
A Framework for Dynamic Service Adaptation in the Grid:
Next Generation Software Program Progress Report

 Jon B. Weissman, Seonho Kim, and Darin England
Dept. of Computer Science and Engineering,

University of Minnesota, Twin Cities
(jon@cs.umn.edu)

Abstract

This project addresses the problem of dynamic
service adaptation in the Grid. The need for
adaptation arises due to both resource and service
demand uncertainty. With NGS support, we are
tackling several key issues in this problem space: (1) a
dynamic OGSA-based Grid service architecture to
support dynamic service hosting - where to host and
re-host a service within the Grid in response to service
demand and resource fluctuation [13], (2) resource
management middleware that dynamically decides
how many resources to allocate to a request and
where a request should run [10][12], (3) a dynamic
leasing framework that decides how many resources to
lease to a service to handle future requests [2][3], (4)
and a new model of service robustness that can
describe the sensitivity of a service to Grid
fluctuations [4]. In this short report, we present
material on (1) and (3) in the interest of brevity.
Papers describing all aspects of the project are
contained in the bibliography.

1.0 Introduction

Computational Grids are undergoing an evolution.
The first wave of Grid computing successfully
demonstrated the feasibility of Grids for addressing
niche problems in high-end scientific computing based
on the emergence of Grid middleware, most notably
Globus [5] and Legion [9]. These projects have
established a core enabling technology based on low-
level resource-centric abstractions, machines, data
stores, jobs, etc. The next generation of Grids is
focusing on how to “elevate” the level of abstraction
to better enable Grid application designers and end-
users to solve “real problems”. It has been
persuasively argued that next -generation Grid
applications will be increasingly multidisciplenary,
collaborative, distributed, and most importantly,

dynamic. The latter implies that static infrastructures
will not be adequate since such applications may be
assembled on-the-fly to exist only for a transient
period of time. Such application environments have
been coined Virtual Organizations (VO) in which
“secure, flexible, coordinated resource sharing among
dynamic collections of individuals and institutions is
required [6].” Grid services have been proposed as a
way to address these issues [7].

When services are hosted on the Grid they must
adapt due to the dynamics of the Grid and of the VO
users. For example, Grid services must adapt to the
dynamic and unpredictable resource availability
inherent in the Grid resources upon which they are
hosted. Grid services must also adapt to the dynamic
and unpredictable service demand fro m clients within
the VO. We present an architecture and prototype
implementation for dynamic Grid services that extends
OGSA to better support dynamic VOs. In particular,
we address the problem of dynamic service hosting -
where to host and re-host a service within the Grid.
We have also developed several new adaptive Grid
service classes that are designed to better capture the
dynamics of the Grid. Dynamic service deployment
allows services to be added or upgraded without
“taking down” a site for re-configuration and allows
the VO to respond effectively to changing resource
availability and demand including “flash crowds”.

2.0 Dynamic Grid Service Architecture

An OGSA-based Grid software stack has the

potential to provide a coherent and stable platform for
Grid application and tool developers in which the Grid
is seen as a collection of application- and system level
Grid services (Figure 1). We take the “top half” of the
Grid fabric to be OGSA which provides a basic
service framework with common services like
factories, repositories, registries, etc. The “bottom
half” is OGSI and reflects a specific implementation

such as Globus GT3 [8], OGSI.net [11], etc. Grid
system services provide core functionality that is
required by application-level Grid services.

Figure 1: Grid Stack. The bold boxes are
addressed in our system

One class of Grid system services we are

investigating are those which encapsulate and provide
resources to enable application-specific Grid services
to run. For example, an application-level parallel
solver service would need to be “hosted on” a Grid
system service that provided CPU resources. To
enable VOs to evolve, scale, and respond to unknown
events and unpredictable service demands, we believe
that dynamic service deployment is needed both for
Grid system services and Grid application services.
Furthermore, we believe that each service class must
be adaptive. Our dynamic service architecture consists
of several core services and components (Figure 2).

The adaptive Grid service (AGS) is our
fundamental abstraction for a Grid service that can
adapt to changes in demand and resource availability.
The Grid service AGS model is attractive for several
reasons. They allow the user to focus on their
application and obtain remote service when needed by
simply invoking the service across the network.

