
Adaptive Reputation-Based Scheduling on
Unreliable Distributed Infrastructures

Jason Sonnek, Member, IEEE, Abhishek Chandra, Member, IEEE, and

Jon B. Weissman, Senior Member, IEEE

Abstract—This paper addresses the inherent unreliability and instability of worker nodes in large-scale donation-based distributed

infrastructures such as peer-to-peer and grid systems. We present adaptive scheduling techniques that can mitigate this uncertainty

and significantly outperform current approaches. In this work, we consider nodes that execute tasks via donated computational

resources and may behave erratically or maliciously. We present a model in which reliability is not a binary property, but a statistical

one based on a node’s prior performance and behavior. We use this model to construct several reputation-based scheduling

algorithms that employ estimated reliability ratings of worker nodes for efficient task allocation. Our scheduling algorithms are designed

to adapt to changing system conditions, as well as nonstationary node reliability. Through simulation, we demonstrate that our

algorithms can significantly improve throughput while maintaining a very high success rate of task completion. Our results suggest that

reputation-based scheduling can handle a wide variety of worker populations, including nonstationary behavior, with overhead that

scales well with system size. We also show that our adaptation mechanism allows the application designer fine-grain control over the

desired performance metrics.

Index Terms—Distributed scheduling, reputation, reliability, adaptive, grids.

Ç

1 INTRODUCTION

RECENTLY, several distributed infrastructures, including
peer-to-peer (P2P) networks and donation grids, have

been proposed to host large-scale wide-area applications
ranging from file sharing/file storage to high-performance
scientific computing [1], [2], [3], [4], [5], [6]. Despite the
attractive features of these platforms (scalability, low cost,
reduced cost of ownership, and resilience to local failures),
widespread deployment of such systems and applications
has been elusive. A key problem is the inherent unreliability
of these systems: nodes may leave and join unexpectedly,
perform unpredictably due to resource sharing at the node
and network level, and behave erratically or maliciously.
This paper presents a design and analysis of techniques to
cope with the inherent unreliability of nodes that execute
tasks via donated computational resources.

We present a model in which reliability is not a binary
property, but a statistical one based on a node’s prior
performance and behavior. Such a statistical model is
important for two main reasons: First, a node’s behavior
could change with time and, hence, nodes cannot be
classified as being purely reliable or unreliable always.
Second, representing reliability as a statistical property

allows us to incorporate the uncertainty inherent in the
system’s knowledge of individual nodes’ reliability. We
adopt a reliability model based on the accumulation of the
direct observation of node behavior over prior task
executions. An example of such an environment is the
Berkeley Open Infrastructure for Network Computing
(BOINC) [4] or its forerunner SETI@home [6] in which a
server distributes tasks to worker nodes and collects results.
Since nodes are not reliable, the server generally cannot be
certain that the results returned by any given worker are
valid unless application-specific verifiers are provided.
Many factors may contribute to the unreliability of a node.
It has been shown [7] that cheating has been a considerable
problem in the SETI@home project. However, it is also
possible that nodes have incorrectly configured software,
are hacked, have poor connections to the server, or are
highly loaded and cannot return timely results.

We speculate that when excess resources become a
visible standard commodity or utility [1], [8], cheating or
hacking nodes will become even more prevalent due to
economic incentives. In addition, it seems likely that as
distributed systems become larger and more widely
dispersed, reliability will also decrease due to more fail-
ure-prone components and increased exposure to malicious
agents and viruses. To deal with uncertainty in the absence
of inexpensive verifiers, outsourced computations can be
redundantly scheduled to a number of nodes. If we assume
that the space of feasible (but not necessarily verifiable)
results is sufficiently large, it is very likely that a result
returned by the majority of workers will be valid if node
collusion has not occurred. Such a majority result could
then be treated as the “correct” result of the computation.

A major drawback of using redundancy is that it may
reduce the amount of useful work performed. The degree of
redundancy is an important parameter: a small degree of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007 1551

. J. Sonnek is with the Sandia National Laboratories/University of
Minnesota, 7690 Appaloosa Lane, Lino Lakes, MN 55014.
E-mail: jsonnek@gmail.com.

. A. Chandra is with the University of Minnesota, Room 4-209, EE/CSci
Building, 200 Union St. SE, Minneapolis, MN 55455.
E-mail: chandra@cs.umn.edu.

. J.B. Weissman is with the University of Minnesota, Room 4-192, EE/CSci
Building, 200 Union St. SE, Minneapolis, MN 55455.
E-mail: jon@cs.umn.edu.

Manuscript received 30 Apr. 2006; revised 12 Dec. 2006; accepted 26 Feb.
2007; published online 17 Apr. 2007.
Recommended for acceptance by K. Hwang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0105-0406.
Digital Object Identifier no. 10.1109/TPDS.2007.1094.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

replication could decrease the likelihood that the server will
receive a verifiable result. On the other hand, a large degree
of replication could result in the unnecessary duplication of
work by multiple resources. Systems like BOINC rely on the
application writer to specify this value for each task. Since
the reliability of workers in a distributed environment may
be uncertain, it is likely that any statically chosen
redundancy value will reduce the effectiveness of the
system.

To overcome this problem, we propose techniques to
determine the degree of redundancy based on the estimated
reliability of the workers. Intuitively, a smaller degree of
replication should be possible if the allocated nodes are
collectively more reliable. Using a simple reputation system
[9], it is possible to determine the likelihood that a given
worker will return a correct and timely result with fairly
high accuracy. Unlike other systems that have studied the
concepts separately, we incorporate metrics of correctness,
as well as timeliness, to generalize the notion of trust to that
of reliability.

Using individual worker reliability estimates, we intro-
duce an efficient technique for computing a lower bound on
the likelihood that a group of workers will return a majority
of correct and timely results. These group reliability ratings
can be used by the system to intelligently schedule tasks to
workers such that the throughput of the system is improved
while still maintaining the server’s ability to distinguish
fraudulent results from valid ones.

Applying these techniques in practice introduces a
number of challenges. First, the system must be able to
learn the reliability of individual workers. A number of
different reputation systems have been proposed for this
purpose [10], [11], [12], [13] [14], [15], although selecting the
right one is dependent on the characteristics of the
environment in which it will be deployed. Second, given
these reliability ratings, the system needs an algorithm or
heuristic to determine how to match groups of workers to
tasks. Since it is likely that the best scheduling technique
will be dependent on the environment, we propose a set of
algorithms that are tuned to the characteristics of typical
environments. Finally, the environment may be extremely
dynamic, and the underlying scheduling mechanisms must
be highly adaptive.

We consider several different algorithms that can be
used to guide scheduling decisions on the basis of statistical
reliability ratings associated with groups of workers. We
also present an adaptive algorithm that adjusts scheduling
parameters to match the conditions in the system. This
algorithm provides a “knob” for tuning scheduling deci-
sions in terms of metrics such as success rate and
throughput, which are familiar to application designers.

Finally, we compare the throughput and computational
overhead of each of these techniques through simulation of
a BOINC-like distributed computing infrastructure. Our
results indicate that reputation-based scheduling can sig-
nificantly improve the throughput of the system for worker
populations modeling several real-world scenarios, includ-
ing nonstationary behavior, with overhead that scales well
with system size.

