
CSCI 1103: Introduction

Chris Kauffman

Last Updated:
Wed Sep 13 10:43:47 CDT 2017

1

Logistics

Reading
Eck Ch 1

I Available online: http://math.hws.edu/javanotes/
I Reading ahead is encouraged

Goals
I Basic Model of Computation
I First Java Programs
I Course Mechanics

2

http://math.hws.edu/javanotes/

Podunk Model: CPU, Memory, Screen, Program
Most computers have 3 basic, physical components1

1. A CPU which can execute instructions
2. MEMORY where data is stored
3. Some sort of Input/Output device like a SCREEN

The CPU is given a set of instructions, a PROGRAM, that change
MEMORY and the SCREEN when executed

Example of a Running Computer Program

CPU: at instruction 10: MEMORY: SCREEN:
> 10: set box #1024 to 800 | Box | Value |

11: set box #1028 to 303 |-------+-------|
12: sum #1024,#1028 into #1032 | #1024 | 19 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1032 | -137 |

1Of course it’s a little more complex than this but the addage, "All models
are wrong but some are useful." applies here.

3

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong

Sample Run Part 1

CPU: at instruction 10: MEMORY: SCREEN:
> 10: set box #1024 to 800 | Box | Value |

11: set box #1028 to 303 |-------+-------|
12: sum #1024,#1028 into #1032 | #1024 | 19 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1032 | -137 |

CPU: at instruction 11: MEMORY: SCREEN:
10: set box #1024 to 800 | Box | Value |

> 11: set box #1028 to 303 |-------+-------|
12: sum #1024,#1028 into #1032 | #1024 | 800 |
13: print #1024, "plus", #1028 | #1028 | 12 |
14: print "is", #1032 | #1032 | -137 |

CPU: at instruction 12: MEMORY: SCREEN:
10: set box #1024 to 800 | Box | Value |
11: set box #1028 to 303 |-------+-------|

> 12: sum #1024,#1028 into #1032 | #1024 | 800 |
13: print #1024, "plus", #1028 | #1028 | 303 |
14: print "is", #1032 | #1032 | -137 |

4

Sample Run Part 2

CPU: at instruction 13: MEMORY: SCREEN:
10: set box #1024 to 800 | Box | Value |
11: set box #1028 to 303 |-------+-------|
12: sum #1024,#1028 into #1032 | #1024 | 800 |

> 13: print #1024, "plus", #1028 | #1028 | 303 |
14: print "is", #1032 | #1032 | 1103 |

CPU: at instruction 14: MEMORY: SCREEN:
10: set box #1024 to 800 | Box | Value | 800 plus 303
11: set box #1028 to 303 |-------+-------|
12: sum #1024,#1028 into #1032 | #1024 | 800 |
13: print #1024, "plus", #1028 | #1028 | 303 |

> 14: print "is", #1032 | #1032 | 1103 |

CPU: at instruction 15: MEMORY: SCREEN:
10: set box #1024 to 800 | Box | Value | 800 plus 303
11: set box #1028 to 303 |-------+-------| is 1103
12: sum #1024,#1028 into #1032 | #1024 | 800 |
13: print #1024, "plus", #1028 | #1028 | 303 |
14: print "is", #1032 | #1032 | 1103 |

> 15:

5

Observations: CPU and Program Instructions

I Program instructions are usually small, simple operations:
I Put something in a box
I Copy the contents of one box to another
I Do arithmetic (add, subtract, multiply, divide) with numbers in

boxes and specified constants like 5
I Print stuff to the screen

I The CPU keeps track of which instruction to execute next
I In many cases after executing it moves ahead by one

instruction but we’ll allow jumping around soon
I This program is in pseudocode, not Java
I Pseudocode can have almost anything in it so long as a

human reader understands the meaning
I Java has a lot more rules and restrictions to it so that a real

computer can actually understand it

6

Observations: Screen and Memory

Screen versus Memory
I Nothing is on the screen

until it is explicitly print-ed
by the program

I Normally you don’t get to
see memory while the
program runs

I Good programmers can
quickly form a mental
picture of what memory
looks like and draw it when
needed

I You will draw memory
diagrams in this class

Boxes are Memory Addresses
I The box numbers (#1024

etc.) are somewhat arbitrary
I Box numbers represent

memory addresses
I Random Access Memory

(RAM): the value in any box
can be retrieved FAST

I My laptop has 16GB of
memory = 134,217,728
integer boxes (!)

