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Abstract 
 

This project addresses the problem of dynamic 
service adaptation in the Grid. The need for 
adaptation arises due to both resource and service 
demand uncertainty. With NGS support, we are 
tackling several key issues in this problem space: (1) a 
dynamic OGSA-based Grid service architecture to 
support dynamic service hosting - where to host and 
re-host a service within the Grid in response to service 
demand and resource fluctuation [13], (2) resource 
management middleware that dynamically decides 
how many resources to allocate to a request and 
where a request should run [10][12], (3) a dynamic 
leasing framework that decides how many resources to 
lease to a service to handle future requests [2][3], (4) 
and a new model of service robustness that can 
describe the sensitivity of a service to Grid 
fluctuations [4]. In this short report, we present 
material on (1) and (3) in the interest of brevity. 
Papers describing all aspects of the project are 
contained in the bibliography. 

 
 
1.0 Introduction 
 

Computational Grids are undergoing an evolution. 
The first wave of Grid computing successfully 
demonstrated the feasibility of Grids for addressing 
niche problems in high-end scientific computing based 
on the emergence of Grid middleware, most notably 
Globus [5] and Legion [9]. These projects have 
established a core enabling technology based on low-
level resource-centric abstractions, machines, data 
stores, jobs, etc. The next generation of Grids is 
focusing on how to “elevate” the level of abstraction 
to better enable Grid application designers and end-
users to solve “real problems”. It has been 
persuasively argued that next -generation Grid 
applications will be increasingly multidisciplenary, 
collaborative, distributed, and most importantly, 

dynamic. The latter implies that static infrastructures 
will not be adequate since such applications may be 
assembled on-the-fly to exist only for a transient 
period of time. Such application environments have 
been coined Virtual Organizations (VO) in which 
“secure, flexible, coordinated resource sharing among 
dynamic collections of individuals and institutions is 
required [6].” Grid services have been proposed as a 
way to address these issues [7]. 

When services are hosted on the Grid they must 
adapt due to the dynamics of the Grid and of the VO 
users. For example, Grid services must adapt to the 
dynamic and unpredictable resource availability 
inherent in the Grid resources upon which they are 
hosted. Grid services must also adapt to the dynamic 
and unpredictable service demand fro m clients within 
the VO. We present an architecture and prototype 
implementation for dynamic Grid services that extends 
OGSA to better support dynamic VOs. In particular, 
we address the problem of dynamic service hosting - 
where to host and re-host a service within the Grid. 
We have also developed several new adaptive Grid 
service classes that are designed to better capture the 
dynamics of the Grid. Dynamic service deployment 
allows services to be added or upgraded without 
“taking down” a site for re-configuration and allows 
the VO to respond effectively to changing resource 
availability and demand including “flash crowds”. 

 
 

2.0 Dynamic Grid Service Architecture  
 
An OGSA-based Grid software stack has the 

potential to provide a coherent and stable platform for 
Grid application and tool developers in which the Grid 
is seen as a collection of application- and system level 
Grid services (Figure 1). We take the “top half” of the 
Grid fabric to be OGSA which provides a basic 
service framework with common services like 
factories, repositories, registries, etc. The “bottom 
half” is  OGSI and reflects a specific implementation 



such as Globus GT3 [8], OGSI.net [11], etc. Grid 
system services provide core functionality that is 
required by application-level Grid services.  
 

 
Figure 1: Grid Stack. The bold boxes are  
addressed in our system 
 
 
One class of Grid system services we are 

investigating are those which encapsulate and provide 
resources to enable application-specific Grid services 
to run. For example, an application-level parallel 
solver service would need to be “hosted on” a Grid 
system service that provided CPU resources. To 
enable VOs to evolve, scale, and respond to unknown 
events and unpredictable service demands, we believe 
that dynamic service deployment is needed both for 
Grid system services and Grid application services. 
Furthermore, we believe that each service class must 
be adaptive. Our dynamic service architecture consists 
of several core services and components (Figure 2). 

The adaptive Grid service (AGS) is our 
fundamental abstraction for a Grid service that can 
adapt to changes in demand and resource availability. 
The Grid service AGS model is attractive for several 
reasons. They allow the user to focus on their 
application and obtain remote service when needed by 
simply invoking the service across the network.  

 

The user can be assured that the most recent 
version of the code or service is always provided and 
they do not need to install, maintain, and manage 
significant infrastructure to access the service. For 
high-end applications in particular, the user is still 
often required to install a code base (e.g. MPI), and 
therefore become involved with the tedious details of 
infrastructure management. Some examples of 
compute-intensive high-end services that we have 
developed in our work include numeric solvers, N-
body simulators, parallel CFD, stochastic simulation 
(e.g. monte-carlo), parameter studies, and library-to-
library genomic sequence comparison.  

