CSCIl 1103: Basics of Recursion

Chris Kauffman

Last Updated:
Mon Dec 11 10:56:24 CST 2017

Logistics

Date Lecture Outside

Mon 12/4 PrintWriter Lab 13: cmdline args, Scanner

Wed 12/6 Recursion P5 Tests Posted

Fri 12/8 Recursion

Mon 12/11 Recursion Lab 14: Review

Wed 12/13 Review P5 Due

Wed 12/20 Final Exam 1:30pm-3:30pm KELLER HALL 3-210

Reading from Eck

Ch 9.1 on Recursion

Goals

Basic Understanding of Recursion

Forward look to its use in

problems

Lab13: Command Line Args
and Scanner

Write a short program that
counts lines, words, characters
from files named on command
line

The Call Stack

» Recall that methods °Java\/\sual\zer

{beta: report a bug

have a stack frame iy et Mol e :
. . p Static fields
(activation record) i casacpca |2
String ret2 = "number: "+(w*3);
» When one method Fopirets); e 10
34 tl + " "+ t2;
calls another, another y o - wite
frame goes onto the static int topCatts < 0 T
public static veid top(String s}{ e
call stack ;;::E:ut.’printf("zau #ed: %s\n", topCalls,s); m‘; ::"“"':”‘ ;
» Frames can nest , bot:s
public static veid main(String args[]){
. . x |L5
deeply, tools like Java o o b3
. . } -
Visualizer are useful - nain:zn

Edit code

to see how the stack
moves

<<First | [<Back | Step23of 59 [Forward > | | Last>>

Exercise: Recursive Functions / Methods

» A function that calls/invokes itself
> Looks normal, behaves normally, feels crazy

1 // Simple recursive function which overflows the stack
2 public class RecCallMe{

3

4 public static void callMe(int number){

5 System.out.printf("%d: This is crazy\n",number);
6 callMe (number + 1);

7 System.out.printf ("Call me\n");

8 return;

9 }

10

11 public static void main(String args[]){

12 callMe(0) ;

13 }

14 3}

» Demonstrate the following in DrJava
» Draw some pictures to demonstrate what is happening
> Use the Java Visualizer to help with this

Answer: Recursive Functions / Methods

Java Visualizer
{beta: report a bug

// Simple recursive function which overflows the stac Frames
public class RecCallMe{ callMe:6
ber |6
public static void callMe(int number){ umper
System.out.printf("%d: This is crazy\n",number); .
> EaCh CallMe () callMe(number + 1}); :EILME‘Z
. . . System.out.printf("Call me\n"); number
Invocation increases return;
} callbe:6
call stack depth mmer |4
public static void main(String args[]){
. callbe:6
» Never reach return callte(e); s
} number
1
statement R
. » number |2
» Calling method Edit code
I callMe:6
overflows the stack - e |1
<<First | [<Back | Step 23 of44 Last >>
» Never reach s
number |0

printf("Call Me\n")

main:12

Terminating Recursive Functions

To avoid a stack overflow, there
must be a base case in which no
recursive call is made. Usually
recursive functions divide into

> Recursive cases: call the
method with slightly
different arguments to build
call stack up another level

» Base cases: "answer found",
return it, do not make
another recursive call

Common code structure for
single base and recursive case is
to the right

public static X recFunc(...){
// BASE CASE
if (termCondition true){
finish off answer;
return x;

}

// RECURSIVE CASE

do some stuff;

x = recFunc(...); // recurse
maybe do more;

return Xx;

Exercise: Call Me Maybe

» Identify Recursive and Base Cases in the following code
» What condition terminates the recursion?
» What do you expect for output?

1

2 public class RecCallMeMaybe{

3

4 public static void callMe(int number){
5 if (number == 0){

6 System.out.printf ("Here’s my number: %d\n",
7 number) ;

8 return;

9 }

10

11

12 System.out.printf ("%d: This is crazy\n",
13 number) ;

14 callMe(number - 1);

15 System.out.printf("Call me maybe\n");
16 return;

17 }

18

19 public static void main(String args[]){
20 callMe(7);

21}

Answer: Call Me Maybe

Code Analysis Output

1 // Simple recursive function which terminates > javac RecCallMeMaybe. jav
2 public class RecCallMeMaybe{ > java RecCallMeMaybe
3 7: This is crazy

4 public static void callMe(int number){ 6: This is crazy

5 if (number == 0){ // BASE CASE 5: This is crazy

6 System.out.printf ("Here’s my number: %d\n", 4: This is crazy

7 number) ; 3: This is crazy

8 return; // finished! 2: This is crazy

9 } 1: This is crazy

10 Here’s my number: O
11 // Recursive Case Call me maybe

12 System.out.printf("%d: This is crazy\n", Call me maybe

13 number) ; Call me maybe

14 callMe (number - 1); // RECURSE Call me maybe

15 System.out.printf("Call me maybe\n"); Call me maybe

16 return; Call me maybe

17 } Call me maybe

18

19 public static void main(String args[1){
20 callMe(7);
21 }
22}

Why would | use recursion?