I Box #’s never change
I Box Values/Contents

frequently change

7

Exercise: Swapping Values Badly

The following code attempts to swap the values stored in boxes
#1024 and #1028. Show what it actually does.

CPU: at instruction 50: MEMORY: SCREEN:
> 50: copy box #1024 to #1028 | Box | Value |

51: copy box #1028 to #1024 |-------+-------|
52: print "first",#1024 | #1024 | 19 |
53: print "second",#1028 | #1028 | 31 |

| #1032 | -1 |

8

Answer/Exercise: Swapping Values Badly
CPU: at instruction 51: MEMORY: SCREEN:

50: copy box #1024 to #1028 | Box | Value |
> 51: copy box #1028 to #1024 |-------+-------|

52: print "first",#1024 | #1024 | 19 |
53: print "second",#1028 | #1028 | 19 |
54: ... | #1032 | -1 |

CPU: at instruction 52: MEMORY: SCREEN:
50: copy box #1024 to #1028 | Box | Value |
51: copy box #1028 to #1024 |-------+-------|

> 52: print "first",#1024 | #1024 | 19 |
53: print "second",#1028 | #1028 | 19 |
54: ... | #1032 | -1 |

CPU: at instruction 54: MEMORY: SCREEN:
50: copy box #1024 to #1028 | Box | Value | first 19
51: copy box #1028 to #1024 |-------+-------| second 19
52: print "first",#1024 | #1024 | 19 |
53: print "second",#1028 | #1028 | 19 |

> 54: ... | #1032 | -1 |

Fix this: Adjust the program so that it swaps correctly.
Hint: You might need to use a third box.

9

Answer: Swapping Values Better
CPU: at instruction 51: MEMORY: SCREEN:

50: copy box #1024 to #1032 | Box | Value |
> 51: copy box #1028 to #1024 |-------+-------|

52: copy box #1032 to #1028 | #1024 | 19 |
53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1032 | 19 |
55: ...

CPU: at instruction 52: MEMORY: SCREEN:
50: copy box #1024 to #1032 | Box | Value |
51: copy box #1028 to #1024 |-------+-------|

> 52: copy box #1032 to #1028 | #1024 | 31 |
53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1032 | 19 |
55: ...

CPU: at instruction 52: MEMORY: SCREEN:
50: copy box #1024 to #1032 | Box | Value |
51: copy box #1028 to #1024 |-------+-------|
52: copy box #1032 to #1028 | #1024 | 19 |

> 53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1032 | 19 |
55: ...

Victory: First program done 10

Variables: Named Boxes
I Dealing with box numbers is tedious
I Any programming language worth its salt will have variables:

names associated with a box
I You pick variable names; automatically gets translated to an

appropriate box#
SWAP PROGRAM BOX# ONLY
CPU: at instruction 51: MEMORY:

50: copy box #1024 to #1032 | Box | Value |
> 51: copy box #1028 to #1024 |-------+-------|

52: copy box #1032 to #1028 | #1024 | 19 |
53: print "first",#1024 | #1028 | 31 |
54: print "second",#1028 | #1032 | 19 |

SWAP PROGRAM WITH NAMED BOXES MEMORY:
CPU: at instruction 51: | Box | Name | Value |

50: copy x to temp |-------+------+-------|
> 51: copy y to x | #1024 | x | 19 |

52: copy temp to y | #1028 | y | 31 |
53: print "first",x | #1032 | temp | -1 |
54: print "second",y

11

Correspondence of Java Programs to Memory
I Java programs require box names to be declared with the type of thing

they will hold.
I The equal sign (=) means

"store the result on the right in the box named on the left"
I Creating a box and giving it a value can be combined

int a; give me a box named a that will hold an integer
a = 800; put 800 in box a
int b = 303; give me a box named b and put 303 in it right away
int c = a + b; third box named c, fill with sum of a and b

Notice each of these lines ends with a semicolon (;)
Other Rules

I Java looks ahead and figures out how many boxes will be needed based
on variable declarations like int a; and int c=20;

I All boxes are filled with zeroey things initially which is the number 0 for
integers