The user can be assured that the most recent
version of the code or service is always provided and
they do not need to install, maintain, and manage
significant infrastructure to access the service. For
high-end applications in particular, the user is still
often required to install a code base (e.g. MPI), and
therefore become involved with the tedious details of
infrastructure management. Some examples of
compute-intensive high-end services that we have
developed in our work include numeric solvers, N-
body simulators, parallel CFD, stochastic simulation
(e.g. monte-carlo), parameter studies, and library-to-
library genomic sequence comparison.

The AGS consists of three components: a front-
end, deployer, and back-end. The AGS front-end
handles client requests and makes decisions about
where the request should run. The AGS deployer
decides which site(s) should host and deploy the
service. Information about the service when it is
deployed and running is maintained by the front-end.
The back-end consists of an AGS factory that contains
the actual code for the service and serves each request
by creating an instance we call the AGSI (adaptive
Grid service instance). OGSA supports both transient
and persistent instances and the back-end can be
configured by the service provider to create either type
of instance. The back-end is dynamically deployed or
hosted using a negotiated and leased pool of resources
provided by an adaptive resource provider service
(ARP). The leasing model conforms to the OGSI
lifetime specification [1].

There may be “replicas” of the service back-end
hosted on different ARPs in the Grid. The service
provider creates a front-end and back-end using code
templates and runs a packaging tool to create a service
package. An installer service can then be run to install
the AGS front-end and AGS deployer from this
package. In principle, the front-end could be installed
on any site in the Grid that is running an ARP.

Lease ManagerLease Manager

Query moduleQuery module Allocation moduleAllocation module

ARP

AGSI

AGS
Repository

AGS
Deployer

AGS
Deployer

AGS
Front-end

AGS
Front-end

Resource Monitor

AGS_Factory

lease

Home Site Remote Site

Request
Manager
Request
Manager

Runtime
Prediction

Service

Runtime
Prediction

Service

Service
Installer
Service
Installer

SOAP/HTTP

Performance DB
Status DB

past workload
…

Information
Service

Information
Service Registry

AGSIAGSI

Request/Response

Service Instance Creation

Register/Query

resources

Tomcat
Manager
Tomcat
Manager

Webapp
Loader

Webapp
Loader

Tomcat Servlet Engine

AGS
Factory

AGS
Factory InstanceInstance

Member Node

ARP Host Node

Webapp
Deployer
Webapp
Deployer

Deploy moduleDeploy module

Figure 2: Dynamic Service Architecture

Applications

Application-level Grid services

Reusable
Middleware

Grid system
Services

Grid Fabric: OGSA
OGSI: GT, OGSA.net, …

Multiple front-ends can be installed to avoid
access bottlenecks. Deploying the service is a 2nd step
and is performed by invoking the AGS deployer to
initiate deployment of the back-end also from the
service package. This requires the selection of a
remote ARP on which to deploy service. Once a
service is deployed, all front-ends are automatically
registered with a registry for future client lookup. The
dynamic deployment lifecycle is shown below (Figure
3). A client looks up the AGS front-end in a registry
and issues a service request to it which will be routed
to a back-end. This has the advantage that detailed
performance information can be collected as the
request is being processed (e.g. it enables the front-end
to decide where to send the request based on its
parameters), and also provides a simple “one-step”
interface to the application. APIs for all components in
Figure 2 can be found here [13].

Figure 3: Service Lifecycle. All elements of the
service lifecycle are supported in the architecture.
Note that dynamic service access may induce
additional back-end deployments.

2.1 Results

We have constructed a testbed and deployed our
architecture to examine its costs and benefits. We first
measured the transport portion of the cost of remote
service installation (front-end) and deployment (back-
end) as a function of the PackageType size. We
compared SOAP (using encoded byte arrays) which is
the default, HTTP, and TCP/IP (Figure 4a). In general,
the SOAP penalty is about a factor of 2 (for WAN
transfers). For a PackageType sizes of 100KB, the cost
is ~1 sec (WAN) and for 1MB it is ~5.5 sec. If the
service is deployed to handle multiple requests
(common case) then the overhead of
installation/deployment can be amortized. Our
conclusion is that for services that do not have
extremely large associated datasets, SOAP will be
acceptable.

