematical properties of the
dipole detection algorithm is primarily governed by the bi-
variate time series

_ [ Va _
V.= ( Ve ),t71,2,...T.

This is a non-stationary time series, since the innovations
for this time series are given by the independent bivariate
random variables

. ( €At ) mdN (( 0 ) < O’E\t PABO AtO Bt >)
€t = ~ 2 s 2 .
€Bt 0 PABOALOBt OBy

A variation of the Kolmogorov consistency theorem is used
to establish the existence of the second order stochastic pro-
cess {V:}. The properties of the dipole are dictated by the
innovation correlation coefficient pap, which takes a high
negative value for true dipoles.

We model V; = ®V;_1 + ¢; where we assume ® is a
diagonal matrix with diagonal entries ¢4 and ¢p. The
deterministic trend functions {fa(-)} and {fs(:)} and the
local noise perturbation terms {ra;(:),i = 1,...,na} and
{rgi(),i =1,...,np} do not contribute towards the proper-
ties of a dipole, but are important nuisance factors in study-
ing dipoles. Needless to say, we could adopt a more compli-
cated model for the time series properties of V¢, the deter-
ministic trends or the local noise, and include co-integration
and other complex features. However, in the context of the
present application, such additional complexity seems un-
necessary.

Our aim is to reduce the squared error SE, and SE. and
we do it by minimizing them in turn. The residue term
€: represents error that is independent and heteroscedastic.

Thus we are able to effectively translate the space time prob-
lem into one where we are able to model the errors as inde-
pendent but heteroscedastic. We use a simplistic approach
to obtain an approximate solution that minimizes Equation
3 and 5. The idea is to minimize SFE, independent of U;’s
auto-regressive property and obtain estimates of «, 8,y for a
fixed choice of §. After that, using U;’s auto-regressive prop-
erties estimate ¢ and compute €. The attractive property of
this approach is that it leads to a closed form solution for
the parameters. We get,

2 gk(t) - w(i) - X
Tr(W)

S on() - f() = “ k=123 (6

where ¢1(t) = 1, g2(t) = ¢, g3(t) = sin(%;&)). The
three equations can be easily solved for a fixed ¢ using linear
regression. Additionally, we get a closed form for ¢ as,

T
Vi Vo
o= Tt Vi @
dima Vi
In order to estimate the optimal §, we begin with an estimate
by varying it from 1,...,12 and pick the one that minimizes

E[Et] .

2.3 Step 2: Residual correlation

After finding the residue at each end of the dipole, our
next goal is to examine the residual correlation at the two
ends of the dipole to check if the regions involved form a
true dipole. The residue at the two ends represents the time
series signal after extracting trend and the seasonality. We
compute the pairwise correlation p;; between all the nodes
in € and e;-t. We can use the raw correlation values to
test the significance of the dipoles. However, we use a more
stable transformation provided by Fisher to transform the
correlation into Z;; as described in the following subsection.

Fisher transformation

The Fisher transformation [22] is generally used in statis-
tics to test the hypothesis about the correlation coefficient
p between two variables. The transformation changes the
probability density function (pdf) of any waveform so that
the transform output has an approximately Gaussian pdf.
The transformation is defined as follows:
Zii = 110971 T Pij

7= gloar— 0 (8)

The Fisher transformation is a variance stabilizing transfor-
mation and converges to a normal distribution much faster.

2.4 Step 3: Assessing dipole statistical signifi-
cance

In testing the significance of dipoles, the null hypothesis
means that the dipole pattern is spurious or uninteresting.
Our task is to generate the p-value to specify a confidence
measure on whether the dipole is significant. Using our time
series decomposition, we devise the following method of ran-
domization inspired from the wild bootstrap algorithm [23]
in which re-samples are generated by multiplying random
noise to the residuals in order to preserve heteroscedasticity.
The details of the steps are mentioned as follows:

1. Step 1: Compute the time series decomposition and
the parameters, a, 8, v and §. Compute the residue



€4 and ep at the two ends and the Fisher transformed
correlation Zap.

