
CSCI 2041: Basic OCaml Syntax and Features

Chris Kauffman

Last Updated:
Wed Sep 12 14:37:38 CDT 2018

1

Logistics

▶ OCaml System Manual: 1.1
- 1.3

▶ Practical OCaml: Ch 1-2
▶ OCaml System Manual:

25.2 (Pervasives Modules)
▶ Practical OCaml: Ch 3, 9

Goals
Basic Syntax and Semantics in
OCaml

Lab01
▶ First meetings on Mon/Tue
▶ Required attendance

Assignment 1
▶ Will go up over the weekend
▶ Due at end of weeks listed

on schedule
▶ Due Monday 9/17

2

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Every Programming Language

Look for the following as it should almost always be there
▶ □ Comments
▶ □ Statements/Expressions
▶ □ Variable Types
▶ □ Assignment
▶ □ Basic Input/Output
▶ □ Function Declarations
▶ □ Conditionals (if-else)
▶ □ Iteration (loops)
▶ □ Aggregate data (arrays, structs, objects, etc)
▶ □ Library System

3

Comments

▶ Surround by (* comment *)
▶ Comment may span multiple lines until closing *)
▶ Will often provide commented programs to assist with learning
▶ Examples:

(* basics.ml : some basic OCaml syntax *)
let x = 15;; (* bind x to an integer *)
let y = "hi there";; (* bind y to a string *)

(* Function to repeatedly print *)
let repeat_print n str = (* bind repeat_print to a function *)

for i=1 to n do (* of an integer and a string which *)
print_endline str; (* repeatedly prints the string *)

done
;;

4

Top-Level Statements

▶ Names bound to values are introduced with the let keyword
▶ At the top level, separate these with double semi-colon ;;

REPL

> ocaml
OCaml version 4.07.0

let name = "Chris";;
val name : string = "Chris"
let office = 327;;
val office : int = 327
let building = "Shepherd";;
val building : string = "Shepherd"
let freq_ghz = 4.21;;
val freq_ghz : float = 4.21

Source File

(* top_level.ml : demo of top level
statements separated by ;; *)

let name = "Chris";;
let office = 327;;
let building = "Shepherd";;
let freq_ghz = 4.21;;

5

Exercise: Local Statements

▶ Statements in ocaml can be nested somewhat arbitrarily,
particularly let bindings

▶ Commonly used to do actual computations
▶ Local let statements are followed by keyword in

let first = (* first top level binding *)
let x = 1 in (* local binding *)
let y = 5 in (* local binding *)
y*2 + x (* * + : integer multiply and add *)

;;

let second = (* second top-level binding *)
let s = "TAR" in (* local binding *)
let t = "DIS" in (* local binding *)
s^t (* ^ : string concatenate (^) *)

;;

What value gets associated with names first and second?

6

Answers: Local Statements
let first = (* first top level binding *)

let x = 1 in (* local binding *)
let y = 5 in (* local binding *)
y*2 + x (* * + : integer multiply and add *)

;;

(* binds first to
y*2 + x

= 5*2 + 1
= 11

*)

let second = (* second top-level binding *)
let s = "TAR" in (* local binding *)
let t = "DIS" in (* local binding *)
s^t (* ^ : string concatenate (^) *)

;;
(* binds second to

"TAR"^"DIS" (concatenate strings)
= "TARDIS"

*)

7

Clarity

(* A less clear way of writing the previous code *)
let first = let x = 1 in let y = 5 in y*2 + x;;
let second = let s = "TAR" in let t = "DIS" in s^t;;

▶ Compiler treats all whitespace the same so the code evaluates
identically to the previous version

▶ Most readers will find this much harder to read
▶ Favor clearly written code

▶ Certainly at the expense of increased lines of code
▶ In most cases clarity trumps execution speed

▶ Clarity is of course a matter of taste

8

Exercise: Explain the following Compile Error
▶ Below is a source file that fails to compile
▶ Compiler error message is shown
▶ Why does the file fail to compile?

> cat -n local_is_local.ml
1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;;
9

10 print_endline a;; (* print value of a *)
11
12 print_endline x;; (* print value of x *)

> ocamlc local_is_local.ml
File "local_is_local.ml", line 12, characters 14-15:
Error: Unbound value x

9

Answer: Local Bindings are Local
1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;; (* x,y,z go out of scope here *)
9

10 print_endline a;; (* a is well defined *)
11
12 print_endline x;; (* x is not defined *)

▶ Scope: areas in source code where a name is well-defined and
its value is available

▶ a is bound at the top level: value available afterwards; has
module-level scope (module? Patience, grasshopper. . .)

