Outline

- Graph Theory Background
- Minimum Spanning Tree
 - Prim’s algorithm
- Single-Source Shortest Path
 - Dijkstra’s algorithm
- All-Pairs Shortest Path
 - Dijkstra’s algorithm
 - Floyd’s algorithm
- Maximal Independent Set
 - Luby’s algorithm
Background

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Figure 10.2 An undirected graph and its adjacency matrix representation.

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

Figure 10.3 An undirected graph and its adjacency list representation.
Minimum Spanning Tree

- Compute the minimum weight spanning tree of an undirected graph.

Figure 10.4 An undirected graph and its minimum spanning tree.
Prim’s Algorithm

- Prim’s Algorithm
 - $\Theta(n^2)$ serial complexity for dense graphs.
 - why?
- How can we parallelize this algorithm?
- Which steps can be done in parallel?

```plaintext
1. procedure PRIM_MST(V, E, w, r)
2. begin
3. $V_T := \{r\}$;
4. $d[r] := 0$;
5. for all $v \in (V - V_T)$ do
6.   if edge $(r, v)$ exists set $d[v] := w(r, v)$;
7.   else set $d[v] := \infty$;
8. while $V_T \neq V$ do
9.   begin
10.      find a vertex $u$ such that $d[u] := \min\{d[v] | v \in (V - V_T)\}$;
11.  $V_T := V_T \cup \{u\}$;
12.  for all $v \in (V - V_T)$ do
13.    $d[v] := \min\{d[v], w(u, v)\}$;
14.   endwhile
15. end PRIM_MST
```
Parallel Formulation of Prim’s Algorithm

- Parallelize the inner-most loop of the algorithm.
 - Parallelize the selection of the “minimum weight edge” connecting an edge in V_T to a vertex in $V - V_T$.
 - Parallelize the updating of the $d[]$ array.
- What is the maximum concurrency that such an approach can use?
- How do we “implement” it on a distributed-memory architecture?

```
1. procedure PRIM_MST(V, E, w, r)
2. begin
3. $V_T := \{r\}$;
4. $d[r] := 0$;
5. for all $v \in (V - V_T)$ do
6.   if edge $(r, v)$ exists set $d[v] := w(r, v)$;
7.   else set $d[v] := \infty$;
8. while $V_T \neq V$ do
9.   begin
10.      find a vertex $u$ such that $d[u] := \min \{d[v] | v \in (V - V_T)\}$;
11.      $V_T := V_T \cup \{u\}$;
12.      for all $v \in (V - V_T)$ do
13.         $d[v] := \min \{d[v], w(u, v)\}$;
14.     endwhile
15.   end PRIM_MST
```
Parallel Formulation of Prim’s Algorithm

- Decompose the graph A (adjacency matrix) and vector d vector using a 1D block partitioning along columns.
 - Why columns?
- Assign each block of size n/p to one of the processors.
- How will lines 10 & 12—13 be performed?
- Complexity?

$$T_P = \Theta\left(\frac{n^2}{p}\right) + \Theta(n \log p).$$

Isoefficiency: $\Theta(p^2 \log^2 p)$

1. procedure PRIM_MST(V, E, w, r)
2. begin
3. $V_T := \{r\};$
4. $d[r] := 0;$
5. for all $v \in (V - V_T)$ do
6. if edge (r, v) exists set $d[v] := w(r, v);$
7. else set $d[v] := \infty;$
8. while $V_T \neq V$ do
9. begin
10. find a vertex u such that $d[u] := \min[d[v] | v \in (V - V_T)];$
11. $V_T := V_T \cup \{u\};$
12. for all $v \in (V - V_T)$ do
13. $d[v] := \min[d[v], w(u, v)];$
14. endwhile
15. end PRIM_MST
Single-Source Shortest Path

- Given a *source* vertex *s* find the shortest-paths to all other vertices.
- Dijkstra’s algorithm.
- How can it be parallelized for dense graphs?

1. procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
2. begin
3. $V_T := \{s\}$;
4. for all $v \in (V - V_T)$ do
5. \hspace{1em} if (s, v) exists set $l[v] := w(s, v)$;
6. \hspace{1em} else set $l[v] := \infty$;
7. \hspace{1em} while $V_T \neq V$ do
8. \hspace{1em} \hspace{1em} begin
9. \hspace{1em} \hspace{1em} find a vertex u such that $l[u] := \min\{l[v] | v \in (V - V_T)\}$;
10. \hspace{1em} \hspace{1em} $V_T := V_T \cup \{u\}$;
11. \hspace{1em} \hspace{1em} for all $v \in (V - V_T)$ do
12. \hspace{1em} \hspace{1em} \hspace{1em} $l[v] := \min\{l[v], l[u] + w(u, v)\}$;
13. \hspace{1em} \hspace{1em} endwhile
14. \hspace{1em} end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.
All-pairs Shortest Paths

- Compute the shortest paths between all pairs of vertices.

Algorithms

- Dijkstra’s algorithm
 - Execute the single-source algorithm n times.
- Floyd’s algorithm
 - Based on dynamic programming.
All-Pairs Shortest Path
Dijkstra’s Algorithm

- Source-partitioned formulation
 - Partition the sources along the different processors.
 - Is it a good algorithm?
 - Computational & memory scalability
 - What is the maximum number of processors that it can use?