2 BACKGROUND AND RELATED WORK

2.1 Distributed Computing Infrastructures

Numerous computing infrastructures have been designed to
utilize idle distributed resources. These systems can be
loosely categorized into two groups: those that utilize
resources under administrative control, such as Globus [16]
and Condor [3], and those that rely on unsupervised donated
resources, such as SETI@Home [6] and Folding@Home [17].
In this paper, we mainly focus on the latter, as these
environments are much more susceptible to unreliability.

The @Home applications [6], [17] and their general-
ization, BOINC [4], are instances of a growing number of
systems that utilize donated computing cycles to solve
massive scientific problems. BOINC provides application
designers with a middleware that can be used to design and
deploy systems in which a master task server assigns
computational tasks to a pool of donated computing
resources. In contrast to BOINC, several unstructured
cycle-sharing platforms have been proposed [5], [18], [19]
in which nodes can act as both a client and a server. These
platforms facilitate the formation of ad hoc communities for
solving large-scale computing problems.

2.2 Dealing with Unreliability

Dealing with unreliability is a core design challenge in any
distributed system, and many techniques have been
proposed in the literature. Redundant task allocation
combined with voting, as used in Byzantine fault-tolerant
(BFT) systems [20], is popular due to its general applic-
ability. This approach is also used by most BOINC [4]
applications to verify the results of outsourced computa-
tions: if the majority of the workers assigned to a task return
the same result, then the result is deemed valid.

Since task replication could result in lower resource
utilization, some techniques have been proposed to verify
results for tasks allocated to a single resource. Golle and
Mironov [21] present a verification technique that inserts
precomputed images of special spot checks called “ringers”
into distributed tasks to verify results returned by a worker
and identify cheaters. This technique can be used only for
verifying computations that exhibit a one-way property and
thus is not applicable for general computations. Another
verification technique [22], [23] employs precomputed tasks
called “quizzes” that are embedded into a batch of
(otherwise indistinguishable) tasks allocated to a worker.
When the task server receives a batch of results from a
worker, it assumes the results for the real tasks to be correct
if the results for all of the quiz tasks are valid. Although not
dependent on one-way functions, this technique still
requires precomputation of certain tasks, which may be
nontrivial or infeasible in many scenarios.

2.3 Reputation-Based Scheduling

Reputation systems [24] are commonly applied in
P2P networks to gauge the reliability of nodes [11], [12],
[15], [25]. Trust or reputation systems are a general
technique for predicting the behavior of distributed
entities based on past interactions with these entities.

The concept of trust-aware resource management for the
grid was proposed in [14], where a technique is presented for

1552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

computing trust ratings in a grid using a weighted combina-
tion of past experience and reputation. GridEigenTrust [13]
combines this trust-computation technique with the Eigen-
Trust reputation system [12] to provide a mechanism for
rating resources in a grid. This work presents an architecture
for managing reputation ratings in a grid and proposes using
these ratings to perform reputation-based resource selection.
However, it does not provide any specific algorithms for
reputation-based scheduling. Zhao and Lo [23] propose
augmenting P2P cycle-sharing systems with a reputation
system to reduce the degree of replication required to verify
results. However, their work makes several assumptions:
nodes are either strictly trustworthy or untrustworthy, the
number of nodes is large relative to the workload that allows
nodes to be discarded if untrustworthy, and node behavior is
fixed (for the results presented). These assumptions may not
often hold in practical scenarios. The scheduling algorithms
proposed by Zhao and Lo [23] and Sarmenta [22] are
explicitly designed to deal with node collusion. In contrast,
we assume that each worker acts independently. Song et al.
[26] recently proposed trust-based scheduling algorithms
designed to avoid compromised resources, as opposed to
handling explicitly malicious resources.

Overall, most existing reputation-based scheduling
schemes have focused on correctness as the primary metric
and have dealt mainly with binary trust values. The unique
elements of our approach include a more general statistical
representation of reliability that includes timeliness, as well
as correctness, and the use of this metric to improve
application and system performance.

3 SYSTEM MODEL

3.1 Computational Model

Our distributed computing model consists of a central
server that assigns computational tasks to a set of worker
nodes as illustrated in Fig. 1. The worker nodes in this
computation model are not centrally controlled and could
be participating for various reasons. For instance, they may
be donating their idle resources voluntarily (for example,
PlanetLab [2]), or they may be providing their resources in
return for some incentive such as monetary remuneration
[1], [27], credit [4], [6], or the use of other nodes’ resources
in return [28], [29]. Our system model does not make any
assumptions about the incentive scheme for worker
participation or the workload generation methodology:

The computation tasks could either be pregenerated on

the server by the application, or they may be submitted by

users accessing a common service. We assume that the set

of tasks that need to be computed by the available set of

worker nodes is large enough to keep all workers busy for

the duration of the application.

3.2 Reliability Model

Since the participation of worker nodes is voluntary and
outside the server’s control, workers may not return correct
results in a timely manner for several reasons. First, a node
may be overloaded or behind a slow connection, resulting
in a slow response. Another reason may be that a node is
misconfigured, hacked, or infected by a virus, resulting in
incorrect computation. Finally, a node may be malicious
(deliberately trying to disrupt a computation) or cheating
(to gain an advantage in a remuneration scheme, such as
gaining extra credit [7]), thus returning wrong results. We
model such unreliable behavior by assigning to each worker
a probability of returning a correct response within a
“reasonable” time frame. This probability need not be fixed
and could change with time. For instance, nodes may go
offline and come back up again, or some malicious nodes
may change their behavior with time—returning correct
results for a while to improve their reputation and then
deliberately injecting bad results into the system. When
modeling these unreliable workers, we assume that each
worker acts independently and that there is no collusion
between them. This assumption is consistent with the
behavior observed in popular outsourced computing
systems in which individual cheating has been observed
[7], but collusion has not.1

3.3 Redundant Computation and Result Verification

A key consideration in our model is that the server may not

have an efficient way of independently verifying each

worker response for correctness. Although several techni-

ques [21], [30], [31] have been proposed to verify the

correctness of results, these techniques are application

specific and are not applicable to general computational

scenarios. The results of several computational problems

may not even be verifiable by the server without perform-

ing the computation itself.
In our system model, we employ a verification technique

based on redundant computation coupled with voting. This

technique is adopted by several general computing systems

such as BOINC [4]. Under this verification technique, each

task is redundantly assigned to a set of worker nodes. Once

the workers respond, the server conducts a “vote” among

the returned results. If a quorum of workers agrees on a

result, the server treats that result to be correct. In the

absence of a quorum after voting, the task is rescheduled.

Although the quorum size could be application-dependent,

majority is typically used to determine the correct answer.

Note that such a voting-based verification scheme does not

require any application-specific support or knowledge.

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1553

1. Based on private communication with Dr. David Anderson, creator of
SETI@Home, there has been no observed evidence of collusion in
SETI@Home.

Fig. 1. The system model: a server maintains a reliability rating store and

uses the ratings to assign tasks to groups of workers.

3.4 Definitions and Assumptions

Definition 1: Task ð�jÞ. A task is defined as a self-contained

computational activity that can be carried out by a worker

node. Upon completion, each task generates a well-defined

result that is returned to the server.