2. Step 2: Generate random perturbations in the residual

data such that the variance of the residual data is still

oZ. This can be done by multiplying i.i.d. random

noise A (0,1) to the original residue €4 and €g.
E[(¢e — E[ype])?] E[(e)®] — (E[y]E[e])?
= E[(We)’]=o0?
here we have used E[¢] = 0, E[¢?] = 1, E[¢] = 0.

3. Step 3: Recompute X;t and Yilt using «, S, v and 6.

4. Step 4: Recompute the decomposition to generate a/,
’ ’ ’ ’ ’
B ,~v and 6 . Compute the residue €4 and ep at the
’
two ends and the Fisher transformed correlation Z 4.

5. Step 5: Repeat steps 2 to 5 N = 10,000 times and
generate the p-value as follows:

Pan =5 Z (7a52745) (9)

Let Zap = 1logH"”“B and similarly define ZAB, and

T, = TY?(Zap — Zap) where T is the observed length
of the time-series. From the wild-bootstrap based genera-
tion, we obtain similar estimates from each resample, and
let Z A be the equlvalent of Z Ap from the resample. Define
Ty = Tl/Q(Z* — ZAB) We have the following result as the
theoretical counterpart of our algorithm:

THEOREM 2.1. In the framework presented above, the fol-
lowing hold:

1. The distribution of the statistic T,, converges weakly to
the standard Normal distribution N(0,1).

2. The distribution of the statistic T, , conditionally on
the observed data from regions A and B, converges
weakly to the standard Normal distribution N(0,1) al-
most surely.

The second part of the above theorem states that for all
possible data sets arising from regions A and B, the conver-
gence of the wild bootstrap-based statistic T,, to the same
distribution as that of the original statistic T), is guaranteed
with probability one. The proof of the above theorem is
omitted here due to the lack of space.

2.5 Step 4: Multiple Hypotheses

Multiple comparisons is an important issue in dipole sig-
nificance testing as there are a set of statistical inferences
computed simultaneously. Multiplicity leads to false posi-
tives or the type I errors, i.e., the errors committed by in-
correctly rejecting the null hypothesis. In order to control
the false discovery rate (FDR), we use the standard proce-
dure by Benjamini-Hochberg-Yekutieli [24] which controls
the false discovery when the m hypothesis tests are depen-
dent, which is true in our case. The method refines the
threshold of p-values to find the largest k such that:

k
<
Py S ey * (10)

We compute ¢(m) by examining the correlation between the
10000 random values generated for each end of the dipole.
As they are positively correlated, we set c¢(m) to 1. We
discard all the dipoles having a p-value less that P).

3. EXPERIMENTS AND RESULTS

3.1 Dataset

We use the data from the NCEP/NCAR Reanalysis project
provided by the NOAA/ESRL [25]. The NCEP reanalysis
product uses an assimilation scheme embedded in a physical
model to interpolate global observations from 1948 onward
into a gridded projection of the state of the atmosphere. The
reanalysis datasets are created by assimilating remote and in
situ sensor measurements using a numerical climate model
to achieve physical consistency and interpolation to global
coverage; they are considered the best available proxy for
global observations. We use the monthly resolution of data
and it has a grid resolution of 2.5° longitude x 2.5° lati-
tude on the globe. We use the sea level pressure (SLP) data
to find the dipoles because most of the important climate
indices are based upon pressure variability. For the analy-
ses and results presented here, we use the 50 year of data
starting from 1951 to 2000.

