
CSCI 1103: Input with TextIO, Basic Types

Chris Kauffman

Last Updated:
Wed Sep 20 21:38:55 CDT 2017

1

Logistics
Reading
Eck Ch 2

I Available online: http://math.hws.edu/javanotes/
I Reading ahead is encouraged

Goals
I Input from user
I Variable Types
I Arithmetic Stuff
I Methods

Project 1
I Will be posted by Friday, discuss then
I Due end of next weekend
I 2-3 short programs 2

http://math.hws.edu/javanotes/

Exercise: Quick Review

I What’s a variable?
I Draw a picture of the MEMORY layout of the following java

program:

int young = 10;
int old = 98;
int diff;
young = young + 1;
diff = old - young;

> // draw program at this point

I How would one print the value of diff on the SCREEN?
I What incantations must be added to get the above to actually

run?

3

Birthday Exercise

Write/review the Birthday java program (end of previous lecture).

4

Compile Time vs. Runtime
Compile Time: Translate X.java to X.class

I Java compiler translates high level, human-readable Java code
to low-level, machine readable bytecode

I X.java source file compiles to X.class bytecode/class file
> ls # show what’s in this folder
X.java # 1 file: X.java
> file X.java # what kind of file is X.java
X.java: ASCII text
> javac X.java # compile X.java
> ls # show what’s in this folder
X.class X.java # 2 files: X.java and X.class
> file X.class # what kind of file is X.class
X.class: compiled Java class data, version 52.0 (Java 1.8)

Runtime
I A compiled Java program is loaded executed by the CPU
I Given memory boxes, print stuff to screen
I After making changes to X.java, must re-compile to see the

changes when it runs - DrJava is aware 5

Dynamic Input for Programs

I Changing variables and re-compiling every time is a drag
I My age is 36
I Re-edit Birthday.java to set int age=36;
I Re-compile, re-run
I Deanna’s age is 19
I Re-Edit Birthday.java to set int age=19;
I Re-compile, re-run
I Amy’s age is 30
I . . . someone kill me now. . .
I NO: Just re-write to ask for age

I Frequently programs must get input from somewhere
I Easiest input to understand is directly from user of program
I Will allow program to have different behavior based on

different input

6

Input In Java

I Input in Java is a pain due to early decisions in Java
I We will use the Eck’s textbook approach TextIO.java
I Make sure that TextIO.java is present in the same folder as

your other programs (make copies if needed)
I Provides a simple way to get input from users

int age = TextIO.getInt();
I Input is often preceded by a prompt describing what’s

happening
System.out.println("Enter your age:");
int age = TextIO.getInt();
System.out.println("I hear you are " + age);

7

Podunk Model and Input
Input is a little hard to write on SCREEN in examples but with
prompts, context should resolve ambiguities

CPU: at instruction 10: MEMORY: SCREEN:
> 10: println("Enter your age"); | Name | Value |

11: int age = TextIO.getInt(); +------+-------|
12: println("I hear you are " + age); | age | 0 |

CPU: at instruction 11: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:

> 11: int age = TextIO.getInt(); +------+-------|
12: println("I hear you are " + age); | age | 0 |

CPU: at instruction 12: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:
11: int age = TextIO.getInt(); +------+-------| 22

> 12: println("I hear you are " + age); | age | 22 |

CPU: at instruction 12: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:
11: int age = TextIO.getInt(); +------+-------| 22
12: println("I hear you are " + age); | age | 22 | I hear you are 22

> 13: ...

Question: Why is age initially 0 at the beginning?
8

Exercise: FruitStand

Pseudocode
I Prompt for apples, read integer
I Prompt for oranges, read integer
I Print for apples
I Print for oranges
I Print total fruits

Draw a MEMORY diagram of the
running programc

Use

public class FruitStand{
public static void main(String args[]){

System.out.println("stuff");
int x = TextIO.getInt();

Sample Session

> javac FruitStand.java
> java FruitStand
How many apples?
1
How many oranges?
2
apples: 1
oranges: 2
fruits: 3
> java FruitStand
How many apples?
800
How many oranges?
303
apples: 800
oranges: 303
fruits: 1103

9

Answer: FruitStand

public class FruitStand{
public static void main(String args[]){

System.out.println("How many apples?");
int apples = TextIO.getInt();
System.out.println("How many oranges?");
int oranges = TextIO.getInt();
int total = apples+oranges;

System.out.println("apples: " +apples);
System.out.println("oranges: "+oranges);
System.out.println("fruits: "+total);

}
}

10

Note: TextIO or Not?