A task would typically correspond to an independent

unit of a larger computation. For example, a task may

correspond to computing the determinant of a submatrix,

and the result of the task would be the value of the

determinant. Another example of a task could be to match a

deoxyribonucleic acid (DNA) sequence against a subset of

gene sequences from a genetic database. In this case, the

result could be the best matching gene and the similarity

score.

Definition 2: Solution space ð�Þ. The solution space of a task

is the set of potential result values that can be returned for

the task.

For instance, a task whose answer is Boolean has a two-

element solution space, � ¼ ftrue; falseg. On the other

hand, a task whose answer is drawn from the set of integers

has an infinite solution space, � ¼ I. We assume that the

solution space for the tasks in our model is of sufficiently

large cardinality so that it is unlikely that two workers will

independently return the same wrong result.

Definition 3: Reliability ðriÞ. The reliability of a worker i is

defined as the probability that the worker returns a correct

result within a (system-defined) time period.

Note that reliability is not a binary property—a node

could return the correct result some of the time and a

wrong result at other times. Moreover, the reliability

property of a worker could also change with time (for

example, due to outages, fluctuating load, malicious node

behavior, etc.).

Definition 4: Redundancy group2 ðGjÞ. The redundancy

group for a task �j is defined as the group of worker nodes

assigned to compute the task.

In most existing systems, the size of each redundancy

group is typically set to a fixed static value selected by the

application designer or the system administrator. This value

may be determined empirically, although often it is simply

based on a rule of thumb. In our system model, the

redundancy factor for each group can be different and

dynamically determined and is dependent on the reliability

of the group’s constituent worker nodes.

Definition 5: Quorum. We say that a group Gj has reached

quorum if some number of worker nodes, which may be fixed or

dependent on the group size, return the same result.

In our system model, we say a group has reached

quorum if the majority of the workers return the same

result. In general, the quorum size could be dependent on

the cardinality of the solution space, for instance, a binary
solution space would likely require a larger quorum.

Definition 6: Likelihood of correctness (LOC) ð�jÞ. The
LOC for a group Gj is defined as the probability that the group
would return a correct result based on majority voting.

The LOC �j for a group represents the collective
reliability of the group. This value is dependent on the
individual reliability values of the constituent nodes of the
group. We will see in the next section how this value can be
computed for groups using the reliability of individual
workers.

4 REPUTATION-BASED SCHEDULING

We now present a reputation-based scheduling algorithm
for distributing the server workload among the worker
nodes. This algorithm employs reliability ratings of in-
dividual worker nodes for task assignment in order to
improve the overall throughput and success rate of task
completions. This reputation-based task scheduling algo-
rithm consists of the following steps:

. estimating the reliability ratings of individual work-
er nodes,

. using the estimated worker reliability ratings to
compute the LOC of possible groups, and

. grouping workers for task assignment based on LOC
estimates to maximize the throughput and success
rate of task completions.

We will now describe each of these steps in more detail,
discussing the various techniques and algorithms employed
in each case.

4.1 Estimating Reliability Ratings

We use a reputation system to estimate the reliability ratings
of individual worker nodes. These reliability ratings are
learned over time based on the results returned by the
workers to the server. All workers report their results to a
centralized server, so a local reputation system can be
employed. We estimate a worker’s reliability riðtÞ at a given
time t as follows:

riðtÞ ¼
niðtÞ þ 1

NiðtÞ þ 2
;

where niðtÞ and NiðtÞ are respectively the number of correct
responses generated and the total number of tasks
attempted by the worker by time t. By this formula, the
reliability rating of a worker is initialized to 1

2 , correspond-
ing to having no knowledge about its actual reliability. The
rating of each worker is updated each time it is assigned a
task, based on the response it returns (a missing or late
response is treated as incorrect). Although we assume that
the server learns the reliability ratings using its own
observations, it is possible to use a P2P reputation reporting
system [11], [12] to improve the accuracy of these ratings or
reduce the time to learn them if the system has multiple
servers interacting independently with the workers.

Recall from Section 3.3 that the server employs a
majority-based voting scheme to determine the correctness

1554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

2. In the rest of the paper, we would refer to a redundancy group simply
as a group unless required to avoid confusion.

of a task. Thus, if the workers in a group reach a majority on
their results, the server accepts the majority answer as the
“correct” result. In this case, it would increase the reliability
ratings of the workers that are part of the majority and
decrease those of the remaining workers, treating their
responses to be incorrect.

However, this still raises the question of how to update
the ratings of workers in a group that does not reach
quorum. In a previous work [32], we considered three
different heuristics for updating reliability ratings. For each
of the heuristics, we analyzed both the accuracy relative to
an optimal heuristic and the impact on system performance.
In addition, we considered the effects of using bounded and
unbounded history on the accuracy and fluidity of worker
reliability ratings.

In this work, we will restrict our attention to the
Optimistic heuristic, which was the most accurate in
simulation. The Optimistic heuristic is defined as follows:
In the absence of a quorum, this heuristic increases the
reliability ratings of any set of workers that agree on the
result value. It penalizes those workers whose answers do
not match any other answers from the group. Intuitively,
this heuristic is based on the assumption that the prob-
ability of two workers returning the same wrong result
independently is negligible, thus treating any matching
answers to be pseudocorrect.

4.2 Computing the LOC

The Likelihood of Correctness (LOC) of a group represents
the probability of getting a correct answer from that group
using the majority-based voting criterion of verification.
This value can be computed using the individual reliability
ratings of the members of the group, as estimated above.
Consider a group G ¼ fw1; . . . ; w2kþ1g consisting of workers
wi, i ¼ 1 . . . 2kþ 1.3 Let riðtÞ be the reliability rating of a
worker wi, i ¼ 1 . . . 2kþ 1, at a given point in time t. Then,
the LOC �ðtÞ of the group G is given by

�ðtÞ ¼
X2kþ1

m¼kþ1

X
f�:k�k¼mg

Y2kþ1

i¼1

riðtÞ�i � ð1� riðtÞÞ1��i ; ð1Þ

where � ¼ f�1; . . . ; �2kþ1g is a vector of responses from the
workers in the group, with 1 representing a correct response
and 0 representing an incorrect response. The criterion for
determining correctness is based on achieving a majority, as
described above. For simplicity, we will omit the implicit
time variable t in future discussion of the LOC. For
example, for a group G consisting of five workers w1

through w5, one possible vector could be {1, 1, 0, 0, 1},
indicating correct responses from workers w1, w2, and w5.
Intuitively, (1) considers all possible subsets of the given set
of workers in which the majority of workers could respond
correctly. It then computes the probability of occurrence of
each of these subsets as a function of the reliability rating of
the workers. Note that the likelihood of the false-positive
case where the majority of workers return the same wrong
answer is negligible and, hence, ignored in (1).

