
han is

 infor-

pplica-

rovide

e per-

table

ollec-
 Optimizing Remote File Access for Parallel and
Distributed Network Applications

Jon B. Weissman*, Mahesh Marina+, and Michael Gingras+

Department of Computer Science and Engineering
University of Minnesota, Twin Cities*

Division of Computer Science
University of Texas at San Antonio+

(jon@cs.umn.edu)

Abstract

This paper presents a paradigm for remote file access called Smart File Objects (SFOs). The

SFO is a realization of the ELFS (Extensible File Systems) concept of files as typed objects, but

applied to wide-area networks [9]. The SFO is an object-oriented application-specific file access

paradigm designed to address the bottleneck imposed by high latency, low bandwidth, unpredict-

able, and unreliable networks such as the current Internet. Newly emerging network applications

such as multimedia, metacomputing, and collaboratories, will have different sensitivities to these

network “features”. These applications will require a more flexible file access mechanism t

provided by conventional distributed file systems. The SFO uses application and network

mation to adaptively prefetch and cache needed data in parallel with the execution of the a

tion to mitigate the impact of the network. Preliminary results indicate that the SFO can p

substantial performance gains for network applications.1

1.0 Introduction

Network applications often require access to remote data sources. Unfortunately, th

formance “features” of current wide-area network: high latency, low bandwidth, unpredic

latency and bandwidth, and poor reliability can be an obstacle for network applications. C

1. This work was partially funded by grants NSF ACIR-9996418 and CDA-9633299, AFOSR-F49620-96-1-0472,

and ARP 010115-226.
1

ng, or

he net-

. For

ion is

tions

 if the

mote

etwork.

tions

mote
tively these network properties jeopardize the efficiency, predictability, and reliability of network

applications. This is becoming a more pressing problem as there is an ever-increasing volume of

interesting remote data sources available on the network including digital libraries, scientific data-

bases, movies, and images.

In this paper, we consider two important classes of network applications, client-server and

metacomputing. Client-server applications are typically characterized by a set of interacting com-

ponents running at fixed locations in the network. This includes simple applications such as Web

browsers accessing Web server files to more sophisticated collaboratories. Because many of the

client-server applications are interactive, predictable network file access is an important objective.

Metacomputing applications tend to be more dynamic with high-performance as the primary

objective. This includes applications such as global climate modelling or space weather prediction

in which remote data sources must be efficiently accessed throughout the computation. Both

classes of applications are hampered by these network “features”.

Remote file access can be performed in one of three ways: uploading, downloadi

remote access. Uploading moves the application to the file location and avoids many of t

work bottlenecks. Unfortunately, this paradigm is limited to a small class of applications

example, it would not be suitable for high-performance applications in which the file’s locat

unlikely to have sufficient computing resources. Downloading moves the file to the applica

location. However, downloading is expensive both in time and disk resources, especially

application does not require the entire file (e.g. browsing a multimedia file for content). Re

access allows the application to run in one location and access files remotely across the n

It is the most flexible paradigm in that it can support the widest variety of network applica

including client-server and high-performance metacomputing applications. However, re
2

mote

enecks

g and

yped

r per-

-area

tion 3

ase stud-

t a sum-

stems.

mantics

-

access suffers from the performance and reliability properties of the network. What is needed is a

flexible solution that can mitigate the impact of the network on the application.

We believe that the network bottlenecks must be addressed in an application-specific way

because different applications have different sensitivities to network performance. For example,

multimedia applications require predictable performance while metacomputing applications gen-

erally favor high-performance. Our solution is the Smart File Object (SFO), which is object-ori-

ented middleware that sits on the “edge of the network” between the application and the re

file. It adopts the remote access paradigm for its flexibility and addresses the network bottl

by exploiting information about the application and the network to perform adaptive cachin

prefetching. The SFO is based on the ELFS (Extensible File System) concept of files as t

objects to provide high-level interfaces and allow file specific properties to be exploited fo

formance [9]. SFOs provide a practical implementation of the ELFS ideas in dynamic wide

networks.

The remainder of this paper is as follows. Section 2 presents related work. Sec

describes the SFO architecture and prototype implementations. Section 4 presents three c

ies and performance results for different applications and SFOs. Sections 5 and 6 presen

mary and future work respectively.