» Looks a bit novel but hard to see a use until. ..

» Some problems are recursive, either explicitly or implicitly
> We will examine a few of these:
» Factorial
Fibonacci numbers
Finding a specific combination
Maybe 2D maze search. ..

v vYyy

Factorial of an Integer

The factorial of a number is written with an exclamation mark and
means to do the following:

5l =5 x4x3x2x1
TN=7Tx6x5x4x3x2x1
N'=Nx(N—-1)x(N—-2)x..x2x1
Notice that factorial has a natural recursive definition
5! =5 x 4l
7 =7 x 6!
NI'=N x (N—-1)!

One oddity: 0! = 1 by definition, not defined for negatives

10

Exercise: Recursive Factorial Execution

1 public class RecFact{

2 public static void main(String args([]){
Show the output of 3 ?nt n = Integer.parselnt(args[0]);

; 4 int factN = factRec(n);

executing the code 5 System.out.printf ("%d! = %d\n",
below 6 n,factN);
Show/Explain how the ; +
recursive function 9 public static int factRec(int n){
works 10 if(n == 0 || n == 1){

11 return 1;
Run the program: 12 ¥
> java RecFact 4 13 int smaller = factRec(n-1);
777 14 int fact = n * smaller;

15 return fact;

16 ¥

11

Exercise: Factorial Methods

Iterative Recursive
Easy to write a loop to compute Also easy to use recursion for to
factorial. do the same thing.

public static int factLoop(int n){ public static int factRec(int n){

int fact = 1; if(n == 0 || n == 1){
for(int i=1; i<=n; i++){ return 1;
fact = factxi; }
} int smaller = factRec(n-1);
return fact; int fact = n * smaller;
} return fact;
}

» What are metrics by which public static int factRecShort(int n]

if(n == 0 || n == 1){

to compare programs?

» Which of these }
implementations is better?) return n * factRecShort(n-1);

return 1;

12

Answer: Factorial Methods

public static int factLoop(int n){
int fact = 1;
for(int i=1; i<=n; i++){
fact = fact*i;
}
return fact;

}

public static int factRec(int n){
if(n == 0 || n == 1){
return 1;
}
int smaller = factRec(n-1);
int fact = n * smaller;
return fact;

}

public static int factRecShort(int n){

Loop version will likely be a little
faster because pushing stack
frames on in the recursive version
takes some time

Loop version will take less
memory than recursive version as
it uses a single stack frame while
recursive version uses n frames

Both are fairly easy to read and
understand

This makes it relatively easy verify
that they are correct: the MOST
IMPORTANT CODE METRIC

Based on this, one would likely
prefer the Loop version, but this
will not always be the case. ..

if(n == 0 || n == 1){
return 1;
}

return n * factRecShort(n-1);

}

Fibonacci Sequence

>

The classic example of a recursively defined mathematical
entity
The Fibonacci Number Sequence are a sequence of numbers
which are defined as follows

» The Oth Fibonacci number is 0, called f

» The 1th Fibonacci number is 1, called f;

» All other Fibonacci numbers are the sum of the previous two
Fibonacci numbers

» Example: b =f+f=14+0=1,s0h=1
» Example: i=h+A=1+1=2;s0(=2

The general description is
fi = fi-1+ fi—2, with fo =0,/ =1

Fibonacci numbers show nicely in a table

4 5 6 7 8 9 10
358 13 7 7 7

i 01 2 3
i 01 1 2

14

A good Origin Story From WikiP "Fibonnacci Numbers"

Fibonacci (in AD 1707) considers the growth of an idealized (biologically
unrealistic) rabbit population, assuming that: a newly born pair of rabbits, one
male, one female, are put in a field; rabbits are able to mate at the age of one
month so that at the end of its second month a female can produce another
pair of rabbits; rabbits never die and a mating pair always produces one new
pair (one male, one female) every month from the second month on. The
puzzle that Fibonacci posed was: how many pairs will there be in one year?

> At the end of the first month, they mate, but there is still only 1 pair.

> At the end of the second month the female produces a new pair, so now
there are 2 pairs of rabbits in the field.

> At the end of the third month, the original female produces a second pair,
making 3 pairs in all in the field.

> At the end of the fourth month, the original female has produced yet
another new pair, and the female born two months ago also produces her
first pair, making 5 pairs.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
i 0 1 1 2 3 5 8 13 21 34 55 89 144

CK: However, Indian Mathematicians had already developed the "Fibonacci"
sequence some 1000 to 1900 years prior and had Twitter been around at that
time we'd be studying the "Pingala" Sequence.

