
CSCI 1103: Array-based Data Structures

Chris Kauffman

Last Updated:
Fri Nov 17 09:57:28 CST 2017

1

Logistics
Date Lecture Outside
Mon 11/13 Expandable Arrays Lab 10 on Stacks
Wed 11/15 Stacks/Queues P4 Due
Fri 11/17 Queues
Mon 11/20 Review Lab 10 Due, Review
Wed 11/22 Exam 2

Reading from Eck
I Ch 5 on Objects/Classes
I Ch 8.3.3 on Throwing

exceptions
I Ch 7.4 on ArrayList
I Ch 9.3 on Stacks and

Queues

Lab10: Stack Data Structure
I Define a new class for

Stacks of Strings
I Fixed and Expandable

Project 4
I Due Wednesday
I Questions?

2

Exceptions for Errors

I Java’s mechanism for indicating errors is to throw exceptions
I There are a wide variety of exception kinds available
I Can also create your own: they are a class
I For simple situations, RuntimeException suffices
I Construct one with a String error message indicating problem

RuntimeException e = new RuntimeException("Ya done messed up.");
I Raise the exception with the keyword throw

throw e;
I Frequently do this in one-liners

throw new RuntimeException("Ya done messed up.");

3

Exceptions share return semantics

I Uncaught throw statements immediately exit a method,
similar to return

I Control flows up and out, usually crashes program

// Divide num by denom and return the quotient.
// Raise a RuntimeException if denom is 0.
public static int divide(int num, int denom){

if(denom == 0){
throw new RuntimeException("Divide by 0"); // error: immediately

} // throw exception
int quotient = num / denom;
return quotient; // immediately return

} // value

4

Additional Info on Exceptions

I We will work with RuntimeExceptions as they are simple
sufficient

I Exceptions are a complex topic, include
I try/catch blocks to recover form exceptions
I method signatures with throws
I inheritance of exception types

I We will revisit some of these topics later when discussing File
Input/Output as many methods in I/O involve exception
handling

5

Basic Data Structures

I Information frequently comes/goes in patterns
I To make life easier for programmers and utilize the machine

more efficiently, data structures provide a way to organize
data for easy use

I The purpose of a creating data structure is to make
programming another task easier

I We will discuss some simple data structures
I Expandable Arrays (today)
I Stacks built on arrays (lab 10)
I Queues built on arrays (later in week)

I Textbook discusses some alternatives
I Linked lists
I Stacks built from linked nodes
I Queues built for linked nodes

I You will likely study these in later CS courses

6

Expandable Data Structures
Standard Array

I Recall Java’s standard arrays

1. Length is fixed at creation
2. Initially filled with zeroey

elements (0 or null or
similar)

3. Random access based on
index number using
square braces: arr[i]

4. Cannot grow
I Inability to grow is a drag as

one frequently wants to add
without knowing limit

I The goal of an expandable
array or ArrayList is to
making adding possible

Expandable List
I Independent class created by

us (and others)
1. Length is NOT fixed
2. Initially empty: size 0
3. Random access based on

index number using
methods: a.get(i) and
a.set(i,x)

4. Can grow: a.add(y)

I No magic: a field of the
expandable list will be a
standard array

I When standard array fills up,
make a bigger one, copy
over elements

7

First pass: FixedList doesn’t grow
Create/Initial Add

Welcome to DrJava.
> FixedList f = new FixedList(3);
> f.toString()
[]
> f.size()
0
> f.get(2)
java.lang.RuntimeException:
out of bounds
at FixedList.get(FixedList.java:22)
> f.add("A")
> f.size()
1
> f.toString()
[A]
> f.get(0)
A
> f.get(1)
java.lang.RuntimeException:
out of bounds
at FixedList.get(FixedList.java:22)

Further Adds/Set

> f.add("B")
> f.toString()
[A, B]
> f.get(1)
B
> f.size()
2
> f.add("C")
> f.toString()
[A, B, C]
> f.size()
3
> f.get(2)
C
> f.set(1,"X")
> f.toString()
[A, X, C]
> f.add("D")
java.lang.RuntimeException:
list array is full
at FixedList.add(FixedList.java:40) 8

Exercise: Accessor/Mutators Methods
Define size()

public class FixedList{

// number of elements
// that have been added
private int size;

// contents of the array
private String[] data;

// Create the array backing
// the fixed list
public FixedList(int maxSize){

this.size = 0;
this.data = new String[maxSize];

}

// Return how many elements
// are in the list
public int size(){

// YOUR CODE HERE
}

Define set()

// Return element i of the
// list. Check that the index is
// in bounds (greater than or
// equalt to 0 and less than the
// list size)
public String get(int i){

if(i < 0 || i >= this.size){
// out of bounds
String msg = "out of bounds";
throw new RuntimeException(msg);

}
return this.data[i];

}

// Change element i of the
// list. Check that the index is
// in bounds (greater than or
// equalt to 0 and less than the
// list size)
public void set(int i, String x){

// YOUR CODE HERE
}

9

Exercise: add() Method
Define add(x) method that allows new elements to be put in the
list at the end increasing the size
> f.toString()
[]
> f.add("A")
> f.add("B")
> f.toString()
[A, B]
> f.size()
2

public class FixedList{
// number of elements that have been added
private int size;
// contents of the array
private String[] data;

// Add the given string to the list at the end. If there is not
// sufficient space for the addition, throw an exception
public void add(String x){

// YOUR CODE HERE to:
// Check for space in array, throw exception if none
// Put x in array
// Increment size

}
10

ExpandableList: Grow the Array
A modification to add(x) allows as many additions as memory
supports: allocate larger arrays and copy when needed.

