
Name: ID#: X500: @umn.edu A

CS 2041: Practice Exam 1
Fall 2018

University of Minnesota

Exam period: 20 minutes
Points available: 40

Problem 1 (10 pts): Write a function called
even_indices which takes any type of list and re-
turns a list of elements at even indices 0,2,4,etc. Ex-
ample uses from a REPL are shown. Hint: a recursive
solution which “skips” element is effective. My if/else
solution is 13 lines long while pattern matching makes
this considerably shorter.

1 # #use "even_indices.ml";;
2 val even_indices : ’a list -> ’a list = <fun>
3 # even_indices [];;
4 - : ’a list = []
5 # even_indices [0];;
6 - : int list = [0]
7 # even_indices [0; 1];;
8 - : int list = [0]
9 # even_indices [0; 1; 2; 3; 4; 5];;

10 - : int list = [0; 2; 4]
11 # even_indices [0; 1; 2; 3; 4; 5; 6; 7; 8];;
12 - : int list = [0; 2; 4; 6; 8]
13 # even_indices ["a"; "b"; "c"; "d";];;
14 - : string list = ["a"; "c"]

Write your code for even indices here.

Problem 2 (10 pts): Source code for the
array_fill function is provided along with a short
session which attempts to demonstrate the function.
A warning is given on loading the code and an unex-
pected result occurs. Describe the following.
(A) Why is the warning given?

(B) Why is the array apparently unchanged?

(C) How can the function be corrected to remove the
warning and carry out its intended purpose?

> cat -n fill.ml
1 (* fill array with given element *)
2 let fill_array arr elem =
3 for i=0 to (Array.length arr)-1 do
4 arr.(i) = elem;
5 done;
6 ;;

> ocaml
# #use "fill.ml";;
File "fill.ml", line 3, characters 4-18:
Warning 10: this expression should have type unit.
val fill_array : ’a array -> ’a -> unit = <fun>

# let a = [|9;5;2|];;
val a : int array = [|9; 5; 2|]

# fill_array a 7;;
- : unit = ()

# a;;
- : int array = [|9; 5; 2|]

1A



Name:

Problem 3 (10 pts): Complete the pointer diagram to shown to reflect how the OCaml code will use
existing cons boxes and create new ones.

Problem 4 (10 pts): Write a function called
firstlast which returns a list of the first and last
elements of a parameter list. For empty lists, the
empty list is returned. For single element lists, only
that element is returned. For full credit, make use of
a tail-recursive helper function to complete the
function.

Write your code for firstlast here.

1 (* REPL demo for firstlast *)
2 # firstlast [];;
3 - : ’a list = []
4 # firstlast ["a"];;
5 - : string list = ["a"]
6 # firstlast ["a";"b"];;
7 - : string list = ["a"; "b"]
8 # firstlast ["a";"b";"c";"d"];;
9 - : string list = ["a"; "d"]

10 # firstlast ["a";"b";"c";"d";"e";"f"];;
11 - : string list = ["a"; "f"]
12 # firstlast [1;2;3;4;5;6];;
13 - : int list = [1; 6]

2A