15

https://en.wikipedia.org/wiki/Fibonacci_number

Exercise: Recursive Fibonacci

» Fib Definitions:
» fob=0
» =1
» fi=fi1+fio
» Fibonacci numbers lend
themselves well to a
recursive solution because
the sequence is defined
recursively

» Fill in the template to the
right to complete the
definition of the numbers

© 00 ~NOU B WN -

NNNNE B R R R
WNNFR,R OWOWONOOULPd WN = O

public class FibRec{

public static void main(String args[])

{
int i = Integer.parselnt(args[0]);
int £ibI = fibRec(i);
System.out.printf ("fib_%d = %d\n",

i,£ibI);

}

// FILL IN THE TEMPLATE BELOW

public static int fibRec(int i){

if(77){ // BASE CASE 1
77

}

if(77){ // BASE CASE 2
77

}

// RECURSIVE CASE

int fibPrevl = 7?77 // 1 back

int fibPrev2 = ??? // 2 back

int fibI = 7?7 // add last 2

return fiblI;

16

Answer: Recursive Fibonacci

1 public class FibRec{
2 public static void main(String args([])
3 {
4 int i = Integer.parselnt(args[0]);
5 int fibI = fibRec(i);
» Fib Definitions: 6 System.out.printf("fib_%d = %d\n",
7 i,fibI);
» fob=0 8 }
» =1 9 // Recursive Fibonacci function
> f=fi_1+fi_> 10 public static int fibRec(int i){
11 if(i == 0){ // base case 1
» Base case for fj 12 return O;
» Base case for f; 13 ¥
1 14 if(i == 1){ // base case 2
» Recursive case makes two 15 return 1;
recursive calls to look back 16 ¥)
7 // recursive case
two places 18 int fibPrevi = fibRec(i-1);
19 int fibPrev2 = fibRec(i-2);
20 int fibI = fibPrevl + fibPrev2;
21 return fibI;
22 }

17

Take some time to examine
the Function Call Stack as

fibRec () executes

Use the FibRec6 code to
the right in the Java
Visualizer to see what
happens

Does any redundant
computation get done?
How deep does the stack
get?

What's a good way to
describe/draw the overall
computation?

© 00 ~NOUkWN -

Exercise: How does fibRec () work?

public class FibRec6{
public static void main(String args([])
{
int i = 6;
int £ibI = fibRec(i);
System.out.printf ("fib_%d = %d\n",
i,fibI);
}
// Recursive Fibonacci function
public static int fibRec(int i){

if(i == 0){ // base case 1
return O;

}

if(i == 1){ // base case 2
return 1;

}

// recursive case

int fibPrevl = fibRec(i-1);

int fibPrev2 = fibRec(i-2);

int fibI = fibPrevl + fibPrev2;
return fibI;

18

https://cscircles.cemc.uwaterloo.ca/java_visualize/
https://cscircles.cemc.uwaterloo.ca/java_visualize/

Answers: How does fibRec () work?

» Best visualized by a tree of calls that occur at some point

» Actual active function calls in stack occupy one path in the
tree, example is cyan

» Tons of redundant computation done in the recursive version,
entire £ib(4) tree is done twice unnecessarily

| fib(2) | | fib(1) | | fib(2) | | fib(1) | |fib(1) | |fib(0) |

| fib(2) | | fib(1) | |fib(1) | |fib(0) | | fib(1) | | fib(0) | | fib(1) | |fib(0) |

19

Exercise: Loopy Fibonacci

» Recursive version of Fibonacci is easy to specify but is
inefficient due to the redudancy

» How about a non-recursive version of Fibonacci?

» Would need to use iteration (loops) in some way as repeated
work is done

» Pitch me some ideas

20

Answers: Loopy Fibonacci

// Iterative version with an array

// Easy

public static int fibArray(int n){
int fibs[] = new int[n+1];

fibs[0] = 0;

fibs[1] = 1;

for(int i=2; i < n; i++){

fibs[i] = fibs[i-1] + fibs[i-2];

}

return fibs[n];
}
// Iterative version w/o an array
// Tricky

public static int fibI(int n){
int f1 =1, f2 = 0, fn = 0;
for(int i=0; i < n; i++){
fn = f1 + £2;
f1 = £2;
f2 fn;

}

return fn;

// Recursive
public static int fibR(int n){
if (n==1){ return 1; }
if (n==0){ return 0; }
return fibR(n-1) + fibR(n-2);
}

Comparisons

Each of these codes exhibits a
trade-off between

» Readability /correctness
» Use of more/less memory
» Speed of execution

If recursion still seems elegant
but flawed, wait for the next set
of examples.

21

