How Many Bits Per Rating

Daniel Kluver¹, Tien T. Nguyen¹, Michael Ekstrand¹, Shilad Sen², John Riedl¹

¹ GroupLens Research Dept. of Computer Science and Engineering University of Minnesota ² Math, Stats, and Computer Science Dept. Macalester College

September 11, 2012

メロト 米部ト 米油ト 米油ト 二油

Item-Item, User-User, Matrix Factorization, Feature Weighted Linear Stacking

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012 8 / 49

Predict, Recommend, Explain Predictions, Diversify Recomendations

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012 9 / 49

Normalization, Re-rating based Denosing

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012

10 / 49

User training, Surgery, Fraud detection, Intercrainial Preference Elicitation

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012

11 / 49

Problem - ? Better - ?

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

▶ < 볼 ▶ < 볼 ▶ 볼 September 11, 2012

12 / 49

Better - Prediction Accuracy Issue - Magic Barrier

How Many Bits Per Rating

September 11, 2012 13 / 49

Better - ? Problem - Users rate inconsistantly

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012

14 / 49

Define Best

- Looks good
- Makes users happy
- Ratings are fast
- Most information about user preferences

Define Best

- Looks good
- Makes users happy
- Ratings are fast
- Most information about user preferences

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the *efficiency* of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

16 / 49

Goal: Measure information about user preferences.

Define Preference

Define Information

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012 17 / 49

- < A

Goal: Measure information about user preferences.

Define Preference

The tendency to consistently behave as if you placed value (positive or negative) on something.

Preferences n. - The tendency to consistently behave as if you placed *value* on something.

Figure: My value for science is rather large

19 / 49

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012 20 / 49

3

イロン イ理ト イヨト イヨト

Basic Values

3

イロン イヨン イヨン イヨン

• All noise in rating comes from <u>completely hidden</u> context.

Kluver, Nguyen, Ekstrand, Sen, Riedl

September 11, 2012 22 / 49

Image: Image:

 $\exists \rightarrow$

Goal: Measure *information* about user preferences.

Define Information

Thanks to Claude Shannon, Information is a solved problem.

$I(X; Y) = \sum_{x} \sum_{y} P(x, y) log(\frac{P(x, y)}{P(x)P(y)})$

- Measurement of how much knowing X increases our certainty about Y on average.
- Normally given in *bits*

- We can use mutual information to measure how much information anything tells us about user preferences.
- We call this measurement *Preference Bits*.
- If something has a lot of preference bits then it is good at explaining user preference.

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the *efficiency* of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

Goal: Measure information entering the recommender.

- Ratings $(R_{u,i})$ enter the recommender.
- Ratings measure user preferences $(\pi_{u,i})$.
- Therefore we want to measure this:

Goal: Measure information entering the recommender.

Image: Image:

Measuring Input Preference Bits

• Prior work solves this problem with two ratings.

- **(** 🗇

Information Processing Inequality

X and Z are conditionally independent given Y
When this is true, I(X; Z) ≤ I(X; Y)

< A

Measuring Input Preference Bits

- For two conditionally independent re-ratings $I(R_1; R_2) \le I(R; \pi)$
- We will use this to measure input preference bits.

- 2 Big assumptions:
 - R_1 conditionally independent with R_2 given π

• R_1 and R_2 are generated by the same π

- Split users between rating interfaces
- Have users rate a bunch of movies
- Some time later, have the users rate the same items
- Compare preference bits between conditions

- Split users between rating interfaces
- Have users rate a bunch of movies
- Some time later, have the users rate the same items
- Compare preference bits between conditions
- We haven't run this (yet)

No one else has either

From Cosley et. al. Seeing is believing.

2-point	6-point	10-point
0.423	0.825	0.813

3

イロト イヨト イヨト イヨト

Effect of Rating Scale on Input Preference Bits

- More rating choices, more bits
- Information hits a limit
 - More noise less bits
 - More preference options more bits

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the *efficiency* of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

- More rating options \Rightarrow more information
- More rating options \Rightarrow more cognitive load More rating options \Rightarrow slower ratings ¹
- slower ratings \Rightarrow less ratings
- less ratings \Rightarrow less information.
- More rating options ⇒ less *and* more information?

¹Sparling et. al. Rating: How difficult is it?

Fast Rating Low Information

Slow Rating High Information

Please write a 1000 word essay explaining you opinions on this movie.

イロト イポト イヨト イヨト

Lorem Ipsum Dolor Sit Amet, a good movie, or a great movie? In this essay I will set out to answer this question. We will begin by

Have you seen this movie?

3

9973 words remaining. Submit

3

- Measuring bits per rating is easy.
- Measuring ratings per second is also easy.
- It turns out measure bits per second is also easy.

$$rac{\# \ \textit{Bits}}{1 \ \textit{Rating}} imes rac{\# \ \textit{Ratings}}{1 \ \textit{second}} = rac{\# \ \textit{Bits}}{1 \ \textit{second}}$$

• Using Sparling et. al. Rating: how difficult is it? and Cosley et. al. Seeing is Believing we can estimate.

2-point = 0.108210-point = 0.1878

A B > A B >

Preference bits A measure of information about user preferences.

Bits per rating Measures how much preference information is contained in ratings.

Bits per second Measures the *efficiency* of an interface at capturing preference bits.

Bits per prediction Measures how much preference information is contained in predictions.

41 / 49

- Predictions $(P_{u,i})$ leave the recommender.
- Predictions predict user preferences $(\pi_{u,i})$
- The amount of preference information leaving the recommender with $I(\pi; P)$
- We measure this as $I(R; P) \leq I(\pi; P)$
- Yes, its just a fancy accuracy measure,
- But it handles varying scales well

Suggested use: Choosing how many stars to use.

From Jester dataset (Goldberg et. al.)

- More prediction options, more bitsInformation hits a limit (again)
 - input scale controls limit
 - most bits at 10 point scale

Preference Bits Measure with: Mutual information

A measure of information about user preferences.

How Many Bits Per Rating

September 11, 2012

44 / 49

Bits Per Rating

Mutual information between ratings and preferences $I(\pi;R)$ Measure with: $I(R_1;R_2)$

Measures how much preference information is contained in ratings.

Bits Per Second

Measure with: Bits per rating times Ratings per second

Measures the efficiency of an interface at capturing preference bits.

Bits Per Prediction

Mutual information between prediction and preferences $I(\pi;P)$ Measure with: I(R;P)

Measures how much preference information is contained in Predictions.

- How many stars should we use?
- What information helps users the most?
- What are the difference the preference bits of different domains?
- Does preference bits hold any relationship with user satisfaction?

Thank you

Kluver, Nguyen, Ekstrand, Sen, Riedl

How Many Bits Per Rating

September 11, 2012 49 / 49

3