- Source-parallel formulation
 - Used when $p > n$.
 - Processors are partitioned into n groups each having p/n processors.
 - Each group is responsible for one single-source SP computation.
 - Complexity?

\[
T_P = \Theta\left(\frac{n^3}{p}\right) + \Theta(n \log p). \\
\Theta((p \log p)^{1.5}).
\]
Floyd’s Algorithm

- Solves the problem using a dynamic programming algorithm.
 - Let $d^{(k)}_{i,j}$ be the shortest path distance between vertices i and j that goes only through vertices $1,\ldots, k$.

\[
d^{(k)}_{i,j} = \begin{cases}
 w(v_i, v_j) & \text{if } k = 0 \\
 \min\left\{d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}\right\} & \text{if } k \geq 1
\end{cases}
\]

- Complexity: $\Theta(n^3)$.
- Note: The algorithm can run in-place.

- How can we parallelize it?
Parallel Formulation of Floyd’s Algorithm

- Distribute the matrix using a 2D block decomposition.
- Parallelize the double inner-most loop.

```
1. procedure FLOYD_ALL_PAIRS.SP(A)
2. begin
3.    D(0) = A;
4.    for k := 1 to n do
5.        for i := 1 to n do
6.            for j := 1 to n do
7.                d_{i,j}^{(k)} := min(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)});
8.    end FLOYD_ALL_PAIRS.SP
```

- Communication pattern?
- Complexity?

\[
T_p = \Theta\left(\frac{n^3}{p}\right) + \Theta\left(\frac{n^2}{\sqrt{p}} \log p\right).
\]

\[
\Theta(p^{1.5}\log^3 p).
\]
1. **procedure** FLOYD_2DBLOCK\((D^{(0)}) \)
2. begin
3. for \(k := 1 \) to \(n \) do
4. begin
5. each process \(P_{i,j} \) that has a segment of the \(k^{th} \) row of \(D^{(k-1)} \):
 broadcasts it to the \(P_{*,j} \) processes;
6. each process \(P_{i,j} \) that has a segment of the \(k^{th} \) column of \(D^{(k-1)} \):
 broadcasts it to the \(P_{i,*} \) processes;
7. each process waits to receive the needed segments;
8. each process \(P_{i,j} \) computes its part of the \(D^{(k)} \) matrix;
9. end
10. end FLOYD_2DBLOCK

Algorithm 10.4 Floyd’s parallel formulation using the 2-D block mapping. \(P_{*,j} \) denotes all the processes in the \(j^{th} \) column, and \(P_{i,*} \) denotes all the processes in the \(i^{th} \) row. The matrix \(D^{(0)} \) is the adjacency matrix.
Comparison of All-Pairs SP Algorithms

Table 10.1 The performance and scalability of the all-pairs shortest paths algorithms on various architectures with $O(p)$ bisection bandwidth. Similar run times apply to all $k-d$ cube architectures, provided that processes are properly mapped to the underlying processors.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Maximum Number of Processes for $E = \Theta(1)$</th>
<th>Corresponding Parallel Run Time</th>
<th>Isoefficiency Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra source-partitioned</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(p^3)$</td>
</tr>
<tr>
<td>Dijkstra source-parallel</td>
<td>$\Theta(n^2 / \log n)$</td>
<td>$\Theta(n \log n)$</td>
<td>$\Theta((p \log p)^{1.5})$</td>
</tr>
<tr>
<td>Floyd 1-D block</td>
<td>$\Theta(n / \log n)$</td>
<td>$\Theta(n^2 \log n)$</td>
<td>$\Theta((p \log p)^3)$</td>
</tr>
<tr>
<td>Floyd 2-D block</td>
<td>$\Theta(n^2 / \log^2 n)$</td>
<td>$\Theta(n \log^2 n)$</td>
<td>$\Theta(p^{1.5} \log^3 p)$</td>
</tr>
<tr>
<td>Floyd pipelined 2-D block</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(p^{1.5})$</td>
</tr>
</tbody>
</table>
Maximal Independent Sets

- Find the maximal set of vertices that are not adjacent to each other.

Figure 10.15 Examples of independent and maximal independent sets.
Serial Algorithms for MIS

- Practical MIS algorithms are incremental in nature.
 - Start with an empty set.
 1. Add the vertex with the smallest degree.
 2. Remove adjacent vertices
 3. Repeat 1—2 until the graph becomes empty.

- These algorithms are impossible to parallelize.
 - Why?

- Parallel MIS algorithms are based on the ideas initially introduced by Luby.
Luby’s MIS Algorithm

- Randomized algorithm.
 - Starts with an empty set.
 - Assigns random numbers to each vertex.
 - Vertices whose random number are smaller than all of the numbers assigned to their adjacent vertices are included in the MIS.
 - Vertices adjacent to the newly inserted vertices are removed.
 - Repeat steps 1—3 until the graph becomes empty.

- This algorithms will terminate in $O(\log (n))$ iterations.

- Why is this a good algorithm to parallelize?
- How will the parallel formulation proceed?
 - Shared memory
 - Distributed memory

Figure 10.16 The different augmentation steps of Luby's randomized maximal independent set algorithm. The numbers inside each vertex correspond to the random number assigned to the vertex.