Algorithm 3.1 A serial program for finding the minimum in an array of numbers \(A \) of length \(n \).
1. **procedure** RECURSIVE_MIN (A, n)
2. begin
3. if (n = 1) then
4. min := A[0];
5. else
6. lmin := RECURSIVE_MIN (A, n/2);
7. rmin := RECURSIVE_MIN (&A[n/2], n − n/2);
8. if (lmin < rmin) then
9. min := lmin;
10. else
11. min := rmin;
12. endelse;
13. endelse;
14. return min;
15. end RECURSIVE_MIN

Algorithm 3.2 A recursive program for finding the minimum in an array of numbers A of length n.
Algorithm 3.3 A serial column-based algorithm to factor a nonsingular matrix A into a lower-triangular matrix L and an upper-triangular matrix U. Matrices L and U share space with A. On Line 9, $A[i, j]$ on the left side of the assignment is equivalent to $L[i, j]$ if $i > j$; otherwise, it is equivalent to $U[i, j]$.
Algorithm 3.4 A sample serial program to be parallelized.