1. **procedure** PRIM_MST\((V, E, w, r)\)
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15. **end** PRIM_MST

Algorithm 10.1
Prim’s sequential minimum spanning tree algorithm.
Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.
1. procedure FLOYD_ALL_PAIRS_SP(A)
2. begin
3. \(D^{(0)} = A; \)
4. for \(k := 1 \) to \(n \) do
5. for \(i := 1 \) to \(n \) do
6. for \(j := 1 \) to \(n \) do
7. \(d^{(k)}_{i,j} := \min\left(d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}\right); \)
8. end FLOYD_ALL_PAIRS_SP

Algorithm 10.3 Floyd’s all-pairs shortest paths algorithm. This program computes the all-pairs shortest paths of the graph \(G = (V, E) \) with adjacency matrix \(A \).
1. **procedure** FLOYD_2DBLOCK($D^{(0)}$)
2. begin
3. for $k := 1$ to n do
4. begin
5. each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$;
6. broadcasts it to the $P_{*,j}$ processes;
7. each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$;
8. broadcasts it to the $P_{i, *} processes;
9. each process waits to receive the needed segments;
10. each process $P_{i,j}$ computes its part of the $D^{(k)}$ matrix;
11. end
12. end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $P_{i,*}$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.
1. procedure JOHNSON_SINGLE_SOURCE_SP(V, E, s)
2. begin
3. \(Q := V; \)
4. for all \(v \in Q \) do
5. \(l[v] := \infty; \)
6. \(l[s] := 0; \)
7. while \(Q \neq \emptyset \) do
8. begin
9. \(u := \text{extract min}(Q); \)
10. for each \(v \in \text{Adj}[u] \) do
11. if \(v \in Q \) and \(l[u] + w(u, v) < l[v] \) then
12. \(l[v] := l[u] + w(u, v); \)
13. endwhile
14. end JOHNSON_SINGLE_SOURCE_SP

Algorithm 10.5 Johnson's sequential single-source shortest paths algorithm.