
CSCI 2041: Curried Functions and Closures

Chris Kauffman

Last Updated:
Tue Dec 11 20:37:50 CST 2018

1

Logistics

Goals
▶ Shallow/Deep Equality

Wrap-up
▶ Curried Functions
▶ Scope and Closures

Next Week
▶ Mon: Review
▶ Wed: Exam 2
▶ Fri: Lecture

Midterm Feedback Survey
▶ Overall Positive
▶ Results Posted

Assignment 3 multimanager

▶ Manage multiple lists
▶ Records to track lists/undo
▶ option to deal with editing
▶ Higher-order funcs for easy

bulk operations
▶ Due Mon 10/22

2

Exercise: Warm-Up w/ Deep vs. Shallow Equality

let a = "hi";;
let b = "hi";;
let c = a;;
[a=b; a==b; a=c; a==c];; (* EXPLAIN true/false values *)

[true; false; true; true]

let p = (a,a);;
let u = (a,b);;
let t = (a,c);;
let x = p;;
[p=u; p==u; p=t; p==t; p=x; p==x];; (* EXPLAIN *)

[true; false; true; false; true; true]

3

Answers: Warm-Up w/ Deep vs. Shallow Equality
let a = "hi";;
let b = "hi";;
let c = a;;
[a=b; a==b; a=c; a==c];; (* EXPLAIN true/false values *)

[true; false; true; true]

▶ a and c are the exact same string, point to the same memory location;
they are therefore both deeply and shallowly equal

▶ a and b point to different locations so NOT shallowly equal (physically
different locations)

▶ However, a/c both point to identical strings so deeply equal (structurally
equal)

let p = (a,a);;
let u = (a,b);;
let t = (a,c);;
let x = p;;
[p=u; p==u; p=t; p==t; p=x; p==x];; (* EXPLAIN *)

[true; false; true; false; true; true]

▶ p / u / t all point to different pairs, therefore not shallowly equal
▶ All point to structurally identical pair structure of ("hi","hi") so deeply

equal
▶ p / x point to the same location: shallow and deeply equal

4

Aside: The Saga of OCaml’s string Type

▶ Older versions of OCaml,
string was an array of
characters, mutable by
default

let str = "hello!";;
str.[0] <- ’y’;;
str.[5] <- ’w’;;
str
- : : string = "yellow"

▶ An exception to the
immutable by default

▶ Led to interesting
"situations" like

let a = "hi";;
val a : string = "hi"
let b = a;;
val b : string = "hi"
a.[0] <- ’f’;;
b;;
- : string = "fi"

▶ Release 4.02, deprecated
mutating strings

▶ string’s are now totally
immutable like Java/Python

▶ For now string constants
each get allocated to
separate memory areas but
this may change in the
future (as it is in Java)

▶ Type bytes was introduced
as the mutable alternative

let b = Bytes.of_string "hello!";;
Bytes.set b 0 ’y’;;
- : unit = ()
Bytes.set b 5 ’w’;;
- : unit = ()
Bytes.to_string b;;
- : string = "yellow"

5

Curried Stuff 1

Source: Lord Byron’s Kitchen "Curried Lentils"

The Delicious Kind
Curry (plural curries): an
umbrella term referring to a
number of dishes originating in
the Indian subcontinent.
–Wikipedia "Curry"

6

http://www.lordbyronskitchen.com/curried-coconut-lentils/

Curried Stuff 2

The Function Kind
Haskell Brooks Curry (1900
-1982): An American
mathematician and logician. . .
There are three programming
languages named after him,
Haskell, Brook and Curry, as well
as the concept of currying, a
technique used for
transforming functions in
mathematics and computer
science.
–Wikipedia "Haskell Curry"

Source: Wikipedi "Haskell Curry"

7

https://en.wikipedia.org/wiki/Haskell_Curry

Currying Enables Partial Application
▶ From partial_apply.ml, consider the add_on function with

type int -> int -> int
▶ Applying it two parameters gives an int: a "normal" value
▶ Applying it to one parameter gives int -> int: a function