I Lines that only declares a variable do nothing except indicate a box is
needed

12

Sample Run of First Java Program (1)

CPU: at instruction 10: MEMORY: SCREEN:
> 10: int a; | Box | Name | Value |

11: a = 800; |-------+------+-------|
12: int b = 303; | #1024 | a | 0 |
13: int c = a + b; | #1028 | b | 0 |

| #1032 | c | 0 |

CPU: at instruction 11: MEMORY: SCREEN:
10: int a; | Box | Name | Value |

> 11: a = 800; |-------+------+-------|
12: int b = 303; | #1024 | a | 0 |
13: int c = a + b; | #1028 | b | 0 |

| #1032 | c | 0 |

CPU: at instruction 12: MEMORY: SCREEN:
10: int a; | Box | Name | Value |
11: a = 800; |-------+------+-------|

> 12: int b = 303; | #1024 | a | 800 |
13: int c = a + b; | #1028 | b | 0 |

| #1032 | c | 0 |

13

Sample Run of First Java Program (2)

CPU: at instruction 12: MEMORY: SCREEN:
10: int a; | Box | Name | Value |
11: a = 800; |-------+------+-------|

> 12: int b = 303; | #1024 | a | 800 |
13: int c = a + b; | #1028 | b | 0 |

| #1032 | c | 0 |

CPU: at instruction 13: MEMORY: SCREEN:
10: int a; | Box | Name | Value |
11: a = 800; |-------+------+-------|
12: int b = 303; | #1024 | a | 800 |

> 13: int c = a + b; | #1028 | b | 303 |
| #1032 | c | 0 |

CPU: at instruction 14: MEMORY: SCREEN:
10: int a; | Box | Name | Value |
11: a = 800; |-------+------+-------|
12: int b = 303; | #1024 | a | 800 |
13: int c = a + b; | #1028 | b | 303 |

> 14: ... | #1032 | c | 1103 |

14

Exercise: Quick Review

Recall this information from last time:
1. What are three physical components to a computer (in our

podunk model)?
2. Do Box numbers like #1024 ever change? What does change

about boxes?
3. What do programming languages usually call "boxes" with

names?
4. What is Java:

I A tasty, caffeinated beverage?
I An island part of the country Indonesia
I A high-ish level programming language for computers

5. How does one ask for a named box in Java?

15

Output In Java
Java output to the screen is a bit tedious. Typical way is to use
System.out.println() method which is a mouthful.
Examples of System.out.println()

System.out.println("Hello world"); Prints Hello World to the screen
System.out.println(a); Prints the contents of variable a
System.out.println(a + " plus " + b) With a=800; b=303; prints 800 plus 303

Output in a Java Program
CPU: at instruction 15: MEMORY: SCREEN:

10: int a; | Name | Value | 800 plus 303
11: a = 800; +------+-------|
12: int b = 303; | a | 800 |
13: int c = a + b; | b | 303 |
14: System.out.println(a + " plus " + b); | c | 1103 |

> 15: System.out.println("is " + c);

CPU: at instruction 16: MEMORY: SCREEN:
10: int a; | Name | Value | 800 plus 303
11: a = 800; +------+-------| is 1103
12: int b = 303; | a | 800 |
13: int c = a + b; | b | 303 |
14: System.out.println(a + " plus " + b); | c | 1103 |
15: System.out.println("is " + c);

> 16: ...
16

Exercise: Swap in Java
Original Code

SWAP PROGRAM WITH NAMED BOXES MEMORY: SCREEN:
CPU: at instruction 50: | Box | Name | Value |
> 50: copy x to temp |-------+------+-------|

51: copy y to x | #1024 | x | 19 |
52: copy temp to y | #1028 | y | 31 |
53: print "first",x | #1032 | temp | -1 |
54: print "second",y

Translate this to Java
I Use variable names given above: x,y,temp
I Declare the boxes with type int as they hold integers
I Give them the initial values shown: 19,31,-1
I Assign using the = operator
I Print using System.out.println()

17

Answer: Swap in Java

int x = 19;
int y = 31;
int temp = -1;
temp = x;
x = y;
y = temp;
System.out.println("first " + x);
System.out.println("second " + y);

Now to get this to run. . .