Once the service package is delivered to the host
site, the service must be configured. This
configuration cost includes interaction with the local
Tomcat container environment to unpack WAR files,
create directories, allocate memory for the service, and

start the service (Figure 4b). Configuration costs for
packages above 1MB are on the order of seconds.
Clearly, deploying the service for each request on
demand (transfer and configuration) is expensive
(unless the service request is very long running).
However, we do not want to rule out such scenarios.
The common case of multiple requests will enable the
overhead to be easily amortized. To reduce the cost of
dynamic deployment, we next considered several
optimizations that can be used in specific situations
(Figure 5). Service tear-down normally involves
removal of all traces of the service, including the
service package. Instead, it is possible to tear-down
the service (removed from Tomcat’s memory), but
allow the service package to remain “cached” (with a
storage cost). By caching we mean that the service
package still resides in Tomcat’s directory space, but
can be re-loaded into a running container later if
necessary. The cost of subsequent deployments of the
service to this ARP can be greatly reduced as the
service package need not be retransmitted (Figure 5a).
A second optimization is to shrink the service package
to omit redundant system library files. If the ARP is
already hosting other Grid services, then it likely has
already loaded certain system libraries as part of GT3.

Package Transfer Time (WAN)

0

1000

2000

3000

4000

5000

6000

1K 10K 100K 500K 1M

Package Size (Byte)

T
im

e
(m

s)

WAN_Socket
WAN_HTTP
WAN_SOAP

(a)

Configuration Cost

0

200

400

600

800

1000

1200

1400

2K 10K 100K 500K 1MB

Package Size (Bytes)

T
im

e
(m

s)

(b)

Figure 4: Install/Deployment Transport Cost

These libraries can be loaded as shareable much

like shared code segments in OS-level virtual memory.
This also applies to service upgrades in which the
service package can omit the already delivered and
loaded system libraries. This optimization is more

packaging installation deployment

initialization access teardown

powerful as it reduces both the transmission time as
well as the configuration cost (Figure 5b).

Impact of Service Caching

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2KB 10KB 100KB 500KB

Package Size

T
im

e
(m

ill
i s

ec
o

n
d

s) Service Caching
Service Redeploying through LAN
Service Redeploying through WAN

(a)

0

200

400

600

800

1000

1200

1400

2KB 10KB 100KB 500KB

Package Size

T
im

e
(m

s)

Incremental Service Upgrading

Service Redeployment

(b)

Figure 5: Optimizations. Incremental service
package size is 1KB (one class file in the
eignenvalue service was changed and only this his
class was transmitted).

3.0 Dynamic Service Leasing

When a service provider of an AGS wishes to

host on an ARP, it leases resources from the provider.
We assume that there is a cost for leasing as the ARP
resources may be provided by a third party, e.g. Sun’s
utility computing model in which cycles were recently
sold on e-bay. We consider the resource leasing
problem from the perspective of the service provider.
The nature of the problem is such that the demand for
the service and the processing times of individual
requests are unknown, but can be modelled with
appropriate probability distributions. Still, the service
provider is faced with the conflicting goals of leasing
enough computational resources to provide an
adequate level of service and keeping the cost of
leasing to a minimum. Leasing too many resources to
host a service incurs unnecessary cost. However,
leasing too few resources results in long wait times
and client dissatisfaction. In our model we place a cost
on the average wait time of client requests. Such a cost
can represent a loss in revenue or a loss in goodwill.
Due to its stochastic nature we model and solve the

resource leasing problem in a dynamic programming
framework. Given the cost structure of the lease
arrangement, the resulting policy provides state-
dependent rules for service providers to acquire on-
demand resources and to terminate those leases when
it is cost-effective to do so. We model cost using three
terms, an initial acquisition cost to acquire the
resource at the beginning of a time period, a hold cost
that is linear in the time a resource is held, and a
dynamic acquisition cost that occurs due to under-
provisioning between time periods. A full treatment of
our mathematical formulation of this problem is
outside the scope of this report, but can be found in [3].