1 let add_on a b = (* standard function of 2 params *)
2 a + b
3 ;; (* automatically curried *)
4 (* val add_on : int -> int -> int *)
5
6 let sevenA = add_on 5 2;; (* apply to 2 parameters *)
7 let elevenA = add_on 5 6;; (* result: int *)
8
9 let add_5A = add_on 5;; (* apply to 1 parameter *)

10 let add_9A = add_on 9;; (* result: int -> int *)
11
12 let sevenB = add_5A 2;; (* add_5 is a function of 1 parameter *)
13 let elevenB = add_5A 6;; (* apply to 1 param results in int *)

▶ OCaml functions are automatically curried
▶ Allows partial application of all normal functions
▶ This is a somewhat rare feature found in ML and Haskell
▶ Not default in Lisp, Scheme, Python, Java, C, etc. . . 8

Functions as Return Values

▶ Functions can produce functions as their return value
▶ The typing for these looks unexpectedly bland due to currying

(lol, bland curry)

let add_on a b = (* standard function of 2 params *)
a + b

;; (* automatically curried *)
(* val add_on : int -> int -> int *)

let add_on_slam a = (* standard function of 1 param *)
(fun b -> a + b) (* returns a function of 1 param *)

;;
(* val add_on_slam : int -> int -> int same type as add_on *)

let sevenC = add_on_slam 5 2;; (* apply just as 2 param version *)

let add_5B = add_on_slam 5;; (* call with single param: curried *)
let sevenD = add_5B 2;; (* call with additional parameter *)

9

Central Idea of Curried Functions
Standard function declaration syntax and lambda fun syntax is
internally converted to the following pattern of function
(* Prior versions ’add_on’ and ’add_on_slam’ are internally converted

to the version ’add_on_dlam’ below. *)
let add_on_dlam = (* bind name ’add_on_dlam’ to ... *)

(fun a -> (* a function of 1 param which returns... *)
(fun b -> (* a function of 1 param which returns... *)

a+b)) (* an answer through addition *)
;;
(* val add_on_dlam : int -> int -> int same type as previous versions *)

▶ All functions are 1-param functions internally
▶ Function applications "use up" one parameter1, may return

another function, repeated application yields "normal" values
▶ Internal application and return mechanisms are simplified
▶ Curried functions are more flexible

1We will see that each function application produces a closure which has
some variables bound and a pointer to code to execute. Code can fully execute
once all free variables are bound.

10

Most Standard "Operators" are Curried Functions

▶ Recall infix arithmetic ops are actually functions
▶ Can retrieve their types by parenthesizing them
▶ Can partially apply them as they are curried

(+);;
- : int -> int -> int = <fun>
let add7 = (+) 7;;
val add7 : int -> int = <fun>
add7 3;;
- : int = 10

(^);;
- : string -> string -> string = <fun>
let affix_prefix = (^) "pre-";;
val affix_prefix : string -> string = <fun>
affix_prefix "ocaml";;
- : string = "pre-ocaml"
affix_prefix "cognition";;
- : string = "pre-cognition"

11

Exercise: Complete via Currying
Fill in definitions for the below functions using a 1-liner and partial
application of standard functions.
let print_greeting = ... ;;
(* val print_greeting : string -> unit

prints a greeting with format "Greetings, XXX: what flavor curry would you like?\n"
with XXX filled in with a parameter string

print_greeting "Elfo";;
Greetings, Elfo: what flavor curry would you like? *)

let sumlist = ... ;;
(* val sumlist : int list -> int sum an a list of integers

sumlist [9;5;2];;
- : int = 16 *)

let divall = ... ;;
(* val divall : int -> int list -> int Divide an integer by all integers in a list

divall 100 [2;5];;
- : int = 10
divall 360 [5;6;4];;
- : int = 3 *)

let kaufenate = ... ;;
(* val kaufenate : string list -> string list

Prepend the string "Kauf" to a list of strings. Two curry opportunities.
kaufenate ["money"; "nix"; "tastic"];;
- : string list = ["Kaufmoney"; "Kaufnix"; "Kauftastic"] *)

12

Answers: Complete via Currying

See curried_applications.ml

let print_greeting =
printf "Greetings, %s: what flavor curry would you like?\n"

;;

let sumlist =
List.fold_left (+) 0;;

;;

let divall =
List.fold_left (/)

;;

let kaufenate =
List.map ((^) "Kauf")