18

Compile/Run a Basic Java Program in DrJava
The full program requires some incantations to make it runnable.
Copy and paste the following into DrJava
public class Swap{

public static void main(String args[]){
int x = 19;
int y = 31;
int temp = -1;
temp = x;
x = y;
y = temp;
System.out.println("first " + x);
System.out.println("second " + y);

}
}

I Save the file as Swap.java
I Should be able to press the Compile button and then Run it.

19

Files and Extensions

I Java files usually have the .java extension
I Extensions like .txt, .docx, .pdf hint at what type of

stuff is in a file so the Operating System knows can select an
appropriate program to open it

I .java files are NOT executable
I Compiling them translates them to a low level representation

that the CPU actually understands
I .class files result from compiling a Java file

I Compile Swap.java produces Swap.class
I Compile MyCrazyClass.java produces MyCrazyClass.class

I Operating systems sometimes hide extensions because they
are stupid; show them whose boss and tell them to "show
extensions"

I Show File Extensions in Windows 10
I Show File Extensions in Mac OS X

20

http://kb.winzip.com/kb/entry/26/
http://www.idownloadblog.com/2014/10/29/how-to-show-or-hide-filename-extensions-in-os-x-yosemite/

DrJava Running Swap

21

Compile/Run Java Program on the Command Line
I The alternative to an Integrated Development Environment

(IDE) like DrJava is to use the command line.
I Windows: cmd.exe command prompt
I Mac OS X: Terminal.app command shell

I Command line has more of a learning curve but is powerful
I Must have the Java Development Kit (JDK) installed (for

DrJava too)
I May also need to instruct your OS’s command shell where the

JDK is installed (Let me google that for you)
I Minimum instructions for command line compile/run are

> cd 01-introduction-code/ # change to folder with java program
> javac Swap.java # compile Swap.java to produce Swap.class
> java Swap # run the main() method of the Swap
first 31 # output of program on these 2 lines
second 19

Most of the time you’ll be fine using DrJava or another IDE in
CSCI 1103 but you should know a little command line magic.

22

http://lmgtfy.com/?q=windows+10+set+path+for+java

Exercise: Birthday Problems
The program below should print out a current age and the age
next year but is missing some parts.

public class Birthday{
public static void main(String args[]){

System.out.println("I hear you are " + ???);

System.out.println("Next year you will be "+ ???);

}
}

Solve this by introducing variable(s)
I Do it using one 2 variables
I Do it using 1 variable
I Constraint: A variable will need to be initialized to the current

age, but ANY age should work

23

Answer: Birthday Problems
// Using 2 variables
public class Birthday{

public static void main(String args[]){
int age = 20;
System.out.println("I hear you are " + age);
int next_age = age + 1;
System.out.println("Next year you will be "+ next_age);

}
}

// Using 1 variable
public class Birthday{

public static void main(String args[]){
int age = 20;
System.out.println("I hear you are " + age);
age = age + 1;
System.out.println("Next year you will be "+ age);

// Something extra...
age = age - 1;
if(age >= 21){

System.out.println("Let’s get rickety wrecked!");
}
else{

int countDown = 21 - age;
System.out.println(countDown + " more years...");

}
}

}
24

Comments: Further Human Consumption
I Reading programs is HARD
I Made easier with addition information: comments
I Ignored by the compiler - write in English
I Two styles in Java

I // comments to the end of line
I /* starts a comment, ends at */

I DrJava knows how to bulk comment/uncomment regions to
turn code on/off

// This is a one line comment, goes to end of line.
int x = 1; // comment about this variable

/* This is a multiline comment which will keep
going until the ending symbol is reached which
appears at the end of this line. */

// The below code won’t execute as it is commented out
// System.out.println("Hi");
// x = 7;

25

Notes on Naming Things

I Most names in programming
I start with a letter
I can have a mixture of letters, numbers, and underscore (_) in

the name
I Spaces in names create problems everywhere

I int my integer = 5; // compile reject
I public class First Program { // rejected

I Convention in Java is to use camelCase to indicate word
boundaries

I int myInteger = 5; // accept
I public class FirstProgram { // accept

I Convention in Java is that variables start with lower case,
classes start with upper case

I int MyInteger = 5; // bad style
I public class first_program { // bad style

26

