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Logistics
Reading
Eck Ch 2

I Available online: http://math.hws.edu/javanotes/
I Reading ahead is encouraged

Goals
I Input from user
I Variable Types
I Arithmetic Stuff
I Methods

Project 1
I Will be posted by Friday, discuss then
I Due end of next weekend
I 2-3 short programs 2

http://math.hws.edu/javanotes/


Exercise: Quick Review

I What’s a variable?
I Draw a picture of the MEMORY layout of the following java

program:

int young = 10;
int old = 98;
int diff;
young = young + 1;
diff = old - young;

> // draw program at this point

I How would one print the value of diff on the SCREEN?
I What incantations must be added to get the above to actually

run?
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Birthday Exercise

Write/review the Birthday java program (end of previous lecture).
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Compile Time vs. Runtime
Compile Time: Translate X.java to X.class

I Java compiler translates high level, human-readable Java code
to low-level, machine readable bytecode

I X.java source file compiles to X.class bytecode/class file
> ls # show what’s in this folder
X.java # 1 file: X.java
> file X.java # what kind of file is X.java
X.java: ASCII text
> javac X.java # compile X.java
> ls # show what’s in this folder
X.class X.java # 2 files: X.java and X.class
> file X.class # what kind of file is X.class
X.class: compiled Java class data, version 52.0 (Java 1.8)

Runtime
I A compiled Java program is loaded executed by the CPU
I Given memory boxes, print stuff to screen
I After making changes to X.java, must re-compile to see the

changes when it runs - DrJava is aware 5



Dynamic Input for Programs

I Changing variables and re-compiling every time is a drag
I My age is 36
I Re-edit Birthday.java to set int age=36;
I Re-compile, re-run
I Deanna’s age is 19
I Re-Edit Birthday.java to set int age=19;
I Re-compile, re-run
I Amy’s age is 30
I . . . someone kill me now. . .
I NO: Just re-write to ask for age

I Frequently programs must get input from somewhere
I Easiest input to understand is directly from user of program
I Will allow program to have different behavior based on

different input
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Input In Java

I Input in Java is a pain due to early decisions in Java
I We will use the Eck’s textbook approach TextIO.java
I Make sure that TextIO.java is present in the same folder as

your other programs (make copies if needed)
I Provides a simple way to get input from users

int age = TextIO.getInt();
I Input is often preceded by a prompt describing what’s

happening
System.out.println("Enter your age:");
int age = TextIO.getInt();
System.out.println("I hear you are " + age);
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Podunk Model and Input
Input is a little hard to write on SCREEN in examples but with
prompts, context should resolve ambiguities

CPU: at instruction 10: MEMORY: SCREEN:
> 10: println("Enter your age"); | Name | Value |

11: int age = TextIO.getInt(); +------+-------|
12: println("I hear you are " + age); | age | 0 |

CPU: at instruction 11: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:

> 11: int age = TextIO.getInt(); +------+-------|
12: println("I hear you are " + age); | age | 0 |

CPU: at instruction 12: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:
11: int age = TextIO.getInt(); +------+-------| 22

> 12: println("I hear you are " + age); | age | 22 |

CPU: at instruction 12: MEMORY: SCREEN:
10: println("Enter your age"); | Name | Value | Enter your age:
11: int age = TextIO.getInt(); +------+-------| 22
12: println("I hear you are " + age); | age | 22 | I hear you are 22

> 13: ...

Question: Why is age initially 0 at the beginning?
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Exercise: FruitStand

Pseudocode
I Prompt for apples, read integer
I Prompt for oranges, read integer
I Print for apples
I Print for oranges
I Print total fruits

Draw a MEMORY diagram of the
running programc

Use

public class FruitStand{
public static void main(String args[]){

System.out.println("stuff");
int x = TextIO.getInt();

Sample Session

> javac FruitStand.java
> java FruitStand
How many apples?
1
How many oranges?
2
apples: 1
oranges: 2
fruits: 3
> java FruitStand
How many apples?
800
How many oranges?
303
apples: 800
oranges: 303
fruits: 1103
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Answer: FruitStand

public class FruitStand{
public static void main(String args[]){

System.out.println("How many apples?");
int apples = TextIO.getInt();
System.out.println("How many oranges?");
int oranges = TextIO.getInt();
int total = apples+oranges;

System.out.println("apples: " +apples);
System.out.println("oranges: "+oranges);
System.out.println("fruits: "+total);

}
}
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Note: TextIO or Not?

