
CSCI 1103: Basics of Recursion

Chris Kauffman

Last Updated:
Mon Dec 11 10:56:24 CST 2017

1

Logistics

Date Lecture Outside
Mon 12/4 PrintWriter Lab 13: cmdline args, Scanner
Wed 12/6 Recursion P5 Tests Posted
Fri 12/8 Recursion
Mon 12/11 Recursion Lab 14: Review
Wed 12/13 Review P5 Due
Wed 12/20 Final Exam 1:30pm-3:30pm KELLER HALL 3-210

Reading from Eck
Ch 9.1 on Recursion

Goals
Basic Understanding of Recursion
Forward look to its use in
problems

Lab13: Command Line Args
and Scanner
Write a short program that
counts lines, words, characters
from files named on command
line

2

The Call Stack

I Recall that methods
have a stack frame
(activation record)

I When one method
calls another, another
frame goes onto the
call stack

I Frames can nest
deeply, tools like Java
Visualizer are useful
to see how the stack
moves

3

Exercise: Recursive Functions / Methods
I A function that calls/invokes itself
I Looks normal, behaves normally, feels crazy

1 // Simple recursive function which overflows the stack
2 public class RecCallMe{
3
4 public static void callMe(int number){
5 System.out.printf("%d: This is crazy\n",number);
6 callMe(number + 1);
7 System.out.printf("Call me\n");
8 return;
9 }

10
11 public static void main(String args[]){
12 callMe(0);
13 }
14 }

I Demonstrate the following in DrJava
I Draw some pictures to demonstrate what is happening
I Use the Java Visualizer to help with this

4

Answer: Recursive Functions / Methods

I Each callMe()
invocation increases
call stack depth

I Never reach return
statement

I Calling method
overflows the stack

I Never reach
printf("Call Me\n")

5

Terminating Recursive Functions

To avoid a stack overflow, there
must be a base case in which no
recursive call is made. Usually
recursive functions divide into

I Recursive cases: call the
method with slightly
different arguments to build
call stack up another level

I Base cases: "answer found",
return it, do not make
another recursive call

Common code structure for
single base and recursive case is
to the right

public static X recFunc(...){
// BASE CASE
if(termCondition true){

finish off answer;
return x;

}

// RECURSIVE CASE
do some stuff;
x = recFunc(...); // recurse
maybe do more;
return x;

}

6

Exercise: Call Me Maybe
I Identify Recursive and Base Cases in the following code
I What condition terminates the recursion?
I What do you expect for output?

1
2 public class RecCallMeMaybe{
3
4 public static void callMe(int number){
5 if(number == 0){
6 System.out.printf("Here’s my number: %d\n",
7 number);
8 return;
9 }

10
11
12 System.out.printf("%d: This is crazy\n",
13 number);
14 callMe(number - 1);
15 System.out.printf("Call me maybe\n");
16 return;
17 }
18
19 public static void main(String args[]){
20 callMe(7);
21 }
22 } 7

Answer: Call Me Maybe
Code Analysis

1 // Simple recursive function which terminates
2 public class RecCallMeMaybe{
3
4 public static void callMe(int number){
5 if(number == 0){ // BASE CASE
6 System.out.printf("Here’s my number: %d\n",
7 number);
8 return; // finished!
9 }

10
11 // Recursive Case
12 System.out.printf("%d: This is crazy\n",
13 number);
14 callMe(number - 1); // RECURSE
15 System.out.printf("Call me maybe\n");
16 return;
17 }
18
19 public static void main(String args[]){
20 callMe(7);
21 }
22 }

Output

> javac RecCallMeMaybe.java
> java RecCallMeMaybe
7: This is crazy
6: This is crazy
5: This is crazy
4: This is crazy
3: This is crazy
2: This is crazy
1: This is crazy
Here’s my number: 0
Call me maybe
Call me maybe
Call me maybe
Call me maybe
Call me maybe
Call me maybe
Call me maybe

8

Why would I use recursion?

I Looks a bit novel but hard to see a use until. . .
I Some problems are recursive, either explicitly or implicitly
I We will examine a few of these:

I Factorial
I Fibonacci numbers
I Finding a specific combination
I Maybe 2D maze search. . .

9

Factorial of an Integer

The factorial of a number is written with an exclamation mark and
means to do the following:

5! = 5 × 4 × 3 × 2 × 1

7! = 7 × 6 × 5 × 4 × 3 × 2 × 1

N! = N × (N − 1) × (N − 2) × ... × 2 × 1

Notice that factorial has a natural recursive definition

5! = 5 × 4!