;;

13

Multiple Args vs Tuple Argument

These two functions have different type signatures
let add_on a b = (* standard function of 2 params *)

a + b (* val add_on : int -> int -> int *)
;; (* automatically curried *)

let add_together (a,b) = (* standard sytnax, 1 param: a pair *)
a + b (* int * int -> int *)

;; (* can’t curry on tuple *)

let eightA = add_together (3,5);; (* must apply to complete pair *)

▶ Tuple arguments come as a package: can’t be curried

14

Limits of Currying
▶ Curried functions must apply arguments in order
▶ Limits flexibility: not useful if later parameter is known but

earlier param is free
▶ Can always define a standard function

let affix_suffix str = str ^ "-y";; (* currying doesn’t help *)
val affix_suffix : string -> string = <fun> (* b/c first arg is free *)
affix_suffix "unix";;
- : string = "unix-y"
affix_suffix "mone";;
- : string = "mone-y"

▶ Not all "operators" are functions, some are Algebraic type
constructors which usually take tuple arguments

▶ Example: Cons operator :: is not a function so is not
curried

(::) 1;;
Characters 0-6:

(::) 1;;
^^^^^^

Error: The constructor :: expects 2 argument(s),
but is applied here to 1 argument(s)

15

Exercise: A Quick Review Puzzle

▶ Examine the code to the
right

▶ What gets printed?
▶ Why do certain things get

printed? Relate your answer
to lexical scope versus
dynamic scope.

1 let x = "Mario";;
2 let print_player () =
3 printf "%s\n" x;
4 ;;
5
6 let x = "Luigi";;
7 print_player ();;
8
9 let e = ref "Bowser";;

10 let print_enemy () =
11 printf "%s\n" !e;
12 ;;
13
14 e := "Magikoopa";;
15 print_enemy ();;
16
17 let e = "Wario";;
18 print_enemy ();;

16

Answers: A Quick Review Puzzle
▶ Lexically Scoped: names refer to the value bound at the

time of creation, NOT to the "current" binding
▶ Dynamically Scoped: names refer to the current value

bound to the name
OCaml, like most programming languages, is lexically scoped.
1 let x = "Mario";; (* x is bound *)
2 let print_player () = (* print_player uses *)
3 printf "%s\n" x; (* x, remember its value *)
4 ;;
5
6 let x = "Luigi";; (* rebind x to new value *)
7 print_player ();; (* "Mario" : original x value is retained *)
8
9 let print_player2 () =

10 printf "%s\n" x;
11 ;;
12
13 print_player2 ();;
14 print_player1 ();;
15
16 let x = "Princess";;
17
18 let e = ref "Bowser";; (* ref to string *)
19 let print_enemy () = (* print_enemy uses value e *)
20 printf "%s\n" !e; (* remember its "value" : location for ref *)
21 ;;
22
23 e := "Magikoopa";; (* change ref *)
24 print_enemy ();; (* "Magikoopa" printed *)
25
26 let e = "Wario";; (* rebind e to "Wario" *)
27 print_enemy ();; (* "Magikoopa" : uses original ref *)

17

Variable Escape

▶ A name/value binding is said to escape its scope if it is used
in some inner scope that outlives the housing scope

▶ Possible when functions are given as return values
▶ Rules of lexical scoping dictate that local name/value bindings

must be "saved" somehow so that when returned function
runs, original values are used

▶ Applicable to all OCaml functions due to automatic currying
of functions

18

Variable Escape Example
1 let afunc paramX = (* a function taking a paramter *)
2 let localA = "less" in (* local variables *)
3 let localB = "greater/eq" in
4 let retfun paramY = (* local function to be returned *)
5 if paramX < paramY then (* paramX "escapes" into retfun *)
6 localA (* localA "escapes" into retfun *)
7 else
8 localB (* localB "escapes" into retfun *)
9 in