3.2 Results

We ran the dipole algorithm using the NCEP dataset and
the algorithm mentioned in [3] and obtained all the dipoles
at a correlation threshold of —0.25. We ran our approach
on significance testing for this data to generate the resid-
ual correlation and obtained the p-values. Fig. 3 shows the
scatter plot of original correlation versus the residual cor-
relation amongst the dipoles found in the dataset. From
the figure, we see that a high negative original correlation
does not necessarily transform to a high negative residual
correlation. Fig. 4(a) shows an example of a dipole having
an original correlation of —0.32 but a residual correlation of
0.1359 (p-value = 1). If we examine the time series at the
two centres of the dipole (see Fig. 4(b), we see that there is
a linear trend in the opposite direction which the model is
able to effectively capture. Fig. 5 shows an example dipole
that did not have significant trends but was discarded due to
the seasonality component . The original correlation of the
dipole is —0.24, whereas the residual correlation is 0.0219.
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Figure 3: Scatter plot showing original vs residual
correlation.



o
I l‘“ W 1 J

L

851 61 71 81 91 o1
Years

) Dipole having a (b) Time series at the two centres
orrelatlon of —0.32
but a residual correla-
tion 0.1359
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Figure 5: Dipoles discarded due to seasonality fil-
tering.

On the other hand, Fig. 6 shows an example of a dipole
that had an original correlation of —0.25 but has a higher
negative residual correlation of —0.39 (p-value = 0). This
dipole represents one of the known connections AAO and
has a correlation of 0.8 with the AAO index defined by the
CPC [26]. We see that the approach effectively eliminates
about 16 dipoles with a p-value > 0.01. Further, it declares
all the known connections as significant. However, we see
that there are still a few dipoles (10) left that require post-
processing which is described below.

3.3 Post Processing Using Domain Knowledge

Our model for deterministic trend accommodates a linear
function and a sinusoidal component at each end-point of a
potential dipole. A careful analysis of some of these time
series show that non-linear trends may occasionally exist.
Fig. 7(a) shows an example of a dipole that had an orig-
inal correlation of —0.39 but has high non-linear trends.
Fig. 7(b) shows the time series at the two centres of the
dipole. From the figure, we see that the trends in the two
dipole ends are not linear, thus making the post processing
necessary. One end of the dipole corresponds to the Sa-
hel region in Africa which underwent an abrupt change a
long period of drought around 1969 [27] which is also re-
flected in the time series as shown in the Fig. 7(b). Based
on domain knowledge and prior experience, we know that
this dipole does not make physical sense. De-trending the
data before applying the dipole detection algorithm might
appear to be a solution. However, as we discussed earlier,

Figure 6: Dipole having an original correlation —0.25
but a residual correlation —0.39 corresponds to the
known dipole AAO.
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relation of —0.39 of the dipole

Figure 7: Dipole showing non-linear trend corre-
sponding to abrupt change due to the Sahel drought

detrending of climate data has many challenges and can lead
to adding spurious connections especially when the trends
are non-linear. Using domain knowledge, we want to fur-
ther eliminate these trend dipoles in order to identify the
real dipole structure.

Our parametric form comes to rescue in this case as this
allows us to put bound on the value § can take. We use a
simple method to examine the 3 values at the two ends. If
the difference in 8 values at the two ends of the dipole is
greater than a threshold, we discard them.

Discard dipoles if |8a — BB| > B (11)

In order to compute /3 , we considered the 6 well known
dipoles and computed the absolute difference in their beta
values and selected our threshold of 8 based upon that.
With the use of this filtering, a number of trended dipoles
mainly starting from the Sahel region in Africa that initially
passed the significance threshold were eliminated. This in-
tuitively makes sense because our parametric form removes
trend as well as cyclic patterns from the data but not the
small local oscillations (which are captured by €). There
is a possibility that one end of the spurious dipole is influ-
enced by one end of a true dipole. In this case, those local
oscillations as captured by epsilon could be of opposite po-
larity and hence manage to pass the significance test. The
above filtering mechanism using S seems like a simple way
to eliminate such cases.