4.2.1 Lower Bound for LOC

As can be seen from (1), calculating the LOC for a group
results in a combinatorial explosion of the possible subsets
that need to enumerated. In fact, the complexity of
computing the � value can be shown to be Oð22kÞ, which
is infeasible for most practical purposes. To reduce the cost
of computing � values for multiple groups, we use a lower
bound �lb for � that is much simpler and more efficient to
compute. This is obtained from (1) using the arithmetic
mean-geometric mean (AM-GM) inequality that is a special
case of Jensen’s inequality [33]:

�lb �
X2kþ1

m¼kþ1

2kþ 1

m

� �
�
Y2kþ1

i¼1

r�mi � ð1� riÞ
1��m; ð2Þ

where �m ¼
2k
m�1ð Þ
2kþ1
mð Þ . It can be shown that the complexity of

computing �lb is Oðk2Þ and is thus much more efficient to

compute than the actual value of �. The grouping algorithms,

which we will describe shortly, use the lower bound function

to compute �. In Section 5.5, we compare the effect of the

lower bound function on our simulation results.

4.2.2 The Role of LOC in Task Scheduling

To determine the size and composition of the groups, the
system relies on a parameter indicating whether or not
the LOC for a proposed group is acceptable. That is, we
require some value �target such that if � � �target, then we
conclude that G is an acceptable group. We refer to �target
as the target LOC.

Choosing an appropriate value for �target is critical to
maximizing the benefit derived from the system. If �target is
too small, many groups may return incorrect results,
causing the tasks to be rescheduled. If it is set too high,
the scheduler will be unable to form groups that meet the
target, and the scheduler will degenerate to forming large
fixed-size groups, adversely affecting the system through-
put. Thus, the target LOC must be carefully selected to fit
the reliability distribution of the workers. In Section 4.4, we
will present an algorithm to adaptively determine the target
LOC value. However, first, we will describe how to group
workers into redundancy groups given a target LOC.

4.3 Forming Redundancy Groups

So far, we have described heuristics for estimating
individual worker ratings and provided a mechanism for
combining these ratings to determine the reliability of
groups. We now present algorithms to assign workers into
groups for task allocation, using these heuristics and
mechanisms. The goal of forming these groups is to
maximize both the throughput of successful task comple-
tions (those that result in correct results) and the rate of
successful task completion (success rate) given a set of
individual worker ratings (we will show in the next section
how to incorporate both these metrics into the group
formation decisions).

Formally, given a set of workers W ¼ fw1; . . . ; wng, a
group formation algorithm would produce a partitioning

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1555

3. We consider odd-sized groups to avoid ambiguity in defining the
majority for even-sized groups.

G ¼ fGjg, where a task �j is assigned to each group Gj.
These groups would be formed in such a way that �j of each
Gj exceeds �target, thus achieving two goals: 1) increasing
the likelihood of obtaining a correct result from the worker
group working on the assigned task (in turn decreasing the
likelihood of rescheduling a task) and 2) increasing resource
utilization by forming worker groups whose size varies
based on the reliability rating of its members. The algorithm
for selecting an appropriate �target is deferred to the next
section. Here, we present group formation algorithms given
a �target value. The only property of the workers used by
these algorithms is their reliability ratings.

4.3.1 Fixed-Size

This is the baseline algorithm for our system model as it
represents the “standard best practice” exhibited in systems
such as BOINC. The Fixed-size algorithm randomly assigns
workers to groups of size Rmax, where Rmax is a statically
defined constant. Every worker of a given group Gj is
assigned the same task. This algorithm does not use the
reliability ratings ri of workers to size groups in an intelligent
way. For a given set of workers, this algorithm will form a
fixed number of groups, irrespective of ri values.

4.3.2 First-Fit

In the First-fit algorithm, the available workers are sorted by
decreasing reliability rating. Starting with the most reliable,
workers are assigned to group Gj until either �j � �target or
until the maximum group size Rmax is reached. This process
is repeated until all the available workers are assigned to a
group. Intuitively, First-fit attempts to form the first group
that satisfies �target from the available workers in a greedy
fashion. By bounding the size of Gj with Rmax, we ensure
that First-fit forms bounded groups and degenerates to the
Fixed-size heuristic in the absence of a sufficient number of
reliable workers.

Algorithm 1. First-fit (w worker list, � task list, �target target

LOC, Rmin min group size, Rmax max group
size)

1: Sort the list w of all available workers on the basis of the

reliability ratings ri
2: while jwj � Rmin do

3: Select task �j from �

4: repeat

5: Assign the most reliable worker wr from w to Gi

6: w w� wr
7: if jGjj � Rmin then

8: Update �j
9: end if

10: until ð�j � �target ^ jGjj � RminÞ _ jGjj ¼ Rmax

11: end while

4.3.3 Tight-Fit

The Tight-fit algorithm attempts to form a group Gj such

that �j is as close as possible to �target. The Tight-fit

algorithm searches the space of available workers to find

the smallest Gj that exceeds �target by the minimum possible

margin. If no group of size Rmax or smaller meets �target, the

algorithm forms a group that falls short of the target by the

smallest amount. As with First-fit, this process is repeated

until the worker pool is exhausted. Intuitively, this

algorithm attempts to form the best fit of worker nodes

for a given �target. As a result, tasks are not overprovisioned

with more reliable resources than necessary, and well-

balanced groups are more likely to be formed.

Algorithm 2. Tight-fit (w worker list, � task list, �target target

LOC, Rmin min group size, Rmax max group

size)

1: Sort the list w of all available workers on the basis of the
reliability ratings ri

2: while jwj � Rmin do

3: Select task �j from �

4: Use binary search to identify the smallest set s of

n workers wn from w such that �s exceeds �target
minimally

5: if such a set s is found then

6: Assign the wn workers to Gj

7: else

8: Select the set of n workers s for which �target � �s is

minimized

9: Assign the wn workers to Gj

10: end if

11: w w� wn
12: end while

4.3.4 Random-Fit

The Random-fit algorithm uses reliability ratings to form

groups by randomly adding workers to a group Gj until

either �j meets �target or the group has Rmax workers. It

differs from First-fit in that workers are added to groups

randomly, rather than in sorted order.
Given a set of workers and a �target, each algorithm is

likely to produce different groups. A simple example for

�target ¼ 0:5 is illustrated in Fig. 2. In this example, First-fit is

only able to form a single group that meets �target because it

uses all of the highly reliable workers in the first group.

Similarly, Random-fit also produces only one group that is

able to meet the target as it assigns workers randomly to

groups. In contrast, Tight-fit is able to form two groups that

meet �target because it searches for groupings whose

� values deviate from the target by the smallest amount.

1556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 2. Example node groupings produced by different algorithms for �target ¼ 0:5, Rmin ¼ 3, and Rmax ¼ 5.

The time spent computing the LOC for a given group is
the primary component of the overhead incurred by the
reputation-based schedulers, so we can compare the
algorithms in a system-independent manner. The First-fit
and Random-fit algorithms form groups in a sequential
fashion. Each grouping considers at most a constant
number of worker pairs, and the number of groups is
linear in the number of workers, so the number of calls to
the LOC function scales linearly with the size of the
network. The Tight-fit algorithm is more expensive because
it tries to form the best possible groups by using a binary
search of the available workers. Thus, the number of calls to
the LOC function is Oðn lognÞ, where n is the size of the
network.

4.4 Adaptive Determination of the Target LOC

As we saw in the previous section, the target LOC �target is a
critical parameter in forming redundancy groups. There are
several drawbacks associated with using a static value for
this parameter. First, it is difficult to select an appropriate
value without prior knowledge of the expected worker
population. For instance, although a large value of �target
can be satisfied efficiently by small groups in a highly
reliable population, it may lead to extremely low resource
utilization and may even be unachievable for a population
of largely unreliable workers. Second, the reliability of
workers may vary with time due to node churn, changes in
node behavior, and other events that affect a node’s
reliability. Such dynamic changes could make even a
carefully chosen �target value undesirable. To summarize,
�target is influenced by the underlying system character-
istics, which are not easy for a user or system administrator
to determine statically.