2.0 Related Work

Related projects fall into the areas of wide-area distributed file systems and adaptive sy

Andrew is a scalable distributed file system that adopts client-side caching and session se

to achieve efficient performance in a wide-area environment [12]. xFS is a “serverless” file sys

tem designed to remove the bottleneck inherent in server architectures such as in Andrew[1]. In
3

equen-

ill per-

can be

r opti-

h per-

PI-

es and

 par-

 as in a

 appli-

rmony

 Reed
xFS, clients may cache and serve the file to other clients avoiding server interaction. Both

Andrew and xFS are general-purpose distributed file systems designed to support efficient sharing

of files in a wide-area distributed system. WebOS provides a URL-based mechanism for naming

remote files and downloads the remote file upon access [13]. These systems each adopt the down-

load model of file access which is not appropriate for all applications. The SFO paradigm allows

application-specific file access policies to be easily implemented in user-space better meeting an

application’s performance objectives. For example, most if not all file systems, assume a s

tial mode of file access and base caching decisions upon this assumption. However, this w

form poorly for files accessed non-sequentially. In contrast, the SFO caching mechanism

tailored to the specific access pattern. The value of combining caching and prefetching fo

mizing I/O performance in a global cluster-wide memory system is demonstrated in [14]. The

authors present a very general approach that could most likely be applied to wide-area systems,

but the paper focuses on fast system-area clusters.

RIO is a file access paradigm for remote parallel file systems and shares our goal of hig

formance [2]. The objective is to efficiently support parallel file system interfaces such as M

IO. The SFO is a more general concept that can support many different kinds of file typ

interfaces including multimedia files, scientific DB files, parallel files, etc.

Adapting to network and application characteristics in an important property of the SFO

adigm. Adaptation is necessary when the network resources fluctuate in performance such

dynamic network environment. A number of research groups are exploring the concept of

cation adaptivity including Autopilot [11], and Active Harmony [8]. Autopilot is a toolkit that

contains a library of runtime components needed to build adaptive applications. Active Ha

is exploring the concept of adaptability for threaded parallel applications. Madhyastha and
4

 Fur-

twork

ote file

nt flexi-

work

ility to

lity).
have investigated adaptive file systems in which the I/O system learns and classifies the access

patterns from a common set, and is able to optimize caching and prefetching in parallel systems

given this information [10]. Within the SFO paradigm, the access patterns are specified via an

API, which can be invoked at run-time to handle changing access patterns. In addition, our focus

has been to apply optimizations to the problem of remote I/O in wide-area networks.

3.0 SFO Architecture

The SFO architecture has been designed with five goals: portability, flexibility, extensibility,

usability, and high performance. Portability is important because SFOs will be deployed on a

large variety of heterogeneous end-systems, networks, and metacomputing environments. The

goal of portability is achieved by a layered implementation of user-space client-side modules that

reside above the operating system and file system (Figure 1). Flexibility is needed because net-

work applications have different sensitivities to network “features” and different objectives.

thermore, it is not possible to fully anticipate the requirements of newly emerging ne

applications. This suggests that a flexible mechanism to support a more customized rem

access is needed. The decision to implement the SFO in user-space provides this importa

bility. Extensibility is another important goal since the varying requirements of new net

applications may require the design of new SFOs. Extensibility means more than the ab

simply add new functionality to the I/O system (this is essentially met by our goal of flexibi

Figure 1: Layered architecture

client-side
Application

host OS host OS

SFO
remove

Internet

file server
5

It must be possible to extend existing I/O functionality since the task of building SFOs from

scratch is likely to be time-consuming and difficult for some applications. Extensibility is met by

adopting an object-oriented methodology for the construction of SFOs. Base class SFOs can be

derived and extended to implement more complex SFOs. Usability refers to the ease of inserting

and using SFOs in user applications. The object-oriented implementation of SFOs helps hide their

internal complexity, while providing high-level file access APIs to user applications. Finally, the

goal of high performance is met by adaptive caching and prefetching performed by the client-side

SFO module. The client-side SFO module makes caching and prefetching decisions based on the

pattern and frequency of data access from the application and the current network conditions. The

SFO operates solely in an application-centric manner and adopts whatever sharing semantics are

offered by the remote file system. It is fundamentally different from a traditional file system man-

aged by the operating system designed to accommodate multiple simultaneous users. An impor-

tant advantage of this architecture is that it does not require deployment of server-side SFO

software which may not always be possible on some remote sites. In the remainder of this paper

we describe the SFO architecture, and present results for three diverse applications that demon-

strate the performance benefit of SFOs.