10 retfun (* return a function *)
11 ;;
12
13 let res = afunc 10 12;; (* no need to save params/locals *)
14 (* val res : string = "less" *)
15
16 let gt10 = afunc 10;; (* save paramX=10, etc somehow *)
17 (* val gt10 : int -> string *)
18 let gt42 = afunc 42;; (* save paramX=42, etc *)
19 (* val gt42 : int -> string *)
20
21 let localA = "don’t care!";; (* has no effect on evaluation below *)
22
23 let res10_12 = gt10 12;; (* use paramX=10, evaluate 10 < 12 *)
24 (* "less" *)
25 let res42_12 = gt42 12;; (* use paramX=42, evaluate 42 < 12 *)
26 (* "greater/eq" *)

19

Frames in the Stack, Frames in the Heap

▶ Many standard programming languages like C/Java use a
Stack Model for function execution
▶ Function calls push onto the call stack
▶ Function return pops off of the stack

▶ These languages most frequently do not have lambdas
combined with functions as return values

▶ Reason: the Stack Model is insufficient to handle function
returns due to variable escape

▶ Many functional languages like ML and Lisp DO support
lambdas and functions as return values which leads to more
complex implementation

▶ In such languages, some/all call frames are allocated in the
heap, portion of memory managed by garbage collector

20

Stack Fails with Escaped Variables

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let res = gt10 18;;

On returning from afunc, bindings

paramX=10 localA="less" localB="greater"

are popped, but are still needed by
function bound to gt10.
How can this be resolved?

Call stack before afunc returns
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:13 | gt10 | ?? |<-+
	res	??	
	...		
---------+--------+--------------			
afunc	paramX	10	--+
line:10	localA	"less"	
	localB	"greater/eq"	
	retfun	<fun>	
---------+--------+--------------			

Call stack after afunc returns
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
init	afunc	<fun>
line:14	gt10	<fun>
	res	??
	...	
---------+--------+--------------		

21

Closures
▶ A closure2 is used to capture state needed for lexically scoped

functions to evaluate
▶ Closures have two parts

1. Code: a pointer to machine instructions to execute
2. Environment: a data structure giving access to all

name/value bindings required to execute the code
▶ OCaml doesn’t report whether a <fun> involves a closure or

not as this is a low-level implementation detail
▶ A variety of closure implementations exist in practice, vary

from one functional language to another and between versions
▶ Almost all such approaches involve use of the heap to allow

for eventual garbage collection of closures
▶ We will consider a very simple, conceptual approach: copy

bindings to the heap.
2The term "closure" is the source for the name "Clojure", of a modern Lisp

implementation with the "j" coming from its connection to the Java platform.
Both words are pronounce identically.

22

Closures in Action 0

Begin with first executable line
13 which calls afunc

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12

>>13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
init	afunc	<fun>
line:13	gt10	??
	resA	??
	gt42	??
	resB	??
	...	
---------+--------+--------------		
...
---------+--------+--------------		
HEAP		
---------+--------+--------------		

23

Closures in Action 1

At completion of afunc, have
several bindings that will escape
through returned retfun

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

>>10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:13 | gt10 | ?? |<-+
	resA	??	
	gt42	??	
	resB	??	
	...		
---------+--------+--------------			
afunc	paramX	10	--+
line:10	localA	"less"	
	localB	"greater/eq"	
	retfun	<fun>	
...	
---------+--------+--------------			
HEAP			
---------+--------+--------------			

24

Closures in Action 2
A closure is allocated in the heap
which preserves the binding
environment in which retfun
existed. This is tracked in the
binding for gt10.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;

>>14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:14 | gt10 | <retfun,env1>|--+
	resA	??	
	gt42	??	
	resB	??	
---------+--------+--------------			
...	...		
---------+--------+--------------			
HEAP			
env1	paramX	10	<-+
	localA	"less"	
	localB	"greater/eq"	
---------+--------+--------------			

25

Closures in Action 3
Executing gt10 18 runs code for
retfun with environment where
paramX=18 and localA/localB
defined. Compares 10 < 18 and
follows then branch to line 6.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =

>> 5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:14 | gt10 | <retfun,env1>|--+
	resA	??	
	gt42	??	
	resB	??	
---------+--------+--------------			
retfun	<env>	<env1>	--
line:5	paramY	18	
...	...		
---------+--------+--------------			
HEAP			
env1	paramX	10	<-+-+
	localA	"less"	
	localB	"greater/eq"	
---------+--------+--------------			