To maximize the benefit derived from the system, it
would be desirable if the system was capable of selecting an
appropriate target LOC value automatically. Furthermore,
we would like the system to be able to dynamically adapt
�target to meet current system conditions. The task server is
ideally suited to select an appropriate �target, since it
constantly updates the reliability ratings of the workers
and monitors the performance of the system.

Besides the system characteristics, the choice of �target
also depends on the metric (throughput or success rate)
being optimized by the application designer. There is a
natural trade-off between the throughput of successful task
completion and the success rate. By forming larger groups,
we generally increase the likelihood that an individual
group will return a correct answer, but we decrease the
number of tasks attempted, which may in turn decrease the
throughput of successful tasks. Conversely, decreasing the
average group size will make each group less likely to
return correct results, but may increase the number of
successful tasks completed due to the increase in the
number of tasks attempted. One can imagine scenarios in
which either metric would be preferred over the other.
Thus, neither throughput nor success rate alone is a
sufficient metric for determining an optimal value of
�target. In particular, if we wish to bound the latency
experienced by individual tasks, success rate is a more
important metric than throughput (as a high success rate
reduces the need to reexecute the tasks). On the other hand,

if we simply wish to maximize the number of tasks
completed, throughput is more important.

Thus, determining an optimal value for �target requires us
to consider both throughput and success rate simulta-
neously. Such an optimization is an instance of a multi-
objective optimization (MO) problem. A common approach to
solving an MO problem is to use techniques such as Goal
Programming [34], [35] or Multilevel Programming [35] that
reduce the multiple objectives to a single objective and then
employ standard Linear Programming techniques to obtain
a solution.

Depending on the specific application, we can tailor our
objective to favor either throughput or success rate by using
a weighted combination of these two objectives, which we
refer to as the gain G:

Gð�; sÞ ¼ � � �þ ð1� �Þ � s;

where � and s represent the normalized throughput and
success rate, respectively. � is a tunable parameter that can
be set by a user or administrator to express their relative
bias toward one of the metrics: � ¼ 1 would correspond to a
throughput-optimal system, whereas � ¼ 0 would corre-
spond to a success-rate-optimal system.

We use an adaptive algorithm to update the target LOC
�target based on measurements of the current value of the
gain G. The detailed algorithm is given in the Appendix
due to space constraints; here, we present the intuition
behind it. The adaptive algorithm employs a custom hill-
climbing algorithm to converge to an initial �target value
reflecting the underlying reliability distribution of the
system. The algorithm then constantly monitors the current
gain values (using the observed throughput and success
rate) and compares them to an exponentially smoothed
average over time. A significant change in the current value
of gain serves as an indicator that the underlying worker
distribution has changed and results in the selection of a
new �target based on the current measures of gain.

The description of the adaptive algorithm may lead one
to believe that we are removing one user-specified para-
meter ð�targetÞ at the expense of adding several new
parameters (such as � and hill-climbing algorithm para-
meters such as its period, significance thresholds, and so
forth). However, most of these parameters can be config-
ured empirically or determined automatically using feed-
back, without any input from the user. Effectively, the user
is only responsible for specifying the value of �, which is a
much more intuitive value than �target, as � only depends on
the relative importance of the metrics to the user. The
adaptive algorithm is then able to incorporate this fixed
user preference in determining the choice of �target, which is
highly system dependent and dynamic in nature.

5 EVALUATION

In this section, we evaluate the performance of the rating
techniques and grouping algorithms described in the
previous section through the simulation of a donation-
based distributed computing platform. In our simulations,
we model a large number of real-world scenarios using
different distributions for worker reliability values.

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1557

5.1 Evaluation Methodology

Our evaluation is based on a simulator loosely modeled
around the BOINC [4] distributed computing infrastructure,
which consists of a task server and some number of worker
machines. We make two simplifying assumptions to enable
fair comparison between different grouping algorithms.

First, the simulator is round-based—work assignment and
verification is done periodically in fixed-duration time
periods called rounds. The task server assigns work to all
the workers at the beginning of a round and then waits for the
workers to return their results. At the end of each round, the
server collects and verifies the received results, updates the
reliability ratings using the Optimistic heuristic described
earlier, and reforms groups for task allocation in the next
round. Workers who fail to respond by the end of a round are
simulated as having returned incorrect results. In the results
shown here, we ran our simulations for a total of 1,000 rounds
each. In practice, the length of a round would be linked to the
expected execution time of the tasks within it.

Second, the task server has an extremely large pool of
work relative to the number of workers available. This
assumption is consistent with the projects hosted by the
BOINC infrastructure and is likely to be true for future
large-scale scientific computing applications as well. As a
result, the task server will always attempt to utilize all of
the available workers, and workers will never have to wait
for work.

An individual worker’s reliability is modeled by assign-
ing it a probability p of returning a correct result within a
round. When a worker is assigned a task, it returns the
correct result with probability p. These probabilities are
known only to the workers—the task server has no
knowledge of these values a priori.

To simulate various real-world reliability scenarios, we
generate individual worker probabilities from several
different probability distributions. Table 1 lists some of
the distributions used in our simulations and the corre-
sponding scenarios modeled by each of them. For instance,
we use a normal distribution with a high mean to emulate a
highly reliable system, where most workers are well
connected and return correct results most of the time. On
the other hand, we use a bimodal distribution to represent a
system that has a mix of highly reliable workers and
compromised or poorly connected nodes.

5.2 Reputation-Based Scheduling

We now evaluate the various reputation-based grouping
algorithms described in Section 4.3. We start by evaluating
these algorithms for a fixed target LOC value in this section.
We first describe the metrics and parameters used in our
evaluation.

5.2.1 Metrics and Parameters

To evaluate the effectiveness of the grouping algorithms, we
use the following metrics:

. Throughput ð�Þ. The throughput during a round is
defined as the number of tasks for which a majority
was achieved during that round (that is, the number
of “successful” tasks):

� ¼ jTsuccessj;

where Tsuccess is the set of successfully completed
tasks during a round.

. Mean group size ðgÞ. The mean group size for a round
is the mean number of workers assigned to each task
during the round:

g ¼
PNG

i¼1 jGij
NG

;

where NG is the total number of groups formed
during the round.

. Success rate ðsÞ. The success rate during a round is
defined as the ratio of successfully completed tasks
to the number of tasks attempted (equal to the
number of groups formed) during that round:

s ¼ �

NG
:

To fully understand the behavior of the reputation-based
schedulers, we ran an exhaustive set of simulations cover-
ing a large parameter space: the worker reliability distribu-
tions described in Table 1, worker pool sizes of 100 and
1,000, a minimum group size ðRminÞ of 3, and maximum
group sizes ðRmaxÞ of 3, 5, 7, and 9. For each parameter
setting, we compare the four algorithms described in
Section 4.3 (First-fit, Tight-fit, Random-fit, and Fixed).

