Introduction to Parallel Computing

George Karypis
Search Algorithms for Discrete Optimization Problems
Overview

- What is a Discrete Optimization Problem
- Sequential Solution Approaches
- Parallel Solution Approaches
- Challenges
Discrete Optimization Problems

- A discrete optimization problem (DOP) is defined as a tuple of \((S, f)\)
 - \(S\) : The set of feasible states
 - \(f\) : A cost function \(f : S \rightarrow R\)
- The objective is to find the optimal solution \(x_{opt}\) in \(S\) such that \(f(x_{opt})\) is maximum over all solutions.
- Examples:
 - 0/1 integer linear programming problem
 - 8-puzzle problem
Examples

- **0/1 Linear integer problem:**
 - Given an mxn matrix A, vectors b and c, find vector x such that
 - x contains only 0s and 1s
 - $Ax > b$
 - $f(x) = x^T c$ is maximized.

- **8-puzzle problem:**
 - Given an initial configuration of an 8-puzzle find the shortest sequence of moves that will lead to the final configuration.
DOP & Graph Search

- Many DOP can be formulated as finding the a minimum cost path in a graph.
 - Nodes in the graph correspond to states.
 - States are classified as either
 - terminal & non-terminal
 - Some of the states correspond to feasible solutions whereas others do not.
 - Edges correspond to “costs” associated with moving from one state to the other.
- These graphs are called state-space graphs.
Examples of State-Space Graphs

- 15-puzzle problem:
Examples of State-Space Graphs

- **0/1 Linear integer programming problem**
 - States correspond to partial assignment of values to components of the x vector.

Example 11.3 The 0/1 integer-linear-programming problem revisited
Consider an instance of the 0/1 integer-linear-programming problem defined in Example 11.1. Let the values of A, b, and c be given by

$$
A = \begin{bmatrix} 5 & 2 & 1 & 2 \\ 1 & -1 & -1 & 2 \\ 3 & 1 & 1 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 8 \\ 2 \\ 5 \end{bmatrix}, \quad c = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -2 \end{bmatrix}.
$$

The constraints corresponding to A, b, and c are as follows:

- $5x_1 + 2x_2 + x_3 + 2x_4 \geq 8$
- $x_1 - x_2 - x_3 + 2x_4 \geq 2$
- $3x_1 + x_2 + x_3 + 3x_4 \geq 5$

and the function $f(x)$ to be minimized is

$$
f(x) = 2x_1 + x_2 - x_3 - 2x_4.
$$

![Figure 11.2](image)
Figure 11.2 The graph corresponding to the 0/1 integer-linear-programming problem.
Exploring the State-Space Search

- The solution is discovered by exploring the state-space search.
 - Exponentially large
 - Heuristic estimates of the solution cost are used.
 - Cost of reaching to a feasible solution from current state x is
 \[l(x) = g(x) + h(x) \]
 - **Admissible** heuristics are the heuristics that correspond to lower bounds on the actual cost.
 - Manhattan distance is an admissible heuristic for the 8-puzzle problem.
- Idea is to explore the state-space graph using heuristic cost estimates to guide the search.
 - Do not spend any time exploring “bad” or “unpromising” states.
Exploration Strategies

- Depth-First
 - Simple & Ordered Backtracking
 - Depth-First Branch-and-Bound
 - Partial solutions that are inferior to the current best solutions are discarded.
 - Iterative Deepening A*
 - Tree is expanded up to certain depth.
 - If no feasible solution is found, the depth is increased and the entire process is repeated.
 - Memory complexity linear on the depth of the tree.
 - Suitable primarily for state-graphs that are trees.
Exploration Strategies

- **Best-First Search**
 - OPEN/CLOSED lists
 - A* algorithm
 - Heuristic estimate is used to order the nodes in the open list.
 - Large memory complexity.
 - Proportional to the number of states visited.
 - Suitable for state-space graphs that are either trees or graphs.

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configuration; and (c) states resulting from the first four steps of best-first search. Each state is labeled with its h-value (that is, the Manhattan distance from the state to the final state).
Trees vs Graphs

- Exploring a graph as if it was a tree.
 - Can be a problem…

Figure 11.3 Two examples of unfolding a graph into a tree.
Parallel Depth-First Challenges

- Computation is dynamic and unstructured
 - Why dynamic?
 - Why unstructured?
- Decomposition approaches?
 - Do we do the same work as the sequential algorithm?
- Mapping approaches?
 - How do we ensure load balance?
Overall load-balancing strategy
Some more details

- Load balancing strategies
 - Which processor should I ask for work?
 - Global round-robin
 - Asynchronous (local) round-robin
 - Random

- Work splitting strategies
 - Which states from my stack should I give away?
 - top/bottom/one/many
Analysis

How can we analyze these algorithms?
Focus on worst-case complexity.
Assumptions/Definitions:

- **a-splitting:**
 - A work transfer request between two processors results in each processor having at least aW work for $0 < a \leq 5$ and W the original work available to one processor.

- $V(p)$ the number of work-transfer requests that are required to ensure that each processor has been requested for work at least once.

Then...

\[T_o = t_{comm} V(p) \log W \]
Analysis

Different load balancing schemes have different $V(p)$

- Global round-robin: $V(p) = O(p)$.
- Asynchronous round-robin: $V(p) = O(p^2)$
- Random: $V(p) = O(p \log(p))$
Termination Detection

- How do we know that the total work has finished?
 - Dijkstra’s algorithm
 - Tree-based termination

Figure 11.10 Tree-based termination detection. Steps 1–6 illustrate the weights at various processors after each work transfer.
Parallel Best-First Challenges

- Who maintains the Open & Closed lists
- How do you search a graph?
Open/Closed List Maintenance

- Centralized scheme
 - contention
- Distributed scheme
 - non-essential computations.
 - periodic information exchange.

Figure 11.14 A general schematic for parallel best-first search using a centralized strategy. The locking operation is used here to serialize queue access by various processors.

Figure 11.15 A message-passing implementation of parallel best-first search using the ring communication strategy.

Figure 11.16 An implementation of parallel best-first search using the blackboard communication strategy.
Searching graphs

- Associate a processor with each individual node
 - Every time a node is generated is sent to this processor to check if it has been generated before.
 - Random hash-function that ensures load balancing.
 - High communication cost.
Speedup Anomalies

Figure 11.17 The difference in number of nodes searched by sequential and parallel formulations of DFS. For this example, parallel DFS reaches a goal node after searching fewer nodes than sequential DFS.