26

Closures in Action 4
Results bound to resA as
"less". Next line 15 runs afunc
again with a different value for
paramX.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;

>>15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:15 | gt10 | <retfun,env1>|--+
	resA	"less"	
	gt42	??	
	resB	??	
---------+--------+--------------			
...	...		
---------+--------+--------------			
HEAP			
env1	paramX	10	<-+
	localA	"less"	
	localB	"greater/eq"	
---------+--------+--------------			

27

Closures in Action 5

afunc again has bindings that
escape through retfun so requires
a closure to be allocated.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

>>10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:15 | gt10 | <retfun,env1>|--+
	resA	"less"	
	gt42	??	
	resB	??	
---------+--------+--------------			
afunc	paramX	42	
line:10	localA	"less"	
	localB	"greater/eq"	
	retfun	<fun>	
...	
---------+--------+--------------			
HEAP			
env1	paramX	10	<-+
	localA	"less"	
	localB	"greater/eq"	
	retfun	<fun>	
---------+--------+--------------			

28

Closures in Action 6

gt42 is bound to an closure with
an environment where paramX is
42. env2 is distinct from env1.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;

>>16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:16 | gt10 | <retfun,env1>|--+
| | resA | "less" | |
| | gt42 | <retfun,env2>|--|-+
	resB	??		
---------+--------+--------------				
...		
---------+--------+--------------				
HEAP				
env1	paramX	10	<-+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				
env2	paramX	42	<---+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				

29

Closures in Action 7
Applying gt42 25 executes
retfun with env2 where
paramX=42. Will follow the else
branch to line 8.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =

>> 5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;
17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:16 | gt10 | <retfun,env1>|--+
| | resA | "less" | |
| | gt42 | <retfun,env2>|--|-+
| | resB | ?? | | |
|---------+--------+--------------| | |
| retfun | <env> | <env2> |--|-+
line:5	paramY	25		
...		
---------+--------+--------------				
HEAP				
env1	paramX	10	<-+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				
env2	paramX	42	<---+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				

30

Closures in Action 8
Call to retfun completes
popping off the stack, binding
return value "greater/eq" to
resB.

1 let afunc paramX =
2 let localA = "less" in
3 let localB = "greater/eq" in
4 let retfun paramY =
5 if paramX < paramY then
6 localA
7 else
8 localB
9 in

10 retfun
11 ;;
12
13 let gt10 = afunc 10;;
14 let resA = gt10 18;;
15 let gt42 = afunc 42;;
16 let resB = gt42 25;;

>>17

| STACK | | |
| FRAME | SYMBOL | VALUE |
|---------+--------+--------------|
| init | afunc | <fun> |
| line:17 | gt10 | <retfun,env1>|--+
| | resA | "less" | |
| | gt42 | <retfun,env2>|--|-+
	resB	"greater/eq"		
---------+--------+--------------				
...		
---------+--------+--------------				
HEAP				
env1	paramX	10	<-+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				
env2	paramX	42	<---+	
	localA	"less"		
	localB	"greater/eq"		
---------+--------+--------------				

31

Notes on Closure Demo

▶ The preceding is a model and wrong about some details, but
gives a general idea of how closures work

▶ Modern CPU/Memory is fast at the Stack Model
▶ Heap allocation is generally slower that Function Stack

push/pops as it creates GC pressure (garbage collector
pressure)

▶ To drive speed, OCaml’s compiler generates stack-based code
as much as possible; e.g. whenever module-level functions are
fully applied

▶ OCaml compiler may generate several low-level versions of a
function for full application, partial application, etc.

32

Code + Data: This seems familiar. . .
▶ Notice that a closure is some code and some data that is

private along with associated functions on it
▶ What was that other common programming paradigm that

couples data and code. . .