For a given distribution and Rmax, we set �target equal to
the success rate of the Fixed algorithm for the same
parameter values. This ensures that the success rate of the
various algorithms will be approximately the same, facil-
itating a comparison between our proposed algorithms and
the baseline Fixed algorithm. Due to space constraints, we
will present a subset of the results here, including
descriptions of the most interesting findings.

5.2.2 Comparing Scheduling Algorithms

In our first experiment, we compared the different grouping
algorithms using a pool of 100 workers. In Fig. 3a, we
present the mean throughput across all rounds for an Rmax

1558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

TABLE 1
Probability Distributions Used in the Simulations to Emulate Different Real-World Scenarios

value of seven workers. For Rmax ¼ 7, the theoretical
success rate of a Fixed strategy under the realistic Heavy-
High distribution is 90 percent, which seems like a reason-
able “target” success rate. This led to the selection of Rmax ¼
7 as a representative value for the fixed group size. The
First-fit and Tight-fit algorithms improve on the throughput
of Fixed by 25-250 percent, depending on the worker
reliability distribution. The Random-fit algorithm, although
not performing as well as First-fit and Tight-fit, still
outperforms Fixed by about 20-50 percent.

Fig. 3b plots the mean success rate across all rounds.
Since we set �target equal to the success rate achieved by the
Fixed algorithm, we would expect that the mean success
rate for the other algorithms to be similar. The success rate
of Random-fit and Tight-fit is equal to or greater than that of
Fixed—the minor shortfalls in some cases are due to the use
of approximate worker reliability measures and maximum
group sizes. First-fit deviates significantly for most of the
distributions due to its greedy group formation policy—it
attempts to form groups starting with the most reliable
workers, working down to the least reliable workers, so that
it can form highly reliable groups for distributions with low
average reliability. Conversely, it also forms several unreli-
able groups for high-reliability distributions.

Overall, these results indicate that reputation-based
scheduling algorithms significantly increase the average
throughput for all of the reliability distributions while
maintaining a high success rate.

Fig. 4 shows the mean group-size results for the above
experiment. Both First-fit and Tight-fit are able to form
substantially smaller groups satisfying the target
LOC requirement. As a result, these algorithms attempt

significantly more tasks in each round, resulting in the
substantially higher throughput shown in Fig. 3.

In Table 2, we present the throughput results for varying
maximum group sizes using the Heavy-High distribution.
As the Rmax parameter is reduced, the gap between the
Fixed algorithm and the reputation-based algorithms starts
to narrow, since it becomes harder to form smaller groups
that meet �target. In particular, if we set Rmin ¼ Rmax, then all
of the scheduling algorithms are essentially the same. In this
case, all the algorithms form groups of size 3, causing them
to have nearly the same throughput.

5.2.3 Effect of Scale

In our second experiment, we use the same parameter
settings as the previous experiment but increase the
network size from 100 to 1,000 workers. Fig. 5 shows the
throughput and success rate results for this experiment.
Scaling the size of the network up to 1,000 workers causes a
proportional increase in the throughput, without affecting
success rate much. Clearly, scaling up the network will have
little to no impact on the relative throughput or success rate
in simulation. We will consider the impact of scale on the
overhead associated with the different scheduling algo-
rithms in Section 5.4.

5.3 Adaptive Algorithm for Determining the
Target LOC

In the previous section, we compared the various group
formation algorithms using a fixed value of the target LOC
�target, which was selected based on the observed success
rate for the Fixed algorithm. In this section, we evaluate the
adaptive algorithm presented in Section 4.4 for its ability to
determine a desirable �target value based on current system
conditions and the relative importance of throughput and
success rate metrics. These experiments use the same values
for Rmin and Rmax as the previous experiments.

The default values for the parameters specific to the hill-
climbing algorithm (the period p, significance thresholds,

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1559

Fig. 3. Algorithm comparison. (a) Throughput. (b) Success rate.

Fig. 4. Mean group size.

TABLE 2
Effect of Decreasing Rmax on Throughput

(Heavy-High Distribution)

etc.) were empirically determined based on a comprehen-
sive evaluation of the parameter space. The selected values
were chosen to minimize noise in the periodic gain
measurements and to improve the stability and speed of
convergence.

The period p was set to 10; the significance thresholds
�sig, �mod, and �in were set to 1.15, 1.05, and 1.01,
respectively. maxrounds was set to 5, weightcurr was set to
0.3, and weighthist was set to 0.7.

5.3.1 Convergence to a Desirable Value

Our first experiment illustrates the adaptive algorithm’s
ability to converge to an appropriate �target despite starting
with no knowledge of the underlying worker population. In
this experiment, we measured the average gain achieved over

10,000 rounds using the First-fit and Tight-fit scheduling
algorithms coupled with the adaptive �target-determination
algorithm (referred to as adaptive First-fit and adaptive Tight-
fit, respectively). Then, we measured the average gain
achieved using the nonadaptive First-fit and Tight-fit algo-
rithms for every possible value of �target from 0 to 1 (with a
granularityof 0.01) to determine the bestandworst achievable
values. Figs. 6, 7, and 8 compare the minimum and maximum
gains achieved using a static value of�target to that achieved by
the corresponding adaptive algorithm. These figures show
the gain computed using�values of 0.5, 1, and 0, respectively,
where Fig. 6 gives equal weight to both throughput and
success rate and Figs. 7 and 8 correspond to throughput-
optimal and success-rate-optimal algorithms, respectively.

1560 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 5. Mean throughput and success rate, Network Size ¼ 1; 000. (a) Throughput. (b) Success rate.

Fig. 6. Comparison of the min/max gain achieved using static LOC to the gain achieved using the adaptive algorithm ð� ¼ 0:5Þ. (a) First-fit.

(b) Tight-fit.

Fig. 7. Comparison of the min/max throughput achieved using static LOC to the throughput achieved using the adaptive algorithm ð� ¼ 1Þ. (a) First-

fit. (b) Tight-fit.

As seen from the figures, the average gain achieved by the
adaptive algorithm is very close to the maximum gain
possible using a static �target value in all instances. This
observation holds for both First-fit and Tight-fit algorithms.
Overall, we tested 36 algorithm/worker-distribution config-
urations, out of which the adaptive algorithm deviated from
the maximum achievable gain by less than 2 percent in
25 cases and by less than 5 percent in 32 cases. The only
meaningful deviation experienced was for the Normal-Low
worker distribution using the First-fit algorithm, where the
algorithm has a higher likelihood of getting stuck in a local
minimum.

5.3.2 Effectiveness of �

In our next experiment, we evaluated the effectiveness of
the gain metric and the � parameter to represent the relative
importance of the throughput and success rate metrics.
Figs. 9a and 9b show the values of success rate and
throughput using adaptive First-fit, as we vary the value of
� from 0 to 1. Recall that � ¼ 0 corresponds to a pure
success-rate-oriented system, whereas � ¼ 1 corresponds to
a throughput-oriented system. As can be seen from the
figures, an increase in � results in a decreasing success rate
and increasing throughput. This result implies that the gain
G is an effective metric for incorporating user preferences.

5.3.3 Dealing with Nonstationary Workers

We next illustrate the effectiveness of the adaptive
algorithm to deal with the nonstationary behavior of
workers, that is, when their reliability varies with time.