▶ The scope of x ends at Line 8: not available at the top-level
▶ Compiler "forgets" x outside of its scope

10

Exercise: Fix Binding Problem

▶ Fix the code below
▶ Make changes so that it actually compiles and prints both a

and x

1 (* local_is_local.ml : demo of local binding error *)
2
3 let a = (* top-level binding *)
4 let x = "hello" in (* local binding *)
5 let y = " " in (* local binding *)
6 let z = "world" in (* local binding *)
7 x^y^z (* result *)
8 ;; (* x,y,z go out of scope here *)
9

10 print_endline a;; (* print a, it is well defined *)
11
12 print_endline x;; (* x is not defined *)

11

Answers: Fix Binding Problem
On obvious fix is below
> cat -n local_is_local_fixed.ml

1 (* local_is_local_fixed.ml : fixes local binding
2 error by making it a top-level binding
3 *)
4
5 let x = "hello";; (* top-level binding *)
6
7 let a = (* top-level binding *)
8 let y = " " in (* local binding *)
9 let z = "world" in (* local binding *)

10 x^y^z (* result *)
11 ;; (* x,y,z go out of scope here *)
12
13 print_endline a;; (* print a, it is well defined *)
14
15 print_endline x;; (* print x, it is well defined *)

> ocamlc local_is_local_fixed.ml
> ./a.out
hello world
hello

12

Mutable and Immutable Bindings
Q: How do I change the
value bound to a name?
A: You don’t.

▶ OCaml’s default is
immutable or persistent
bindings

▶ Once a name is bound, it
holds its value until going
out of scope

▶ Each let/in binding
creates a scope where a
name is bound to a value

▶ Most imperative languages
feature easily mutable
name/bindings

> python
Python 3.6.5
>>> x = 5
>>> x += 7
>>> x
12

// C or Java
int main(...){

int x = 5;
x += 5;
System.out.println(x);

}

(* OCaml *)
let x = 5 in
???
print_int x;;

13

Approximate Mutability with Successive let/in

▶ Can approximate mutability by successively rebinding the
same name to a different value
1 let x = 5 in (* local: bind FIRST-x to 5 *)
2 let x = x+5 in (* local: SECOND-x is FIST-x+5 *)
3 print_int x;; (* prints 10: most recent x, SECOND-x *)
4 (* top-level: SECOND-x out of scope *)
5 print_endline "";;

▶ let/in bindings are more sophisticated than this but will need
functions to see how

▶ OCaml also has explicit mutability via several mechanisms
▶ ref: references which can be explictily changed
▶ arrays: cells are mutable by default
▶ records: fields can be labelled mutable and then changed

We’ll examine these soon

14

Exercise: let/in Bindings

▶ Trace the following program
▶ Show what values are printed and why they are as such

1 let x = 7;;
2 let y =
3 let z = x+5 in
4 let x = x+2 in
5 let z = z+2 in
6 z+x;;
7
8 print_int y;;
9 print_endline "";;

10
11 print_int x;;
12 print_endline "";;

15

Answers: let/in Bindings

▶ A later let/in supersedes an earlier one BUT. . .
▶ Ending a local scope reverts names to top-level definitions

1 let x = 7;; (* top-level x <-------+ *)
2 let y = (* top-level y <---+ | *)
3 let z = x+5 in (* z = 12 = 7+5 | | *)
4 let x = x+2 in (* x = 9 = 7+2 | | *)
5 let z = z+2 in (* z = 14 = 12+2 | | *)
6 z+x;; (* 14+9 = 23 ------+ | *)
7 (* end local scope | | *)
8 print_int y;; (* prints 23 ------+ | *)
9 print_endline "";; (* | *)

10 (* | *)
11 print_int x;; (* prints 7 -----------+ *)
12 print_endline "";; (* *)

OCaml is a lexically scoped language: can determine name/value
bindings purely from source code, not based on dynamic context.

16

Immediate Immutability Concerns
Q: What’s with the whole let/in thing?
Stems for Mathematics such as. . .
Pythagorean Thm: Let c be they length of the hypotenuse of a right
triangle and let a, b be the lengths of its other sides. Then the relation
c2 = a2 + b2 holds.

Q: If I can’t change bindings, how do I get things done?
A: Turns out you can get lots done but it requires an adjustment of
thinking. Often there is recursion involved.