 Figure 6: Leasing cost vs. number of resources
 and requests

We characterize the optimal cost function and we

find that the cost is more sensitive to leasing too few
resources than to leasing too many resources. This
indicates that it is better for a service to be slightly
overdeployed than under-deployed (Figure 6) as

evidenced by the spread of cost function at the left end
of the graph and the closeness at the right end of the
graph. This indicates that when demand for the service
is known to exist but is highly irregular, it is better to
be slightly over-deployed than under-deployed.
Knowledge of the sensitivity is also beneficial in the
case where consistency and predictability of the
leasing cost is of concern, e.g. service providers who
budget for leasing costs. Regarding cost versus
number of requests in the system, we show the optimal
cost for five different levels of m (the number of
resources.) We see that the cost is nondecreasing in
the number of requests. The lowest costs are naturally
achieved when there are very few requests in the
system since there is no waiting cost. We also show
that the optimal cost function is not very sensitive to
the number of requests in the system. This can perhaps
be taken as good news since, unlike the number of
leased resources, the number of requests is random
and cannot be directly controlled.

4.0 Summary

This project is addressing fundamental issues
relating to how services can cope with the dynamics of
the Grid. We presented an architecture and prototype
implementation for a dynamic Grid service
infrastructure that supports dynamic service hosting -
where to host and re-host a service within the Grid in
response to service demand and resource fluctuation.
Our model defines several new adaptive Grid service
classes that support adaptation at multiple levels. In
particular, dynamic service deployment allows new
services to be added without “taking down” a site for
re-configuration, allows the Grid to be much more
dynamic, and allows a VO to respond effectively to
resource availability and demand. The costs associated
with dynamic deployment were shown to be tolerable.
We also presented a dynamic leasing strategy whereby
a Grid service provider can optimally decide how
many resources to lease from a provider given
knowledge of cost parameters and general statistics of
the service demand profile. This work is currently
being implemented in our middleware. Prior work not
presented here focused on reusable middleware for
resource management at several levels - deciding
where to ship a service request (if there were multiple
deployments), deciding when to replicate a service if
demand was high, and deciding how many resources
to allocate to a specific service request from the pool
leased to the service provider. Our current work is
focusing on adaptation to support reliable and robust
Grid services that can withstand extreme perturbation
due to resource failure or removal or extremely high
service load. Our future work is to develop an
integrated service infrastructure for handling extreme

events for data-intensive services that exploits the best
properties of Grid, P2P, and commodity cluster service
models.

5.0 Bibliography

[1] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M.
Xu, “Agreement-based Grid Service Management (OGSI-
Agreement),” Global Grid Forum GRAAP-WG Author
Contribution, 12 June 2003.

[2] D. England and J.B. Weissman, “A Stochastic Control
Model for the Deployment of Dynamic Grid Services,” 5th
IEEE/ACM International Workshop on Grid Computing
2004.

[3] D. England and J.B. Weissman, “A Resource Leasing
Policy for On-Demand Computing,” invited to the
International Journal of High Performance Computing and
Applications (IJHPCA) 2005.

[4] D. England and J.B. Weissman, “A New Metric for
Robustness with Application to Network Services,”
University of Minnesota Computer Science Technical
Report, 2005.

[5] I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” International Journal of
Supercomputing Applications, 11(2), 1997.

[6] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the
Grid: Enabling Scalable Virtual Organizations,”
International J. Supercomputer Applications, 15(3), 2001.

[7] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration,” Open Grid Service
Infrastructure WG, GGF, June 2002.

[8] Globus GT3: www.globus.org, 2004.

[9] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of
a Worldwide Virtual Computer,” Communications of the
ACM, Vol. 40(1), 1997.

[10] B. Lee and J.B. Weissman, ``Adaptive Resource
Selection for Grid-Enabled Network Services'', 2nd IEEE
International Symposium on Network Computing and
Applications, April 2003.

[11] G. Wasson, N. Beekwilder, M. Morgan, and M.
Humphrey, “OGSI.NET: OGSI-compliance on the .NET
Framework,” 4th IEEE/ACM International Symposium on
Cluster Computing and the Grid, April 2004.

[12] J.B. Weissman, D. England, and L.R. Abburi,
“Integrated Scheduling: The Best of Both Worlds,” Journal
of Parallel and Distributed Computing, 63(6), June 2003.

[13] J.B. Weissman, S. Kim, and D. England, “Supporting
the Dynamic Grid Service Lifecycle,” to appear in CCGrid
2005.