I TextIO is available from the Textbook but may not be
available every time you use Java

I Common alternative is the Scanner class which is a bit more
complex

I We will use Scanner later in the class
I For now TextIO is simple and slick

11

Other Primitive Variable Types
While useful, int is not the only game in town. Here are ALL of
Java’s primitive types

1103 Name Bytes Range
byte 1 -128 to 127

X int 4 -2,147,483,648 to 2,147,483, 647
short 2 -32,768 to 32,767
long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
float 4 ±3.40282347E+38F (6-7 significant decimal digits)

X double 8 ±1.79769313486231570E+308 (15 significant decimal digits)
char 2 0 to 65,536 (unsigned)

X boolean 2(?) true or false
X reference 4 / 8 Pointer to another memory location, 32 or 64bit

A primitive type fits in a single memory box with the given size

MEMORY
int a = 5; | #1024 | a | 5 |
double x = 1.23; | #1028 | x | 1.23 |
boolean b = true; | #1036 | b | true |
int c = 2; | #1038 | c | 2 |

12

Exercise: Draw a MEMORY Diagram

1103 Name Bytes Range
X int 4 -2,147,483,648 to 2,147,483, 647
X double 8 ±1.79769313486231570E+308 (15 significant decimal digits)
X boolean 2(?) true or false

I Draw a memory diagram of the following variables.
I Make sure that the memory addresses of the boxes reflect the

sizes in bytes of the types given

double x = 1.23;
double y = 4.56;
int myInt = 15;
boolean bool = false;
double z = 4.56;
boolean bool2 = true;

13

Exercise: Number operations: int and double
Arithmetic operations for both int and double

+ addition * multiplication
- subtraction / division (!)

Generally can mix arithmetic of int and double, but some
gotchyas exist for division:

double x = 10.0; int a = 10;
double y = 3.0; int b = 3;

double z = x / y; int c = a / b;
// What is z? // What is c?

double w = a / b; double u = a / y;
// What is w? // What is u?

double r = a / (double) b; // Casting
double t = (double) a / b; // Casting 2

I Verify these in the
interactive loop if DrJava

I Understand WHY each
result happens

I Take care when mixing
integral and floating types

I Arithmetic can be complex:
x = (x + S/x) / 2.0;

14

Division for int

I int q = a / b; means divide and get the quotient
I how many times does b "go into" a)

I int r = a % b; means divide and get the remainder
I What’s left from b*q - a

The symbol % (percent) is often referred to as the modulo operator
I Works ONLY for integers
I No remainder for double: leftovers become fractions

Note: there are a bunch of other things that can be done with
ints, bitwise operations, that we may deal with later in class.
These have symbols like <<

15

Logical operations: boolean
The boolean type represents either true or false as in

boolean a = true;
boolean b = false;

Booleans have a set of logical operators which manipulate them.

boolean x = a && b; // logical AND: true only if both a,b are true
boolean y = a || b; // logical OR: false only if both a,b are false
boolean z = !a; // logical NOT: flips true to false, false to true

These can be combined in similar ways to arithmetic.

boolean w = !(a && b);
boolean t = !w || (!b && a);

I Values for the above booleans?
I boolean types get more action in control structures

16

Exercise: Reading Data

TextIO provides easy facilities to ask for basic types

int i = TextIO.getInt(); Read an integer from the user
double x = TextIO.getDouble(); Read an double from the user
boolean b = TextIO.getBoolean(); Read an boolean from the user

Identify in each situation which of these to use
Need to know. . . .

I if user is a student or not
I GPA of user
I the age of user
I how much cash they have in their pocket
I credit card number
I which major they pick. . .

17

Math Methods
I Arithmetic is available via symbols: +,-,*,/
I More complex operations come from the Math class
I System allows printing via System.out.print()
I Math is similar but has math operations

double rootOfTwo = Math.sqrt(2.0);
// 1.4142135623730951

double fiveToPower = Math.pow(5.0, 7.3);
// 126613.79661662203

double x = 7.8;
double y = 2.3;
double xToY = Math.pow(x,y);
// 112.67241063690722

Full listing of Math operations is in the Java Doc:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

18

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Exercise: Math!
Use the Math class functions

I Math.sqrt(z)
I Math.pow(m , n)

to compute the following two
values, x and p.

x = −b +
√

b2 − 4ac
2a

double a = 3.5;
double b = -4.1;
double c = 0.5;
double numerator = ???;
double denominator = ???;
double x = ???;

What was this thing again?

P = Q × er×t

double q = 25.0;
double e = 2.718;
double r = 2.0;
double t = 1.7;
double p = ???;

Anyone familiar with this gem? 19

Solution: Math!