I TextIO is available from the Textbook but may not be
available every time you use Java

I Common alternative is the Scanner class which is a bit more
complex

I We will use Scanner later in the class
I For now TextIO is simple and slick
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Other Primitive Variable Types
While useful, int is not the only game in town. Here are ALL of
Java’s primitive types

1103 Name Bytes Range
byte 1 -128 to 127

X int 4 -2,147,483,648 to 2,147,483, 647
short 2 -32,768 to 32,767
long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
float 4 ±3.40282347E+38F (6-7 significant decimal digits)

X double 8 ±1.79769313486231570E+308 (15 significant decimal digits)
char 2 0 to 65,536 (unsigned)

X boolean 2(?) true or false
X reference 4 / 8 Pointer to another memory location, 32 or 64bit

A primitive type fits in a single memory box with the given size

MEMORY
int a = 5; | #1024 | a | 5 |
double x = 1.23; | #1028 | x | 1.23 |
boolean b = true; | #1036 | b | true |
int c = 2; | #1038 | c | 2 |
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Exercise: Draw a MEMORY Diagram

1103 Name Bytes Range
X int 4 -2,147,483,648 to 2,147,483, 647
X double 8 ±1.79769313486231570E+308 (15 significant decimal digits)
X boolean 2(?) true or false

I Draw a memory diagram of the following variables.
I Make sure that the memory addresses of the boxes reflect the

sizes in bytes of the types given

double x = 1.23;
double y = 4.56;
int myInt = 15;
boolean bool = false;
double z = 4.56;
boolean bool2 = true;
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Exercise: Number operations: int and double
Arithmetic operations for both int and double

+ addition * multiplication
- subtraction / division (!)

Generally can mix arithmetic of int and double, but some
gotchyas exist for division:

double x = 10.0; int a = 10;
double y = 3.0; int b = 3;

double z = x / y; int c = a / b;
// What is z? // What is c?

double w = a / b; double u = a / y;
// What is w? // What is u?

double r = a / (double) b; // Casting
double t = (double) a / b; // Casting 2

I Verify these in the
interactive loop if DrJava

I Understand WHY each
result happens

I Take care when mixing
integral and floating types

I Arithmetic can be complex:
x = (x + S/x) / 2.0;
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Division for int

I int q = a / b; means divide and get the quotient
I how many times does b "go into" a)

I int r = a % b; means divide and get the remainder
I What’s left from b*q - a

The symbol % (percent) is often referred to as the modulo operator
I Works ONLY for integers
I No remainder for double: leftovers become fractions

Note: there are a bunch of other things that can be done with
ints, bitwise operations, that we may deal with later in class.
These have symbols like <<

15



Logical operations: boolean
The boolean type represents either true or false as in

boolean a = true;
boolean b = false;

Booleans have a set of logical operators which manipulate them.

boolean x = a && b; // logical AND: true only if both a,b are true
boolean y = a || b; // logical OR: false only if both a,b are false
boolean z = !a; // logical NOT: flips true to false, false to true

These can be combined in similar ways to arithmetic.

boolean w = !(a && b);
boolean t = !w || (!b && a);

I Values for the above booleans?
I boolean types get more action in control structures
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Exercise: Reading Data

TextIO provides easy facilities to ask for basic types

int i = TextIO.getInt(); Read an integer from the user
double x = TextIO.getDouble(); Read an double from the user
boolean b = TextIO.getBoolean(); Read an boolean from the user

Identify in each situation which of these to use
Need to know. . . .

I if user is a student or not
I GPA of user
I the age of user
I how much cash they have in their pocket
I credit card number
I which major they pick. . .
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Math Methods
I Arithmetic is available via symbols: +,-,*,/
I More complex operations come from the Math class
I System allows printing via System.out.print()
I Math is similar but has math operations

double rootOfTwo = Math.sqrt(2.0);
// 1.4142135623730951

double fiveToPower = Math.pow(5.0, 7.3);
// 126613.79661662203

double x = 7.8;
double y = 2.3;
double xToY = Math.pow(x,y);
// 112.67241063690722

Full listing of Math operations is in the Java Doc:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
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Exercise: Math!
Use the Math class functions

I Math.sqrt( z )
I Math.pow( m , n)

to compute the following two
values, x and p.

x = −b +
√

b2 − 4ac
2a

double a = 3.5;
double b = -4.1;
double c = 0.5;
double numerator = ???;
double denominator = ???;
double x = ???;

What was this thing again?

P = Q × er×t

double q = 25.0;
double e = 2.718;
double r = 2.0;
double t = 1.7;
double p = ???;

Anyone familiar with this gem? 19



Solution: Math!

