APPENDIX

ADAPTIVE ALGORITHM FOR TARGET LOC

Algorithm 1 UpdateTargetLOC (λ_{target} target LOC, α throughput-weight)

1: Local variables: s state, d direction 2: 3: if (round % p) = 1 ... p-1 then Update measures of mean normalized throughput xp and success rate sr 4: 5: **else** if s = CONVERGING then 6: 7: if round = p then Set initial direction d based on mean client reliability 8: 9: $i \leftarrow 4$ end if 10: $G_{last} \leftarrow G$ 11: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 12: 13: if $G \mid G_{last} \geq \delta_{mod}$ then $j \leftarrow j - 1$ 14: Switch direction d15: if j = 0 then 16: $s \leftarrow \text{STEADY-STATE}$ 17: end if 18: else if $G > G_{avg}$ OR $G / G_{last} \leq \delta_{in}$ then 19: if d =left then 20: 21: $\lambda_{target} \leftarrow \lambda_{target} - 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ end if 24: 25: else λ_{target} unchanged 26: 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow \text{STEADY-STATE}$ 29: end if 30: end if else 31: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 32: if $G \mid G_{last} \geq \delta_{sig}$ then 33: 34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 36: 37: end if 38: end if

The algorithm above describes the adaptive algorithm for computing target LOC to be used in our reputation-based scheduling algorithms. The algorithm consists of the following empirically determined variables:

• *p* : measurement period

- *j* : magnitude of change in target LOC
- δ_{sig} : significant change in Gain
- δ_{mod} : moderate change in Gain
- δ_{in} : insignificant change in Gain
- maxrounds : number of rounds to wait for steady-state
- $weight_{curr}$: weight given to current measure of Gain
- $weight_{hist}$: weight given to weighted historic average