How Many Bits Per Rating

Daniel Kluver ${ }^{1}$, Tien T. Nguyen ${ }^{1}$, Michael Ekstrand ${ }^{1}$, Shilad Sen ${ }^{2}$, John Riedl ${ }^{1}$

${ }^{1}$ GroupLens Research
Dept. of Computer Science and Engineering University of Minnesota
${ }^{2}$ Math, Stats, and Computer Science Dept. Macalester College

September 11, 2012

V

r

\forall

Item-Item, User-User, Matrix Factorization, Feature Weighted Linear Stacking

\downarrow

Predict, Recommend, Explain Predictions,
Diversify Recomendations

User training, Surgery, Fraud detection, Intercrainial Preference Elicitation

Problem - ?
Better - ?

Better - Prediction Accuracy
 Issue - Magic Barrier

Better - ?

Problem - Users rate inconsistantly

Goal: Choose the best user interface.

Define Best

- Looks good
- Makes users happy
- Ratings are fast
- Most information about user preferences

Goal: Choose the best user interface.

Define Best

- Looks good
- Makes users happy
- Ratings are fast
- Most information about user preferences

Words to know

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the efficiency of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

Goal: Measure information about user preferences.

Define Preference

Define Information

Goal: Measure information about user preferences.

Define Preference

The tendency to consistently behave as if you placed value (positive or negative) on something.

Preferences n. - The tendency to consistently behave as if you placed value on something.

Figure: My value for science is rather large

Articulated Values

Basic Values

Partially Articulated Values

- All noise in rating comes from completely hidden context.

Goal: Measure information about user preferences.

Define Information

Thanks to Claude Shannon, Information is a solved problem.

Mutual Information

$$
I(X ; Y)=\sum_{x} \sum_{y} P(x, y) \log \left(\frac{P(x, y)}{P(x) P(y)}\right)
$$

- Measurement of how much knowing X increases our certainty about Y on average.
- Normally given in bits

Bringing it all together

- We can use mutual information to measure how much information anything tells us about user preferences.
- We call this measurement Preference Bits.
- If something has a lot of preference bits then it is good at explaining user preference.

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the efficiency of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

Goal: Measure information entering the recommender.

- Ratings $\left(R_{u, i}\right)$ enter the recommender.
- Ratings measure user preferences $\left(\pi_{u, i}\right)$.
- Therefore we want to measure this:

Goal: Measure information entering the recommender.

Measuring Input Preference Bits

- Prior work solves this problem with two ratings.

Information Processing Inequality

- X and Z are conditionally independent given Y
- When this is true, $I(X ; Z) \leq I(X ; Y)$

Measuring Input Preference Bits

- For two conditionally independent re-ratings $I\left(R_{1} ; R_{2}\right) \leq I(R ; \pi)$
- We will use this to measure input preference bits.

Measuring Input Preference Bits

2 Big assumptions:

- R_{1} conditionally independent with R_{2} given π
- R_{1} and R_{2} are generated by the same π

Picking User Interfaces

- Split users between rating interfaces
- Have users rate a bunch of movies
- Some time later, have the users rate the same items
- Compare preference bits between conditions

Picking User Interfaces

- Split users between rating interfaces
- Have users rate a bunch of movies
- Some time later, have the users rate the same items
- Compare preference bits between conditions
- We haven't run this (yet)

No one else has either

Dataset Analysis

From Cosley et. al. Seeing is believing.

2-point	6-point	10-point
0.423	0.825	0.813

Effect of Rating Scale on Input Preference Bits

- More rating choices, more bits
- Information hits a limit
- More noise less bits
- More preference options more bits

Words to know

> Preference bits A measure of information about user preferences.
> Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the efficiency of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

A Problem

- More rating options \Rightarrow more information
- More rating options \Rightarrow more cognitive load More rating options \Rightarrow slower ratings ${ }^{1}$
- slower ratings \Rightarrow less ratings
- less ratings \Rightarrow less information.
- More rating options \Rightarrow less and more information?

[^0]
Fast Rating Low Information

Slow Rating High Information

Please write a 1000 word essay explaining you opinions on this movie.

Loren Ipsum Dolor Sit Amet, a good novie, or a great movie? In this essay I will set out to ansver this question. We vill begin by

9973 words remaining. Submit

Solution: Bits Per Second

- Measuring bits per rating is easy.
- Measuring ratings per second is also easy.
- It turns out measure bits per second is also easy.

$$
\frac{\# \text { Bits }}{1 \text { Rating }} \times \frac{\# \text { Ratings }}{1 \text { second }}=\frac{\# \text { Bits }}{1 \text { second }}
$$

Bits per second: Does it matter?

- Using Sparling et. al. Rating: how difficult is it? and Cosley et. al. Seeing is Believing we can estimate.

$$
\begin{aligned}
2-\text { point } & =0.1082 \\
10 \text {-point } & =0.1878
\end{aligned}
$$

Words to know

> Preference bits A measure of information about user preferences.
> Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the efficiency of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

Output Preference Bits

- Predictions $\left(P_{u, i}\right)$ leave the recommender.
- Predictions predict user preferences $\left(\pi_{u, i}\right)$
- The amount of preference information leaving the recommender with $I(\pi ; P)$
- We measure this as $I(R ; P) \leq I(\pi ; P)$
- Yes, its just a fancy accuracy measure,
- But it handles varying scales well

Suggested use: Choosing how many stars to use.

From Jester dataset (Goldberg et. al.)

Input Scale \bullet 2-point \bullet 5-point \bullet 10-point \rightarrow 20-point \rightarrow 100-point

- More prediction options, more bits
- Information hits a limit (again)
- input scale controls limit
- most bits at 10 point scale

Preference Bits

Measure with: Mutual information

Bits Per Rating

Mutual information between ratings and preferences $\mathrm{I}(\pi ; \mathrm{R})$ Measure with: $\mathrm{I}\left(\mathrm{R}_{1} ; \mathrm{R}_{2}\right)$

Measures how much preference information is contained in ratings.

Bits Per Second

Measure with: Bits per rating times Ratings per second

Measures the efficiency of an interface at capturing preference bits.

Bits Per Prediction

Mutual information between prediction and preferences $\mathrm{I}(\pi ; \mathrm{P})$
Measure with: I(R;P)

Measures how much preference information is contained in Predictions.

The Next Steps

- How many stars should we use?
- What information helps users the most?
- What are the difference the preference bits of different domains?
- Does preference bits hold any relationship with user satisfaction?

Thank you

[^0]: ${ }^{1}$ Sparling et. al. Rating: How difficult is it?