The AGS consists of three components: a front-
end, deployer, and back-end. The AGS front-end 
handles client requests and makes decisions about 
where the request should run. The AGS deployer 
decides which site(s) should host and deploy the 
service. Information about the service when it is 
deployed and running is maintained by the front-end. 
The back-end consists of an AGS factory that contains 
the actual code for the service and serves each request 
by creating an instance we call the AGSI (adaptive 
Grid service instance). OGSA supports both transient 
and persistent instances and the back-end can be 
configured by the service provider to create either type 
of instance. The back-end is dynamically deployed or 
hosted using a negotiated and leased pool of resources 
provided by an adaptive resource provider service 
(ARP). The leasing model conforms to the OGSI 
lifetime  specification [1]. 

There may be “replicas” of the service back-end 
hosted on different ARPs in the Grid. The service 
provider creates a front-end and back-end using code 
templates and runs a packaging tool to create a service 
package. An installer service can then be run to install 
the AGS front-end and AGS deployer from this  
package. In principle, the front-end could be installed 
on any site in the Grid that is running an ARP.  
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Figure 2: Dynamic Service Architecture 
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Multiple  front-ends can be installed to avoid 
access bottlenecks. Deploying the service is a 2nd step 
and is performed by invoking the AGS deployer to 
initiate deployment of the back-end also from the 
service package. This requires the selection of a 
remote ARP on which to deploy service. Once a 
service is  deployed, all front-ends are automatically 
registered with a registry for future client lookup. The 
dynamic deployment lifecycle is shown below (Figure 
3). A client looks up the AGS front-end in a registry 
and issues a service request to it which will be routed 
to a back-end. This has the advantage that detailed 
performance information can be collected as the 
request is being processed (e.g. it enables the front-end 
to decide where to send the request based on its 
parameters), and also provides a simple “one-step” 
interface to the application. APIs for all components in 
Figure 2 can be found here [13]. 

 
 

 
 
Figure 3: Service Lifecycle. All elements of the 
service lifecycle are supported in the architecture. 
Note that dynamic service access may induce 
additional back-end deployments. 

 
 

 
2.1 Results  
 

We have constructed a testbed and deployed our 
architecture to examine its costs and benefits. We first 
measured the transport portion of the cost of remote 
service installation (front-end) and deployment (back-
end) as a function of the PackageType size. We 
compared SOAP (using encoded byte arrays) which is 
the default, HTTP, and TCP/IP (Figure 4a). In general, 
the SOAP penalty is about a factor of 2 (for WAN 
transfers). For a PackageType sizes of 100KB, the cost 
is ~1 sec (WAN) and for 1MB it is ~5.5 sec. If the 
service is deployed to handle multiple requests 
(common case) then the overhead of 
installation/deployment can be amortized. Our 
conclusion is that for services that do not have 
extremely large associated datasets, SOAP will be 
acceptable. 

Once the service package is delivered to the host 
site, the service must be configured. This 
configuration cost includes interaction with the local 
Tomcat container environment to unpack WAR files, 
create directories, allocate memory for the service, and 

start the service (Figure 4b). Configuration costs for 
packages above 1MB are on the order of seconds. 
Clearly, deploying the service for each request on 
demand (transfer and configuration) is expensive 
(unless the service request is very long running). 
However, we do not want to rule out such scenarios. 
The common case of multiple requests will enable the 
overhead to be easily amortized. To reduce the cost of 
dynamic deployment, we next considered several 
optimizations that can be used in specific situations 
(Figure 5). Service tear-down normally involves 
removal of all traces of the service, including the 
service package. Instead, it is possible to tear-down 
the service (removed from Tomcat’s memory), but 
allow the service package to remain “cached” (with a 
storage cost). By caching we mean that the service 
package still resides in Tomcat’s directory space, but 
can be re-loaded into a running container later if 
necessary. The cost of subsequent deployments of the 
service to this ARP can be greatly reduced as the 
service package need not be retransmitted (Figure 5a ). 
A second optimization is to shrink the service package 
to omit redundant system library files. If the ARP is 
already hosting other Grid services, then it likely has 
already loaded certain system libraries as part of GT3.  
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Figure 4: Install/Deployment Transport Cost 
 
 
These libraries can be loaded as shareable much 

like shared code segments in OS-level virtual memory. 
This also applies to service upgrades in which the 
service package can omit the already delivered and 
loaded system libraries. This  optimization is more 

packaging  installation  deployment 

initialization  access teardown 



powerful as it reduces both the transmission time as 
well as the configuration cost (Figure 5b). 
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Figure 5: Optimizations. Incremental service 
package size is 1KB (one class file in the 
eignenvalue service was changed and only this his 
class was transmitted). 