We consider a large-scale worker blackout scenario that
corresponds to a real-world event such as a network
partitioning, a large organization crash, or a major virus,
which may suddenly compromise the reliability of a large
number of workers. To emulate such an event, we modified
the simulation so that 30 percent of the workers transitioned
from a highly trusted normal-high distribution to an
unreliable heavy-low distribution after round 300. These
experiments use the Tight-fit algorithm with Rmax ¼ 7.

Figs. 10a and 10b show the effect of the large-scale
blackout on the system throughput using static and
adaptive �target values, respectively. Fig. 10a shows a
considerable dip in throughput after the blackout. This is
because Tight-fit continues to operate with a �target value
that was tailored to the higher reliability environment. Since
the system has fewer trusted workers at its disposal after
the blackout, it ends up forming very large (and thus fewer)
groups in an attempt to satisfy this high �target. This failure
to adapt to the new reliability distribution results in the
observed dip in throughput.

Fig. 10b shows that although the throughput drops
drastically in round 300 (immediately after the blackout),
the system immediately starts compensating for the drop in
reliability by reducing�target. The average throughput returns
to near preblackout levels approximately 100 rounds later.
There is a slight drop in the throughput between rounds 550
and 600, because the system is probing for higher �target in an
attempt to improve the success rate. However, the system
automatically corrects for this drop in performance and
stabilizes near round 700 at a higher throughput (but a

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1561

Fig. 8. Comparison of the min/max success rate achieved using static LOC to that achieved using the adaptive algorithm ð� ¼ 0Þ. (a) First-fit.

(b) Tight-fit.

Fig. 9. Comparison of the throughput/success rate achieved using the adaptive algorithm with varying �. (a) Success rate. (b) Throughput.

considerably lower success rate—80 percent versus 96 per-
cent) than it was achieving before the blackout. This
experiment clearly demonstrates the value of dynamically
updating�target based on the current conditions in the system.

5.3.4 Convergence Time

The time to converge for the adaptive algorithm is
dependent on several different variables—variance in the
underlying client distribution, the wait time between target
LOC adjustments, the granularity of adjustments, and the
number of stationary rounds before steady state.

In Table 3, we list the number of rounds required to
converge starting with zero knowledge (initial target LOC
of 0.5) using one particular set of parameters. The wait time
between adjustments was set to 10 rounds, and the number
of stationary rounds required was set to 5, thus the
minimum number of rounds for convergence is 50. These
values are fairly conservative, but they yielded excellent
average gain measurements for our data sets. Selecting a
smaller wait time will cause the average time to conver-
gence to decrease but may result in a loss of average gain
due to noisy feedback measures. Moreover, the time to
converge due to a change in the underlying client
distribution will depend on the magnitude of the change.

5.4 Overhead

In this section, we compare the overhead of the grouping
algorithms in terms of the number of invocations of the
LOC function. In Section 4.3, we determined that the
theoretical overhead is OðnÞ for First-fit and Random-fit and
Oðn lognÞ for Tight-fit, where n is the size of the network.
Fig. 11 shows the average number of calls to the
LOC function during a single round for network sizes of
100 and 1,000. As expected, the number of calls to the
LOC function grows significantly faster for Tight-fit.

5.5 Accuracy of �lb

In Section 4.2, we presented a function (2) to compute �lb, a
lower bound for the LOC of a group. We now analyze the
impact of using this approximation function on the

effectiveness of the system. The lower bound function
corresponds to the GM in the AM-GM inequality, a special
case of Jensen’s inequality. For functions that comply to this
inequality, the difference between the AM (the actual
LOC function in our case) and the GM increases as the
spread of the values increases. Therefore, as the disparity
between the low and high-reliability ratings within a group
increases, the lower bound diverges more and more from
the actual � value.

We empirically computed the difference between �
and �lb for each of the reputation-based algorithms
(shown in Table 4). As expected, we found that the error
for Random-fit, which may end up grouping workers
with very dissimilar ratings, was quite high (0.05-0.3). In
contrast, the First-fit algorithm, which groups similarly
rated workers, had a negligible error (� 0.001). The error
for Tight-fit fell in the middle but is still relatively small
(0.002-0.09).

To quantify the effect of these errors on the effectiveness

of the reputation-based algorithms, we repeated the

experiment from Section 5.2.2 using the actual LOC

function instead of the lower bound. The throughput

results are shown in Fig. 12. As expected, these results

show a correlation between the error experienced by an

algorithm and the benefit associated with using � instead of

�lb. In addition, the benefit is the highest for the distribu-

tions where the error was the worst (uniform and bimodal).

Based on these measurements, we conclude that Tight-fit

could improve its throughput by up to 10 percent by using a

more accurate value for �, and Random-fit could gain up to

35 percent over the values presented earlier for �lb.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a design and analysis of
techniques to handle the inherent unreliability of nodes in
large-scale donation-based distributed infrastructures such
as P2P and grid systems. We proposed a reputation-based
scheduling model to achieve efficient task allocation in
such an unreliable environment. Our reputation system
represents the underlying reliability of system nodes as a
statistical quantity that is estimated based on the prior
performance and behavior of the nodes. Our scheduling
algorithms use the estimated reliability ratings to form
redundancy groups that achieve a higher throughput
while maintaining the desired success rates of task
completion. In addition, we present a technique for

1562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 10. Large-scale blackout: effect of adaptive �target on throughput. (a) Static �target. (b) Adaptive �target.

TABLE 3
Number of Rounds Required to Achieve a Steady-State �target

for Several Client Distributions

adaptively adjusting scheduling parameters to match the
underlying reliability distribution, which can be used to
control the system’s response to nonstationary node
reliability. We evaluate our algorithms using a simulator
based on the BOINC distributed computing infrastruc-
ture. In our simulation, we varied the underlying
reliability distribution of the worker reliability values to
emulate several real-world scenarios. Our simulation
results indicate that reputation-based scheduling can
significantly improve the throughput of the system (by
as much as 25-250 percent) for worker populations
modeling several real-world scenarios, including nonsta-
tionary behavior, with overhead that scales well with
system size. As part of future work, we intend to
implement our techniques in a real testbed (for example,
one using BOINC) and to use real workload traces to
evaluate the efficacy and overhead of our algorithms
under real-world deployment.

ACKNOWLEDGMENTS

The authors would like to thank Arindam Banerjee for

providing helpful pointers on the lower bound function and

its analysis.

REFERENCES

[1] Sun Grid, http://www.sun.com/service/sungrid/, 2007.
[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.

Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay Testbed
for Broad-Coverage Services,” ACM SIGCOMM Computer Comm.
Rev., vol. 33, no. 3, pp. 3-12, July 2003.

[3] Condor Project, http://www.cs.wisc.edu/condor/, 2007.
[4] D. Anderson, “BOINC: A System for Public-Resource Computing

and Storage,” Proc. Fifth ACM/IEEE Int’l Workshop Grid Computing
(Grid ’04), 2004.

[5] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini,
and J. Prusakova, “Entropia: Architecture and Performance of an
Enterprise Desktop Grid System,” J. Parallel and Distributed
Computing, vol. 63, no. 5, pp. 597-610, 2003.

[6] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: An Experiment in Public-Resource Computing,”
Comm. ACM, vol. 45, no. 11, 2002.