7! = 7 × 6!

N! = N × (N − 1)!

One oddity: 0! = 1 by definition, not defined for negatives

10

Exercise: Recursive Factorial Execution

Show the output of
executing the code
below
Show/Explain how the
recursive function
works

Run the program:
> java RecFact 4
???

1 public class RecFact{
2 public static void main(String args[]){
3 int n = Integer.parseInt(args[0]);
4 int factN = factRec(n);
5 System.out.printf("%d! = %d\n",
6 n,factN);
7 }
8
9 public static int factRec(int n){

10 if(n == 0 || n == 1){
11 return 1;
12 }
13 int smaller = factRec(n-1);
14 int fact = n * smaller;
15 return fact;
16 }
17 }

11

Exercise: Factorial Methods

Iterative
Easy to write a loop to compute
factorial.

public static int factLoop(int n){
int fact = 1;
for(int i=1; i<=n; i++){

fact = fact*i;
}
return fact;

}

I What are metrics by which
to compare programs?

I Which of these
implementations is better?

Recursive
Also easy to use recursion for to
do the same thing.

public static int factRec(int n){
if(n == 0 || n == 1){

return 1;
}
int smaller = factRec(n-1);
int fact = n * smaller;
return fact;

}

public static int factRecShort(int n){
if(n == 0 || n == 1){

return 1;
}
return n * factRecShort(n-1);

}

12

Answer: Factorial Methods

public static int factLoop(int n){
int fact = 1;
for(int i=1; i<=n; i++){

fact = fact*i;
}
return fact;

}

public static int factRec(int n){
if(n == 0 || n == 1){

return 1;
}
int smaller = factRec(n-1);
int fact = n * smaller;
return fact;

}

public static int factRecShort(int n){
if(n == 0 || n == 1){

return 1;
}
return n * factRecShort(n-1);

}

I Loop version will likely be a little
faster because pushing stack
frames on in the recursive version
takes some time

I Loop version will take less
memory than recursive version as
it uses a single stack frame while
recursive version uses n frames

I Both are fairly easy to read and
understand

I This makes it relatively easy verify
that they are correct: the MOST
IMPORTANT CODE METRIC

Based on this, one would likely
prefer the Loop version, but this
will not always be the case. . .

13

Fibonacci Sequence
I The classic example of a recursively defined mathematical

entity
I The Fibonacci Number Sequence are a sequence of numbers

which are defined as follows
I The 0th Fibonacci number is 0, called f0
I The 1th Fibonacci number is 1, called f1
I All other Fibonacci numbers are the sum of the previous two

Fibonacci numbers
I Example: f2 = f1 + f0 = 1 + 0 = 1; so f2 = 1
I Example: f3 = f2 + f1 = 1 + 1 = 2; so f3 = 2

I The general description is

fi = fi−1 + fi−2, with f0 = 0, f1 = 1

I Fibonacci numbers show nicely in a table

i 0 1 2 3 4 5 6 7 8 9 10 ..
fi 0 1 1 2 3 5 8 13 ? ? ? ..

14

A good Origin Story From WikiP "Fibonnacci Numbers"
Fibonacci (in AD 1707) considers the growth of an idealized (biologically
unrealistic) rabbit population, assuming that: a newly born pair of rabbits, one
male, one female, are put in a field; rabbits are able to mate at the age of one
month so that at the end of its second month a female can produce another
pair of rabbits; rabbits never die and a mating pair always produces one new
pair (one male, one female) every month from the second month on. The
puzzle that Fibonacci posed was: how many pairs will there be in one year?

I At the end of the first month, they mate, but there is still only 1 pair.
I At the end of the second month the female produces a new pair, so now

there are 2 pairs of rabbits in the field.
I At the end of the third month, the original female produces a second pair,

making 3 pairs in all in the field.
I At the end of the fourth month, the original female has produced yet

another new pair, and the female born two months ago also produces her
first pair, making 5 pairs.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
fi 0 1 1 2 3 5 8 13 21 34 55 89 144

CK: However, Indian Mathematicians had already developed the "Fibonacci"
sequence some 1000 to 1900 years prior and had Twitter been around at that
time we’d be studying the "Pingala" Sequence. 15

https://en.wikipedia.org/wiki/Fibonacci_number

Exercise: Recursive Fibonacci

I Fib Definitions:
I f0 = 0
I f1 = 1
I fi = fi−1 + fi−2

I Fibonacci numbers lend
themselves well to a
recursive solution because
the sequence is defined
recursively

