1. procedure MAT_VECT (A, x, y)
2. begin
3. for i := 0 to n - 1 do
4. begin
5. y[i] := 0;
6. for j := 0 to n - 1 do
8. endfor;
9. end MAT_VECT

Algorithm 8.1 A serial algorithm for multiplying an $n \times n$ matrix A with an $n \times 1$ vector x to yield an $n \times 1$ product vector y.
Algorithm 8.2 The conventional serial algorithm for multiplication of two $n \times n$ matrices.
Algorithm 8.3 The block matrix multiplication algorithm for $n \times n$ matrices with a block size of $(n/q) \times (n/q)$.
1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n − 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n − 1 do
7. y[k] := b[k] / A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n − 1 do
10. begin
11. for j := k + 1 to n − 1 do
13. b[i] := b[i] − A[i, k] × y[k];
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELIMINATION

Algorithm 8.4 A serial Gaussian elimination algorithm that converts the system of linear equations $Ax = b$ to a unit upper-triangular system $Ux = y$. The matrix U occupies the upper-triangular locations of A. This algorithm assumes that $A[k, k] \neq 0$ when it is used as a divisor on lines 6 and 7.
Algorithm 8.5 A serial algorithm for back-substitution. U is an upper-triangular matrix with all entries of the principal diagonal equal to one, and all subdiagonal entries equal to zero.
1. procedure CHOLESKY (A)
2. begin
3. for k := 0 to n − 1 do
4. begin
5. A[k, k] := \sqrt{A[k, k]};
6. for j := k + 1 to n − 1 do
8. for i := k + 1 to n − 1 do
9. for j := i to n − 1 do
11. endfor; /* Line 3 */
12. end CHOLESKY

Algorithm 8.6 A row-oriented Cholesky factorization algorithm.
1.
 procedure MAT_MULT_CREW_PRAM (A, B, C, n)
2.
 begin
3. Organize the \(n^2 \) processes into a logical mesh of \(n \times n \);
4. for each process \(P_{i,j} \) do
5. begin
6. \(C[i, j] := 0 \);
7. for \(k := 0 \) to \(n - 1 \) do
9. endfor;
10. end MAT_MULT_CREW_PRAM

Algorithm 8.7 An algorithm for multiplying two \(n \times n \) matrices \(A \) and \(B \) on a CREW PRAM, yielding matrix \(C = A \times B \).
Algorithm 8.8 An algorithm for multiplying two $n \times n$ matrices A and B on an EREW PRAM, yielding matrix $C = A \times B$.

procedure MAT_MULT_EREW_PRAM (A, B, C, n)
begin
Organize the n^2 processes into a logical mesh of $n \times n$;
for each process $P_{i,j}$ do
begin
$C[i, j] := 0$;
for $k := 0$ to $n - 1$ do
$C[i, j] := C[i, j] + A[i, (i + j + k) \mod n] \times B[(i + j + k) \mod n, j]$;
endfor;
end MAT_MULT_EREW_PRAM