[7] D. Molnar, “The SETI@Home Problem,” ACM Crossroads, Sept.
2000.

[8] P. Shread, Gateway Offers Computing on Demand, http://www.grid
computingplanet.com/news/article.php/3281_1555061, 2002.

[9] J. Sonnek and J. Weissman, “A Quantitative Comparison of
Reputation Systems in the Grid,” Proc. Sixth ACM/IEEE Int’l
Workshop Grid Computing (Grid ’05), 2005.

[10] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative Peer
Groups in Nice,” Proc. INFOCOM ’03, 2003.

[11] E. Damiani, S.D.C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante, “A Reputation-Based Approach for Choosing
Reliable Resources in Peer-to-Peer Networks,” Proc. Ninth
ACM Conf. Computer and Comm. Security (CCS ’02), pp. 207-
216, Nov. 2002.

[12] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The EigenTrust
Algorithm for Reputation Management in P2P Networks,” Proc.
12th Int’l World Wide Web Conf. (WWW ’03), 2003.

[13] B. Alunkal, I. Veljkovic, G. von Laszewski, and K. Amin,
“Reputation-Based Grid Resource Selection,” Proc. Workshop
Adaptive Grid Middleware (AGridM ’03), 2003.

[14] F. Azzedin and M. Maheswaran, “Integrating Trust into Grid
Resource Management Systems,” Proc. 31st Int’l Conf. Parallel
Processing (ICPP ’02), 2002.

[15] R. Zhao and K. Hwang, “PowerTrust: A Robust and Scalable
Reputation System for Trusted Peer-to-Peer Computing,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 5, May 2007.

[16] Grid2: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, eds. Morgan Kauffman, 2004.

[17] Folding@home Distributing Computing Project, http://folding.
stanford.edu, 2007.

SONNEK ET AL.: ADAPTIVE REPUTATION-BASED SCHEDULING ON UNRELIABLE DISTRIBUTED INFRASTRUCTURES 1563

Fig. 11. Overhead (the number of calls to the LOC function). (a) network size ¼ 100. (b) network size ¼ 1; 000.

TABLE 4
� versus �lb: Average Error in Practice

Fig. 12. Change in throughput when using � versus �lb.

[18] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster
Computing on the Fly: P2P Scheduling of Idle Cycles in the
Internet,” Proc. Fourth IEEE Int’l Conf. Peer-to-Peer Systems
(P2P ’04), 2004.

[19] A. Awan, R. Ferreira, S. Jagannathan, and A. Grama, “Unstruc-
tured Peer-to-Peer Networks for Sharing Processor Cycles,”
J. Parallel Computing, 2005.

[20] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
Proc. Third Symp. Operating Systems Design and Implementation
(OSDI ’99), Feb. 1999.

[21] P. Golle and I. Mironov, “Uncheatable Distributed Computa-
tions,” Proc. Cryptographer’s Track at RSA Conf. (CT-RSA ’01), Apr.
2001.

[22] L.F.G. Sarmenta, “Sabotage-Tolerance Mechanisms for Volunteer
Computing Systems,” Proc. First ACM/IEEE Int’l Symp. Cluster
Computing and the Grid (CCGrid ’01), 2001.

[23] S. Zhao and V. Lo, “Result Verification and Trust-Based
Scheduling in Open Peer-to-Peer Cycle Sharing Systems,” Proc.
Fifth IEEE Int’l Conf. Peer-to-Peer Computing (P2P ’05), Sept. 2005.

[24] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara,
“Reputation Systems,” Comm. ACM, vol. 43, no. 12, pp. 45-48,
2000.

[25] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-Peer
Information System,” Proc. Ninth Int’l Conf. Information and
Knowledge Management, 2001.

[26] S. Song, K. Hwang, and Y. Kwok, “Risk-Resilient Heuristics and
Genetic Algorithms for Security-Assured Grid Job Scheduling,”
IEEE Trans. Computers, vol. 55, no. 6, pp. 703-719, 2006.

[27] R. Gupta and A. Somani, “CompuP2P: An Architecture for
Sharing of Compute Power in Peer-to-Peer Networks with Selfish
Nodes,” Proc. Second Workshop Economics of Peer-to-Peer Systems,
2004.

[28] K. Anagnostakis and M. Greenwald, “Exchange-Based Incentive
Mechanisms for Peer-to-Peer File Sharing,” Proc. 24th Int’l Conf.
Distributed Computing Systems (ICDCS ’04), 2004.

[29] B. Chun, Y. Fu, and A. Vahdat, “Bootstrapping a Distributed
Computational Economy with Peer-to-Peer Bartering,” Proc. First
Workshop Economics of Peer-to-Peer Systems, 2003.

[30] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable Grid
Computing,” Proc. 24th IEEE Int’l Conf. Distributed Computing
Systems (ICDCS ’04), pp. 4-11, Mar. 2004.

[31] P. Golle and S.G. Stubblebine, “Secure Distributed Computing in a
Commercial Environment,” Proc. Fifth Int’l Conf. Financial Crypto-
graphy, pp. 289-304, Feb. 2002.

[32] J. Sonnek, M. Nathan, A. Chandra, and J. Weissman, “Reputation-
Based Scheduling on Unreliable Distributed Infrastructures,”
Technical Report 05-036, Dept. Computer Science and Eng.
(CSE), Univ. of Minnesota, Nov. 2005.

[33] T.M. Cover and J.A. Thomas, Elements of Information Theory. John
Wiley & Sons, 1991.

[34] A. Charnes and W. Cooper, “Goal Programming and Multiple
Objective Optimization—Part I,” European J. Operational Research,
vol. 1, pp. 39-54, 1977.

[35] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and
Application. John Wiley & Sons, 1986.

Jason Sonnek received the MS degree in
computer science from the University of Min-
nesota in May 2005 and the BS degree in
computer science and mathematics from the
University of Minnesota, Duluth, in 2003. He is
currently employed as a senior computer
scientist at Sandia National Laboratories, Albu-
querque, New Mexico. His research interests
include operating system and network security,
reliable outsourced computing, and distributed

computing in general. He is a member of the IEEE and the IEEE
Computer Society.

Abhishek Chandra received the BTech degree
in computer science and engineering from
Indian Institute of Technology, Kanpur, India, in
1997, and the MS and PhD degrees in computer
science from the University of Massachusetts
Amherst in 2000 and 2005, respectively. He is
currently an assistant professor in the Depart-
ment of Computer Science and Engineering,
University of Minnesota. His research interests
are in the areas of operating systems, distributed

systems, and multimedia systems. He received the US National Science
Foundation (NSF) Faculty Early Career Development (CAREER) Award
in 2007, and his dissertation entitled Resource Allocation for Self-
Managing Servers was nominated for the ACM Dissertation Award in
2005. He is a member of the ACM, the IEEE, the IEEE Computer
Society, and Usenix.

Jon B. Weissman received the BS degree
from Carnegie Mellon University in 1984 and
the MS and PhD degrees from the University of
Virginia in 1989 and 1995, respectively, all in
computer science. He has been an associate
professor of computer science at the University
of Minnesota since 2003. His current research
interests are in distributed systems, high-
performance computing, Internet systems, and
grid computing. He is a senior member of the

IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