3.4 Comprehensive Evaluation

Table 1 shows the summary of the number of dipoles de-
clared as significant using a significance level o = 0.01 and
the post-processing that we described above. From the ta-
ble, we see that 23 dipoles are declared as significant in
the dataset having a correlation < —0.25. Figures 8 shows



NCEP -0.25 NCEP -0.2
Total 49 85
p<0.01 [ p>0.01]| p<0.01 [ p=>0.01
No trends | 23 4 31 13
Trends 10 12 23 18

Table 1: Number of dipoles declared as significant
using our approach in the NCEP data.

Figure 8: Dipoles declared significant in the NCEP
dataset at a threshold of -0.25. Red denotes signifi-
cant dipoles and green denotes insignificant dipoles.

the dipoles declared significant in the NCEP dataset at a
threshold of —0.25. From a quick visual inspection of the
figures, we see that the well-known dipoles like North At-
lantic Oscillation (NAO), Southern Oscillation (SO), West-
ern Pacific (WP), Pacific North America pattern (PNA) and
Antarctic Oscillation (AAO) are all identified as significant.
Fig 9 shows the dipoles declared as significant at a lower
threshold of —0.2. From the figure, we see that apart from
the well known dipoles, other weaker connections start ap-
pearing as significant, for example the Scandinavia pattern
starting around Russia and ending at the Atlantic.

Our next goal is to check whether our algorithm has a
bias to declare dipoles having a higher negative correlation
as significant. Fig. 10 shows the histogram of correlation
values of dipoles declared as significant and insignificant in
the NCEP data. The histogram shows that at times the
algorithm even declares dipoles with higher negative corre-
lation as insignificant. However, using our approach, we are
still able to remove about 1/2 of the dipoles from the NCEP
data having a correlation < —0.25 as insignificant. Also the
histogram of correlations of significant and insignificant cor-
relations shows that the algorithm has no particular bias.
Next, we examine closely the two reasons in our algorithm
to label the dipoles as insignificant.

Recall, that the 8 values capture the linear trend present
in the data. Spurious dipoles can be formed if the two re-
gions involved in the dipole have significant trends in the
opposite direction and the negative correlation between the
two regions is accounted for by the negative trends and not a
periodic oscillation. Fig. 11 shows a plot of 5 values for the
NCEP dataset. From the figure, we see that there are quite
a few dipoles with strikingly opposite trends in the NCEP
data and most of them going to the southern hemisphere.
This also conforms with the existing knowledge about the

Figure 9: Dipoles declared significant in the NCEP
dataset at a threshold of -0.2. Red denotes signifi-
cant dipoles and green denotes insignificant dipoles.
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Figure 10: Histogram of correlation strengths for
significant and insignificant dipoles.

NCEP data from the climate science [28] about the presence
of significant spurious trends in the southern hemisphere.
Table 1 shows that half of the rejected dipoles have sig-
nificant trends in the opposite direction. Apart from the
dipoles with trends, the other dipoles which are discarded
using our algorithm are the ones with very little negative
residual correlation left in them (see Table 1). Seasonality
in the dipoles could be one possible reason. Fig. 12 shows
the gamma values of the dipoles. From the figure, we see
that quite a few of them have significant value of gamma.

3.4.1 p-value for the known dipoles

A good measure of evaluation is to examine the p-values
generated for the 6 of the most well known dipoles - SOI,
NAO, AO, AAO, WP, PNA. The existence and the impact
of these dipoles has been well established in literature from
climate science. At first, we pick up a data driven dipole
which represents the static index of the closest in correlation.
After that, we examine the p-values generated for the data
driven dipole closely matching the static index. Table 2
shows the p-values generated for the known dipoles using
our approach. From the table, we see that all of the 6 well
known dipoles are declared significant using our algorithm
and have a p-value of 0 up to the order of machine precision.
Further the residual correlation at the two ends of the dipole
generated by removing f(¢) from the time series at the two
ends is also very highly negative for the known dipoles. This
provides empirical evidence that our approach to estimate
the statistical significance works well in practice.
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Figure 11: Beta values at the two ends of the dipoles
for the NCEP dataset.
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Figure 12: Gamma values at the two ends of the
dipoles for the NCEP dataset.