 
 

 
3.0 Dynamic Service Leasing 

 
When a service provider of an AGS wishes to 

host on an ARP, it leases resources from the provider.  
We assume that there is a cost for leasing as the ARP 
resources may be provided by a third party, e.g. Sun’s 
utility computing model in which cycles were recently 
sold on e-bay. We consider the resource leasing 
problem from the perspective of the service provider. 
The nature of the problem is such that the demand for 
the service and the processing times of individual 
requests are unknown, but can be modelled with 
appropriate probability distributions. Still, the service 
provider is faced with the conflicting goals of leasing 
enough computational resources to provide an 
adequate level of service and keeping the cost of 
leasing to a minimum. Leasing too many resources to 
host a service incurs unnecessary cost. However, 
leasing too few resources results in long wait times 
and client dissatisfaction. In our model we place a cost 
on the average wait time of client requests. Such a cost 
can represent a loss in revenue or a loss in goodwill. 
Due to its stochastic nature we model and solve the  

resource leasing problem in a dynamic programming 
framework. Given the cost structure of the lease 
arrangement, the resulting policy provides state-
dependent rules for service providers to acquire on-
demand resources and to terminate those leases when 
it is cost-effective to do so. We model cost using three 
terms, an initial acquisition cost to acquire the 
resource at the beginning of a time period, a hold cost 
that is linear in the time a resource is held, and a 
dynamic acquisition cost that occurs due to under-
provisioning between time periods. A full treatment of 
our mathematical formulation of this problem is 
outside the scope of this report, but can be found in [3].  
 
 

 
 

 
 
      Figure 6: Leasing cost vs. number of resources  
      and requests 
 

 
We characterize the optimal cost function and we 

find that the cost is more sensitive to leasing too few 
resources than to leasing too many resources. This 
indicates that it is better for a service to be slightly 
overdeployed than under-deployed (Figure 6) as 



evidenced by the spread of cost function at the left end 
of the graph and the closeness at the right end of the 
graph. This indicates that when demand for the service 
is known to exist but is highly irregular, it is better to 
be slightly over-deployed than under-deployed. 
Knowledge of the sensitivity is also beneficial in the 
case where consistency and predictability of the 
leasing cost is of concern, e.g. service providers who 
budget for leasing costs. Regarding cost versus 
number of requests in the system, we show the optimal 
cost for five different levels of m (the number of 
resources.) We see that the cost is nondecreasing in 
the number of requests. The lowest costs are naturally 
achieved when there are very few requests in the 
system since there is no waiting cost. We also show 
that the optimal cost function is not very sensitive to 
the number of requests in the system. This can perhaps 
be taken as good news since, unlike the number of 
leased resources, the number of requests is random 
and cannot be directly controlled. 

 
 

4.0 Summary 
 

This project is addressing fundamental issues 
relating to how services can cope with the dynamics of 
the Grid. We presented an architecture and prototype 
implementation for a dynamic Grid service 
infrastructure that supports dynamic service hosting - 
where to host and re-host a service within the Grid in  
response to service demand and resource fluctuation. 
Our model defines several new adaptive Grid service 
classes that support adaptation at multiple levels. In 
particular, dynamic service deployment allows new 
services to be added without “taking down” a site for 
re-configuration, allows the Grid to be much more  
dynamic, and allows a VO to respond effectively to 
resource availability and demand. The costs associated 
with dynamic deployment were shown to be tolerable. 
We also presented a dynamic leasing strategy whereby 
a Grid service provider can optimally decide how 
many resources to lease from a provider given 
knowledge of cost parameters and general statistics of 
the service demand profile. This work is currently  
being implemented in our middleware. Prior work not 
presented here focused on reusable middleware for 
resource management at several levels - deciding 
where to ship a service request (if there were multiple  
deployments), deciding when to replicate a service if 
demand was high, and deciding how many resources 
to allocate to a specific service request from the pool 
leased to the service provider. Our current work is  
focusing on adaptation to support reliable and robust 
Grid services that can withstand extreme perturbation 
due to resource failure or removal or extremely high 
service load. Our future work is to develop an 
integrated service infrastructure for handling extreme 

events for data-intensive services that exploits the best 
properties of Grid, P2P, and commodity cluster service 
models. 
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