// Solution to in-class exercises on using Math.sqrt() and Math.pow()
public class DoMath{

public static void main(String args[]){
double a = 3.5;
double b = -4.1;
double c = 0.5;
double numerator = -b + Math.sqrt(b*b - 4*a*c);
double denominator = 2*a;
double x = numerator / denominator;
System.out.println(x);

double q = 25.0;
double e = 2.718;
double r = 2.0;
double t = 1.7;
double p = q * Math.pow(e, r*t);
System.out.println(p);

}
}
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Printing formatted output
I System.out.println(myDouble), easy to call, prints lots of digits
I System.out.printf(..): more complex, more control over numbers

double x = 1.23456789123456789;
System.out.println(x);
// 1.234567891234568

System.out.printf("%.4f\n",x);
// 1.2346

I System.out.printf( format, arguments...): takes 2 arguments
I format controls how things will be printed, is a String
I arguments.. are things to substitute into the format

I "%.4f\n"
I Substitutions start with a % sign
I .4 means 4 decimal digits
I f means floating point number
I \n means "new line"

I System.out.printf("%.4f\n" , x);
I Print x as a floating point number with 4 digits of accuracy

followed by a newline
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Recipes for printf()

double x = 1.23456789;
double y = 4.95;
double z = 0.00789;

// print only x with 2 digits
System.out.printf("x is %.2f\n",x);
// x is 1.23

// print x,y,z with 2 digits
System.out.printf("all are %.2f %.2f %.2f\n",x,y,z);
// all are 1.23 4.95 0.01

// print x,y,z with 3 digits
System.out.printf("3 digs %.3f %.3f %.3f\n",x,y,z);
// 3 digs 1.235 4.950 0.008

// mixed precision
System.out.printf("x: %.5f... y: $%.3f z: %.0f\n",x,y,z);
// x: 1.23457... y: $4.950 z: 0

Notice printf()
I Does rounding automatically
I Can handle multiple

substitutions
I Can include literal text like $

(project 1)
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Exercise: printf()

double x = 1.0331559932390235;
double q = 748.8384692277563;

// Use a single printf() to print x to 5 decimal
// digits and q to 2 decimal digits. Include a $
// sign before q and a newline at the end.

System.out.printf(????);

// x: 1.03316 y: $748.84
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String Data
String name = "Chris";
String occupation = "csci prof";
String university = TextIO.getWord(); // enter: UMN

I A class with specific instances which are objects
I Also called a reference type
I Strings are fundamentally different than the primitive types
I Simplified memory picture: what should be at address #4000

| #1024 | name | #2048 | | #3032 | [0] | ’c’ |
| #1028 | occupation | #3032 | | #3034 | [1] | ’s’ |
| #1032 | university | #4000 | | #3036 | [2] | ’c’ |
| ... | ... | ... | | #3038 | [3] | ’i’ |
| #2048 | [0] | ’C’ | | #3040 | [4] | ’ ’ |
| #2050 | [1] | ’h’ | | #3042 | [5] | ’p’ |
| #2052 | [2] | ’r’ | | #3044 | [6] | ’r’ |
| #2054 | [3] | ’i’ | | #3046 | [7] | ’o’ |
| #2056 | [4] | ’s’ | | #3048 | [8] | ’f’ |
| ... | ... | ... | | ... | ... | ... |
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Primitives and References
Primitives

I There are about 8 primitive types in Java like int
I You cannot create new primitive types
I All of them start with lower case letters: double, boolean
I Values of primitives fit entirely inside their memory box
I Primitives have no methods: can’t do anything

Reference types
I There are tons of reference types
I You will create many more: public class MyType{
I They start with upper case letters: String, Scanner
I A variable with a reference type has a memory box but it’s

contents refers to another spot in memory
I Reference types typically have methods: can do things
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String Method Examples

String name = "Chris";
// 01234
String occupation = "csci prof";
// 012345678
// Example Methods
int nameLength = name.length(); // ask for the length of name
int occLength = occupation.length(); // length of occupation
char third = name.charAt(3); // third character of "Chris"
char fifth = occupation.charAt(5); // third character of "csci prof"
String subString = name.substring(1,4); // "hri" chars 1 to 3
String changed = occupation.replace("prof","badass"); // smirk

I Strings have many methods
I Complete list is in the Java documentation:

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
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Exercise: Name Length
I Prompt a user for their name
I Calculate length with str.length()
I Print out the number of characters in the name

> javac NameLength.java

> java NameLength
What’s your name?
Amy
Amy: did you know your name has 3 characters?

> java NameLength
What’s your name?
Christopher
Christopher: did you know your name has 11 characters?

> java NameLength
What’s your name?
Professor Kauffman
Professor: did you know your name has 9 characters?

Note the last run measured only the 9 characters in Professor 27



Answer: Name Length

// Solution to name length exercise
public class NameLength{

public static void main(String args[]){
System.out.println("What’s your name?");
String name = TextIO.getWord();
int length = name.length();
System.out.println(name+": did you know your name has "+

length+" characters?");

// ALTERNATIVE: print with printf()
// System.out.printf("%s: did you know your name is %d characters?\n",
// name, length);

}
}

I Notice that it is fine to break of the long println() call across several
lines: compiler doesn’t care and humans can read easier won’t matter

I The alternative uses printf() with %s to sub strings and %d for integers

28