Q: let/in seems bothersome. Advantages over mutability?
A: Yes. Roughly they are
▶ It’s easier to formally / informally verify program correctness
▶ Immutability opens up possibilities for parallelism

Q: Can I still write imperative code when it seems appropriate?
A: Definitely. Some problems in 2041 will state constraints like "must not
use mutation" to which you should adhere or risk deductions.

17

Built-in Fundamental Types of Data
The usual suspects are present and conveniently named
> ocaml

OCaml version 4.06.0

let life = 42;; (* int : 31-bit are 63-bit *)
val life : int = 42 (* integer (1 bit short??) *)

let pie = 3.14159;; (* float : 64-bit floating *)
val pie : float = 3.14159 (* point number *)

let greet = "Bonjour!";; (* string : contiguous array *)
val greet : string = "Bonjour!" (* of character data *)

let learning = true;; (* bool : Boolean value of *)
val learning : bool = true (* true or false only *)

let result = print_endline greet;; (* unit : equivalent to void *)
Bonjour! (* in C/Java; side-effects only *)
val result : unit = () (* such as printing or mutating *)

result;; (* Note that result has value (), *)
- : unit = () (* NOT the output "Bonjour!" *)

18

Unit type and Printing
▶ The notation () means

unit and is the return value
of functions that only
perform side-effects

▶ Primary among these are
printing functions
▶ Ex: return_val bound

to () in code on right
▶ Don’t usually care about

unit so usually don’t bind
return values of printing
functions

▶ Functions with no
parameters are passed () to
call them
▶ Ex: print_newline ()

1 (* basic_printing.ml : printing and
2 the unit value *)
3
4 let return_val =
5 print_endline "hi there!\n";;
6 (* output: hi there! *)
7 (* val return_val : unit = () *)
8
9 (* built-in printing functions *)

10 print_string "hi";; (* don’t bother *)
11 print_int 5;; (* binding unit *)
12 print_float 1.23;; (* return value *)
13 print_endline "done";;
14 (* output:
15 hi51.23done
16 *)
17
18 print_int 7;; (* pass unit to *)
19 print_newline ();; (* functions with *)
20 print_int 8;; (* no args like *)
21 print_newline ();; (* print_newline *)
22 (* output:
23 7
24 8
25 *)

19

Side-Effects and Local Scopes
▶ Side-effects only statements like printing can end with a single

semi-colon; these should all have unit value
▶ Single semi-colons continue any existing local scope
▶ Double semi-colon ends top-level statements / local scopes

1 (* basic_printing.ml : local scope, print variables *)
2 let x = "hi" in (* local scope with x *)
3 let y = 5 in (* .. and y *)
4 print_string "string: "; (* single semi-colon for *)
5 print_string x; (* side-effects only statements *)
6 print_newline (); (* that continue the local scope *)
7 print_string "int: ";
8 print_int y; (* y still defined *)
9 print_newline ();

10 let z = 1.23 in (* add z to local scope *)
11 print_string "float: ";
12 print_float z;
13 print_newline ();
14 print_endline "done";
15 ;; (* end top-level statement *)
16 (* x,y,z no longer in scope *)

20

Exercise: Output or Error?

To the right are 3 code blocks.
Determine:
▶ Code compiles correctly,

describe its output OR
▶ Won’t compile and describe

the error

1 (* Block 1 *)
2 let a = 7 in
3 print_endline "get started";
4 let b = 12 in
5 print_endline "another line";
6 print_int (a+b);
7 print_newline ();
8 ;;
9

10 (* Block 2 *)
11 let c = 2 in
12 let d = a + 2 in
13 print_int d;
14 print_newline ();
15 ;;
16
17 (* Block 3 *)
18 let a = 9
19 ;;
20 print_endline "last one";
21 print_int a;
22 print_newline ();
23 ;;

21

Answers: Output or Error?
1 (* Block 1 *) (* OK *)
2 let a = 7 in (* a in local scope *)
3 print_endline "get started"; (* continue local scope *)
4 let b = 12 in (* b in local scope *)
5 print_endline "another line"; (* continue local scope *)
6 print_int (a+b); (* a and b still in scope, all is well *)
7 print_newline ();
8 ;; (* end local scope, a b undefined *)
9

10 (* Block 2 *) (* ERROR *)
11 let c = 2 in (* c in local scope *)
12 let d = a + c in (* ERROR: no binding for a *)
13 print_int d;
14 print_newline ();
15 ;;
16
17 (* Block 3 *) (* OK *)
18 let a = 9 (* a bound to 9 *)
19 ;; (* at the top level *)
20 print_endline "last one";
21 print_int a; (* a is a top-level binding, in scope *)
22 print_newline ();
23 ;;

22

This is Ridiculous

So you’re telling me just to print an integer on its
own line I’ve got to write print_int i; followed by
print_newline ();? That’s ridiculous. I’ve about had
it with OCaml already.