// Solution to in-class exercises on using Math.sqrt() and Math.pow()
public class DoMath{

public static void main(String args[]){
double a = 3.5;
double b = -4.1;
double c = 0.5;
double numerator = -b + Math.sqrt(b*b - 4*a*c);
double denominator = 2*a;
double x = numerator / denominator;
System.out.println(x);

double q = 25.0;
double e = 2.718;
double r = 2.0;
double t = 1.7;
double p = q * Math.pow(e, r*t);
System.out.println(p);

}
}

20

Printing formatted output
I System.out.println(myDouble), easy to call, prints lots of digits
I System.out.printf(..): more complex, more control over numbers

double x = 1.23456789123456789;
System.out.println(x);
// 1.234567891234568

System.out.printf("%.4f\n",x);
// 1.2346

I System.out.printf(format, arguments...): takes 2 arguments
I format controls how things will be printed, is a String
I arguments.. are things to substitute into the format

I "%.4f\n"
I Substitutions start with a % sign
I .4 means 4 decimal digits
I f means floating point number
I \n means "new line"

I System.out.printf("%.4f\n" , x);
I Print x as a floating point number with 4 digits of accuracy

followed by a newline
21

Recipes for printf()

double x = 1.23456789;
double y = 4.95;
double z = 0.00789;

// print only x with 2 digits
System.out.printf("x is %.2f\n",x);
// x is 1.23

// print x,y,z with 2 digits
System.out.printf("all are %.2f %.2f %.2f\n",x,y,z);
// all are 1.23 4.95 0.01

// print x,y,z with 3 digits
System.out.printf("3 digs %.3f %.3f %.3f\n",x,y,z);
// 3 digs 1.235 4.950 0.008

// mixed precision
System.out.printf("x: %.5f... y: $%.3f z: %.0f\n",x,y,z);
// x: 1.23457... y: $4.950 z: 0

Notice printf()
I Does rounding automatically
I Can handle multiple

substitutions
I Can include literal text like $

(project 1)

22

Exercise: printf()

double x = 1.0331559932390235;
double q = 748.8384692277563;

// Use a single printf() to print x to 5 decimal
// digits and q to 2 decimal digits. Include a $
// sign before q and a newline at the end.

System.out.printf(????);

// x: 1.03316 y: $748.84

23

String Data
String name = "Chris";
String occupation = "csci prof";
String university = TextIO.getWord(); // enter: UMN

I A class with specific instances which are objects
I Also called a reference type
I Strings are fundamentally different than the primitive types
I Simplified memory picture: what should be at address #4000

#1024	name	#2048		#3032	[0]	’c’
#1028	occupation	#3032		#3034	[1]	’s’
#1032	university	#4000		#3036	[2]	’c’
...		#3038	[3]	’i’
#2048	[0]	’C’		#3040	[4]	’ ’
#2050	[1]	’h’		#3042	[5]	’p’
#2052	[2]	’r’		#3044	[6]	’r’
#2054	[3]	’i’		#3046	[7]	’o’
#2056	[4]	’s’		#3048	[8]	’f’
...

24

Primitives and References
Primitives

I There are about 8 primitive types in Java like int
I You cannot create new primitive types
I All of them start with lower case letters: double, boolean
I Values of primitives fit entirely inside their memory box
I Primitives have no methods: can’t do anything

Reference types
I There are tons of reference types
I You will create many more: public class MyType{
I They start with upper case letters: String, Scanner
I A variable with a reference type has a memory box but it’s

contents refers to another spot in memory
I Reference types typically have methods: can do things

25

String Method Examples

String name = "Chris";
// 01234
String occupation = "csci prof";
// 012345678
// Example Methods
int nameLength = name.length(); // ask for the length of name
int occLength = occupation.length(); // length of occupation
char third = name.charAt(3); // third character of "Chris"
char fifth = occupation.charAt(5); // third character of "csci prof"
String subString = name.substring(1,4); // "hri" chars 1 to 3
String changed = occupation.replace("prof","badass"); // smirk

I Strings have many methods
I Complete list is in the Java documentation:

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

26

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Exercise: Name Length
I Prompt a user for their name
I Calculate length with str.length()
I Print out the number of characters in the name

> javac NameLength.java

> java NameLength
What’s your name?
Amy
Amy: did you know your name has 3 characters?

> java NameLength
What’s your name?
Christopher
Christopher: did you know your name has 11 characters?

> java NameLength
What’s your name?
Professor Kauffman
Professor: did you know your name has 9 characters?

Note the last run measured only the 9 characters in Professor 27

Answer: Name Length

// Solution to name length exercise
public class NameLength{

public static void main(String args[]){
System.out.println("What’s your name?");
String name = TextIO.getWord();
int length = name.length();
System.out.println(name+": did you know your name has "+

length+" characters?");

// ALTERNATIVE: print with printf()
// System.out.printf("%s: did you know your name is %d characters?\n",
// name, length);

}
}

I Notice that it is fine to break of the long println() call across several
lines: compiler doesn’t care and humans can read easier won’t matter

I The alternative uses printf() with %s to sub strings and %d for integers

28