3.4.2 Correlation with Static indices

In order to further assess the quality of the extracted
dipoles, we did another experiment to understand the na-
ture of the dipoles. Most of the candidate dipoles should
be a representative of some known phenomenon. We con-
sidered 6 teleconnection patterns identified by the Climate
Prediction Centre website [26]. From the NCEP data, we
considered two sets of dipoles significant and insignificant.
There were about 25 dipoles in each subset. We computed
the correlation of each of these dipoles with the 6 known
climate indices. Fig. 13 shows the maximum correlation of
the two groups of dipoles with the known indices. From
the figure, we see that all the surrogates of the known phe-
nomenon are captured very well in the significant group as
compared to the insignificant one. PNA is not captured
with a very high correlation in both the groups as the ac-
tual phenomenon consists of three epicenters and is not a
dipole. AAO has high correlation with significant as well
as insignificant group. This might be due to trends in the
insignificant group.

3.4.3 A new dipole ?

A larger implication of our work on significance testing
lies in identifying potentially new teleconnection patterns
not known to climate scientists so far. A careful evaluation
of all the dipoles from Fig. 8 shows that most of them have
a very high correlation with the known climate indices and
thus are some variant of the known phenomenon. However,

NCEP/NCAR
p-value Residual Corr | Fisher transform
SOI 1.2897e-13 | -0.1814 -10.3147
NAO | 0 -0.4137 -54.2486
AO 0 -0.3092 -19.913
AAO | O -0.39 —32.4990
WP 0 -0.1755 -9.2258
PNA | O -0.0968 -8.4194

Table 2: p-values for the known dipoles using the
random approximation along with residual correla-
tion.
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Figure 13: Maximum correlation with known indices
in the two sets of dipoles.

there are some teleconnection patterns that are declared as
significant and that do not have a high correlation with any
known phenomenon. One such striking dipole is a dipole
near Australia as shown in the Fig. 14. It appears as signif-
icant in the NCEP data and its correlation with the known
indices is also very low (see Fig. 15). Further, it is not sup-
ported by the existing literature on teleconnections. This
might represent a new dipole phenomenon not known to cli-
mate scientists so far. Our preliminary investigations show
that this dipole also has a different impact on land tempera-
ture as compared to other known dipoles. A comprehensive
evaluation of the physical significance of the phenomenon is
a part of our future work.

4. DISCUSSION AND CONCLUSION

Significance testing in spatio-temporal data presents many

Figure 14: Dipole near Australia shows up as statis-
tically significant.
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Figure 15: Correlation of the dipole near Australia
with known indices

challenges due to the inherent autocorrelation dependencies
in time and space. However, significance testing of spatio-
temporal patterns has received little attention. In this pa-
per, we present a systematic approach to detect the signif-
icance of spatio-temporal teleconnection patterns. We ran
our algorithm on the NCEP sea level pressure data. From
our results, we see that our algorithm is able to capture the
known dipoles. We show the utility of using a simple model
to extract out the characteristics of climate data time series.
A larger implication of our work is that the algorithm can
be instructive to other researchers in the spatio-temporal
domain to test the significance of patterns. A part of the
future work involves handling non-linear trends. Another
limitation of the model is that the marginal analysis of the
periodic component distort co-periodicity properties. We
propose to address this in our future research work. In par-
ticular, we propose to simultaneously model the determin-
istic trends and periodic components at the two ends of a
dipole, along with the stochastic components of the bivari-
ate time series. Two-dimensional wavelets would be used
for this purpose, since evidence shows some erratic patterns
and discontinuities. Also, as part of our future work, we
would like to explore if some potential dipoles are governed
by co-integrating relations. We also propose to explore the
choice of resampling weights for which the wild bootstrap
inference would be second order accurate. Another future
direction is to integrate the significance testing into the al-
gorithm for dipole detection and thus not allow spuriously
connected regions to be declared as candidate dipoles.
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