I Fill in the template to the
right to complete the
definition of the numbers

1 public class FibRec{
2 public static void main(String args[])
3 {
4 int i = Integer.parseInt(args[0]);
5 int fibI = fibRec(i);
6 System.out.printf("fib_%d = %d\n",
7 i,fibI);
8 }
9 // FILL IN THE TEMPLATE BELOW

10 public static int fibRec(int i){
11 if(??){ // BASE CASE 1
12 ??
13 }
14 if(??){ // BASE CASE 2
15 ??
16 }
17 // RECURSIVE CASE
18 int fibPrev1 = ??? // 1 back
19 int fibPrev2 = ??? // 2 back
20 int fibI = ??? // add last 2
21 return fibI;
22 }
23 }

16

Answer: Recursive Fibonacci

I Fib Definitions:
I f0 = 0
I f1 = 1
I fi = fi−1 + fi−2

I Base case for f0
I Base case for f1
I Recursive case makes two

recursive calls to look back
two places

1 public class FibRec{
2 public static void main(String args[])
3 {
4 int i = Integer.parseInt(args[0]);
5 int fibI = fibRec(i);
6 System.out.printf("fib_%d = %d\n",
7 i,fibI);
8 }
9 // Recursive Fibonacci function

10 public static int fibRec(int i){
11 if(i == 0){ // base case 1
12 return 0;
13 }
14 if(i == 1){ // base case 2
15 return 1;
16 }
17 // recursive case
18 int fibPrev1 = fibRec(i-1);
19 int fibPrev2 = fibRec(i-2);
20 int fibI = fibPrev1 + fibPrev2;
21 return fibI;
22 }
23 }

17

Exercise: How does fibRec() work?

I Take some time to examine
the Function Call Stack as
fibRec() executes

I Use the FibRec6 code to
the right in the Java
Visualizer to see what
happens

I Does any redundant
computation get done?

I How deep does the stack
get?

I What’s a good way to
describe/draw the overall
computation?

1 public class FibRec6{
2 public static void main(String args[])
3 {
4 int i = 6;
5 int fibI = fibRec(i);
6 System.out.printf("fib_%d = %d\n",
7 i,fibI);
8 }
9 // Recursive Fibonacci function

10 public static int fibRec(int i){
11 if(i == 0){ // base case 1
12 return 0;
13 }
14 if(i == 1){ // base case 2
15 return 1;
16 }
17 // recursive case
18 int fibPrev1 = fibRec(i-1);
19 int fibPrev2 = fibRec(i-2);
20 int fibI = fibPrev1 + fibPrev2;
21 return fibI;
22 }
23 }

18

https://cscircles.cemc.uwaterloo.ca/java_visualize/
https://cscircles.cemc.uwaterloo.ca/java_visualize/

Answers: How does fibRec() work?
I Best visualized by a tree of calls that occur at some point
I Actual active function calls in stack occupy one path in the

tree, example is cyan
I Tons of redundant computation done in the recursive version,

entire fib(4) tree is done twice unnecessarily

19

Exercise: Loopy Fibonacci

I Recursive version of Fibonacci is easy to specify but is
inefficient due to the redudancy

I How about a non-recursive version of Fibonacci?
I Would need to use iteration (loops) in some way as repeated

work is done
I Pitch me some ideas

20

Answers: Loopy Fibonacci

// Iterative version with an array
// Easy
public static int fibArray(int n){

int fibs[] = new int[n+1];
fibs[0] = 0;
fibs[1] = 1;
for(int i=2; i < n; i++){

fibs[i] = fibs[i-1] + fibs[i-2];
}
return fibs[n];

}
// Iterative version w/o an array
// Tricky
public static int fibI(int n){

int f1 = 1, f2 = 0, fn = 0;
for(int i=0; i < n; i++){

fn = f1 + f2;
f1 = f2;
f2 = fn;

}
return fn;

}

// Recursive
public static int fibR(int n){

if(n==1){ return 1; }
if(n==0){ return 0; }
return fibR(n-1) + fibR(n-2);

}

Comparisons
Each of these codes exhibits a
trade-off between

I Readability/correctness
I Use of more/less memory
I Speed of execution

If recursion still seems elegant
but flawed, wait for the next set
of examples.

21