I Draw pictures to demonstrate how add(x) works
I How much does the array size increase during expansion?

// A class wrapper for a list of Strings. This version grows the
// underlying array when needed.
public class ExpandableList{

private int size; // number of elements that have been added
private String[] data; // contents of the array

// Add the given string to the list at the end. If there is not
// sufficient space for the addition, expand the underlying array to
// accommodate it.
public void add(String x){

if(this.size >= this.data.length){ // check for space
String newData[] = new String[this.data.length*2]; // new larger array
for(int i=0; i<this.data.length; i++){ // copy old elements

newData[i] = this.data[i];
}
this.data = newData; // point at new array

}
this.data[this.size] = x; // add on element
this.size++; // increase size

}
11

Exercise: Removal in Lists

I Another common operation
is removal: get rid of an
element at a specific index

I List semantics dictate no
gaps so much shift elements
to account for this change

I Propose how one might
write remove(i)

I What fields must change
and how?

I What control structures
are needed?

> l
[A, B, C, D, E] // 5 elements
> l.remove(2) // remove C
> l
[A, B, D, E] // elements shifted
> l.size()
4 // size smaller
> l.add("F")
> l
[A, B, D, E, F] // 5 elements again
> l.remove(0) // remove A
> l
[B, D, E, F] // elements shifted
> l.remove(2) // remove E
> l
[B, D, F] // elements shifted
> l.size()
3 // down to 3 elements

12

Answer: Removal in Lists

Removal requires a loop to shift elements
left in the array, decrease the size of the list

// Remove the element at index i. Shift
// elements to fill in gap and decrease the
// size of the list.
public void remove(int i){

if(i < 0 || i >= this.size){
throw
new RuntimeException("out of bounds");

}
// shift elements to overwrite index i
for(int j=i; j<this.size-1; j++){

this.data[j] = this.data[j+1]; //
}
this.size--; // fewer elements
this.data[size]=null; // nullify last element

}

13

Exercise: Stacks
Another major data structure, covered in Lab 10

Questions
I From lab work, what are the

main operations of the
stack?

I Where have we seen stacks
used so far?

I How are stacks and
expandable lists related?

I How are stacks and
expandable lists different?

I What options exist when
adding into a stack and the
backing array is full (at
capacity)?

Stacks are a LIFO:
Last In First Out

14

Answers: Stacks

I Stack Operations:
I s.getTop(): return whatever is on top
I s.push(x): put x on top
I s.pop(): remove whatever is on top
I s.isEmpty(): true when nothing is in it, false o/w

I Where have we seen stacks used so far?
I Function call stack, contains data for running methods

I How are stacks and expandable arrays related?
I Both backed by an array, arr.add(x) like stack.push()

I How are stacks and expandable arrays different?
I Array allows get/set of any element, stack can only change top

I What options exist when pushing into a stack and the backing
array is full (at capacity)?
1. Throw an exception and ignore request
2. Allocate a larger array, copy elements, proceed with push

15

Get in Line

Queues are pervasive in computing and life
I Examples?
I Semantics?

Source: kittylittered

16

http://www.flickr.com/photos/18376924@N00/2661951321/sizes/l/

Queue Data Structure
Operations

I enqueue(x): x enters at the back
I dequeue(): front leaves
I getFront(): return who’s in front
I isEmpty(): true when nothing is in it, false o/w

Implementation with arrays: seems easy. . .
I Enqueue elements at low indices like list.add(x)
I Dequeue elements by removing at index 0 like

list.remove(0)
I Leads to a lot of shifting
I For efficiency, never shift
I Move front/back in a ring-like fashion

17

Efficient Array Queue in Pictures

18

Tricky to Implement
I Must wrap front/back around as they move off end of array
I On expansion must copy elements carefully and wrap around
I toString() must also account for wrap-around effect

public class ArrayQueue{

// Produce a string representation of the queue with the front
// element leftmost followed by other elements to the right
public String toString(){

if(this.size==0){
return "[]";

}
String str = "[" + this.data[this.front];
for(int i=1; i<this.size; i++){

int index = (this.front+i) % this.data.length;
str += ", " + this.data[index];

}
str += "]";
return str;

}

19

Data Typing and Generics
I Notice our expandable list, stack, and queue all use String
I If you want a queue of integers, must recode: lots of

redundancy
I In old Java (version 1.0-1.4) had bad set of choices for data

structures and containers due to type problems
I Java 1.5 introduced generics, lifted from C++
I Allows containers to work with any type of item
I Used extensively in Java’s standard library

ArrayList<String> als = new ArrayList<String>();
als.add("A"); // add a string to expandable array
als.add("B");
ArrayList<Integer> ali = new ArrayList<Integer>();
als.add(1); // add an integer to expandable array
als.add(2);
ArrayDeque<Double> ard = new ArrayDeque<Double>();
ard.addLast(1.23); // add double to expandable queue
ard.addLast(4.56);

20

Inheritance: Sharing Code between Classes
I Notice that the code for FixedList and ExpandableList is

almost identical
I Created FixedList then copied all methods to

ExpandableList, made a small change to the add() method
to allow expansion

I This situation is well-suited for inheritance
public class FixedList { .. }

public class ExpandableList extends FixedList{
@Override
public void add(String x){

// do this method a little differently
}

}

I ExpandableList implicitly inherits all methods and fields of
FixedList : don’t need to be copy them

I Method add() is overridden to have a different behavior than
the version in the parent class

21