33

Closures vs Objects

▶ Examine the code in closure_v_object.ml
▶ Note how closure create private data accessible only through

function calls
▶ This is pattern is commonly associated with Object-oriented

programming as well: private data + associated methods
▶ Closures and Objects provide equivalent power
▶ Languages have varying support for them

▶ None: C
▶ Closures Only: Standard ML, vanilla Scheme
▶ Objects Only: Java
▶ Both: OCaml, Clojure, Javascript

▶ Why both? While equivalent, it is often more convenient to
use one or the other
▶ Closures to carry out an action which needs context
▶ Objects to carry data with controlled operations

34

A Closure Koan3

The venerable master Qc Na was walking with his student, Anton.
Hoping to prompt the master into a discussion, Anton said "Master,
I have heard that objects are a very good thing - is this true?" Qc Na
looked pityingly at his student and replied, "Foolish pupil - objects
are merely a poor man’s closures."
Chastised, Anton took his leave from his master and returned to
his cell, intent on studying closures. He carefully read the entire
"Lambda: The Ultimate. . . " series of papers and its cousins, and
implemented a small Scheme interpreter with a closure-based object
system. He learned much, and looked forward to informing his master
of his progress.
On his next walk with Qc Na, Anton attempted to impress his master
by saying "Master, I have diligently studied the matter, and now
understand that objects are truly a poor man’s closures." Qc Na
responded by hitting Anton with his stick, saying "When will you
learn? Closures are a poor man’s objects."
At that moment, Anton became enlightened.
– Discussion on Scheme between Guy Steel and Anton van Straaten

3Koan: a story, dialogue, question, or statement which is used in Zen
practice to provoke the "great doubt" and test a student’s progress in Zen
practice. See Rootless Root for excellent Unix Koans. 35

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html
http://www.catb.org/esr/writings/unix-koans/

Where do first-class functions get used?

Aside from higher-order function patterns, two other use cases are
worth explicit mention
▶ Callback Functions
▶ Customization Hooks

36

Callback Functions
▶ A callback function or just callback is some action to

perform after time has elapsed or a specific event has occurred
▶ Very common in GUI Programming to connect a GUI event

like clicking to an action in a callback4

▶ See gtkcounter.ml for a simple example with OCaml’s
LablGtk GUI Library (or Introduction to GTK tutorial)

1 let button = (* create a button in the window *)
2 GButton.button ~label:"Not clicked yet" ~packing:window#add ()
3 in
4 let click_count = ref 0 in (* ref to count clicks *)
5 let click_callback () = (* what to do when button is clicked *)
6 printf "click_callback running\n"; flush_all ();
7 click_count := !click_count + 1;
8 let msg = sprintf "Cicked %d times" !click_count in
9 button#set_label msg

10 in
11 let _ = (* connect clicking to the callback *)
12 button#connect#clicked ~callback:click_callback
13 in

4Java/C++ favor inheritance and objects for callbacks. While equivalent in
expressiveness, it is usually much lengthier to write. Contrast gtkcounter.ml
to a C++ GTK Hello World or Java Swing Hello World 37

http://lablgtk.forge.ocamlcore.org/
https://ocaml.org/learn/tutorials/introduction_to_gtk.html
https://developer.gnome.org/gtkmm-tutorial/stable/sec-helloworld.html.en
https://docs.oracle.com/javase/tutorial/uiswing/examples/start/HelloWorldSwingProject/src/start/HelloWorldSwing.java

Customization Hooks
▶ A customization hook or just hook is code that will run at

startup or finish of some event
▶ C programs can specify exit hooks with the atexit library

call: it takes a function pointer as a parameter.
▶ Emacs Hooks apply customizations when different file types

are opened; hook code is specified in Emacs Lisp where
lambda creates an anonymous function

;; Part of the .emacs startup code. Hook functions are run when a file of
;; the type mentioned is opened
(add-hook ’c-mode-common-hook ; c editing customizations
(lambda () ; anonymous function which ..

(setq comment-start "// ") ; changes comment symbols
(setq comment-end "")
(c-set-offset ’cpp-macro 0 nil) ; adjusts indentation
(setq c-basic-offset 2)))

(add-hook ’asm-mode-hook ; assembly editing customs
(lambda () ; anonymous function which

(setq comment-start "# ") ; sets comment syntax to AT&T
(setq comment-end "")))

(add-hook ’tuareg-mode-hook ; ocaml editing customization
’(lambda () ; anonymous function which...

(local-set-key "\M-;" ’comment-dwim) ; changes key bindings
(local-set-key "\M-q" ’tuareg-fill-comment))) 38

https://www.gnu.org/software/libc/manual/html_node/Cleanups-on-Exit.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks.html