▶ Yup, printing with standard functions is pretty lame
▶ Folks with C experience, advanced Java experience, or

perhaps Python know a better way to print an integer, a
string, and a float in a one liner.

▶ Q: What’s our favorite way to print formatted output?

23

Printf Module and printf function
▶ Output with previous functions is extremely tedious
▶ printf makes this much more succinct

1 (* printf_demo.ml : demonstrate the printf function
2 for succinct output *)
3
4 open Printf;; (* access functions from Printf module *)
5 (* function printf is now available *)
6
7 printf "hi there!\n";;
8 printf "sub in an int: %d\n" 17;;
9 (* Output:

10 hi there!
11 sub in an int: 17
12 *)
13
14 printf "string: %s integer %d float %f done\n"
15 "hi" 5 1.23;;
16 (* output:
17 string: hi integer 5 float 1.230000 done
18 *)

24

printf gets type checked (!!!)

▶ OCaml’s compiler checks the types of substitutions in printf
▶ After years of #ˆ%@-ing this up in C and Java, I just about

cried with joy when I found this out

> cat -n printf_typecheck.ml
1 (* Demonstrate compiler checking substitution
2 types in a printf format string *)
3 open Printf;;
4
5 let x = 42 in
6 let y = 1.23 in
7 printf "x is %f and y is %d" x y;;

> ocamlc printf_typecheck.ml
File "printf_typecheck.ml", line 7, characters 29-30:
Error: This expression has type int but an expression

was expected of type float

25

Compare Printing: Standard vs. printf
Standard Functions

1 let x = "hi" in
2 let y = 5 in
3 print_string "string: ";
4 print_string x;
5 print_newline ();
6 print_string "int: ";
7 print_int y;
8 print_newline ();
9 let z = 1.23 in

10 print_string "float: ";
11 print_float z;
12 print_newline ();
13 print_endline "done";
14 ;;

printf

1 let x = "hi" in
2 let y = 5 in
3 printf "string: %s\n" x;
4 printf "int: %d\n" y;
5 let z = 1.23 in
6 printf "float: %f\n" z;
7 printf "done\n";
8 ;;

▶ Kauffman is a big fan of printf in any language
▶ Often the fastest, easiest way to generate formatted output
▶ Will use it extensively in the course and others so well worth

learning conversions specifiers associated format strings
26

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Printf.html

Type Checking is a Harsh Master
▶ Likely to encounter the following minor irritation early on

> ocaml
OCaml version 4.07.0

1 + 5;;
- : int = 6
1.5 + 5.5;;
Characters 0-3:

1.5 + 5.5;;
^^^

Error: This expression has type float but
an expression was expected of type int

▶ Type checking is extremely thorough
▶ So thorough that even basic arithmetic

operations are specifically typed
(+);;
- : int -> int -> int = <fun>

▶ + is a function that takes 2 ints and
produce an int

▶ It won’t work for floats
27

Integer vs. Floating Point Arithmetic
▶ Arithmetic operators + - * / only work for int types
▶ Dotted operators +. -. *. /. only work for float types

1 + 5 * 2;;
- : int = 11
1.5 +. 5.5 *. 2.0;;
- : float = 12.5

▶ While many find it initially irritating, this
is true to the underlying machine
▶ Int/Float numbers differ in bit layout
▶ Int/Float arithmetic instructions use

different CPU circuitry
▶ Conversions between Int/Float are CPU

instructions that take time; OCaml
reflects this with conversion functions

float_of_int 15;;
- : float = 15.
int_of_float 2.95;;
- : int = 2

28

Annotating Types by Hand
▶ Can annotate types by hand using : atype as shown below
▶ Compiler complains if it disagrees
▶ Will examine this again wrt function types

(* type_annotations.ml : show type annotation syntax of colon
for simple definitions *)

let a : int = 7;; (* annotate a as int *)
let b = 7;; (* b inferred as int *)

(* fully annotated version *)
let c : int = (* annotate c as int *)

let x : string = "hi" in
let y : string = "bye" in
let z : string = x^y in (* concatenate *)
String.length z (* return string length : int *)

;;

(* fully inferred version *)
let d = (* inferred c as int <-----+ *)

let x = "hi" in (* inferred x as string | *)
let y = "bye" in (* inferred y as string | *)
let z = x^y in (* inferred z as string | *)
String.length z (* return string length : int *)

;;
29