3.1 Extensible File Systems (ELFS)

SFOs are based on the concept of Extensible File Systems (ELFS) [9]. In ELFS, files are

typed objects and class-specific information is exploited in order to optimize file layout, access,

caching and prefetching. ELFS replaces the standard Unix file system abstraction as a sequential

stream of bytes on disk. Instead, files are objects, and the application interacts directly with the

file object for all file operations using high-level method invocation. ELFS file classes contain

methods that represent the specific kind of file, and an interface that more naturally reflects how
6

the application would like to access the file. For example, an ELFS file class can be used to repre-

sent matrix files. In this file class, high-level methods such as get_next_row,

get_next_col, etc. can be provided. The ELFS implementation transforms this high-level

request into a sequence of lower-level I/O requests (e.g. a Unix read). In addition to improved

interfaces, one of the key aspects of ELFS is the ability to exploit file specific and access specific

information within the class. In an example given in [9], a 2-D matrix file that requires access by

row and by column can be efficiently stored as a sequence of blocks on disk. ELFS classes are

also used to represent parallel files in which file striping is transparent to the application. One of

the primary objectives of ELFS is to attack the disk bottleneck for LAN-based parallel computing

using such parallel I/O classes.

The SFO inherits two main ideas from ELFS: the use of file-specific classes to provide high-

level interfaces and exploiting properties of the file class for performance. In this sense, the SFO

may be viewed as an implementation of the ELFS conceptual ideas. However, the SFO differs in

several respects: caching and prefetching is driven by predictive cost functions, it is adaptive to

current network conditions, and the SFO is addressing the performance bottleneck in wide-area as

opposed to local-area networks.

3.2 Inside the SFO

The SFO client-side module can interface with a variety of remote file servers and file sys-

tems, e.g. Andrew (AFS), Network File Service (NFS), Unix processes (UPS), Mentat File

Objects (MFO), and Web Servers (WS), etc. (Figure 2). To date, we have implemented SFOs that

interface with UPS, MFO, and WS remote servers as a proof-of-concept.

The SFO hides all details of the remote file from the application: in particular, its remote

location and file server type. As an example, consider a matrix file SFO (Figure 3). This example
7

uests

FO is

 which

tching

tion I/O

and the

y tim-

ate on
illustrates how a SFO can mitigate the network bottlenecks. While the application is computing

with prior I/O data, the SFO can adaptively prefetch and cache the next set of needed data concur-

rently so that it is already on the “fast side” of the network, when the application next req

more data. In this example, the application is computing on a set of matrix rows while the S

prefetching additional rows in parallel needed later. The SFO has its own thread of control

allows concurrent execution. The SFO is programmed to be application- and network-aware tak-

ing into account current network performance and application demand in making prefe

decisions. The SFO calculates the amount of data to prefetch and cache after each applica

request is served. This prefetch decision depends on the cost of performing remote I/O

application rate of demand. Internally, the SFO monitors the current communication rate b

ing the remote I/O operations to the file server, and the current application computation r

each I/O data item by timing the interval between successive requests for data.

Figure 2: Client-side SFO

SFOApplication

TCP-IP
http

AFS

NFS

UPS

MFO

WS...

Figure 3: Matrix SFO in action

SFOApplication

get_next_row

File server

read matrix file

WAN
8

time

e com-

entical

pute on

redic-
With this information the SFO can adapt its prefetching and caching strategies. This is partic-

ularly important for single-threaded SFOs such as in the Mentat implementation (MFO) because

Mentat objects are single-threaded monitors2. For example, if the interval between successive

calls to get_next_row is 200 ms, then the SFO may conclude that it has 200 ms to prefetch

data. If the current communication rate was 100 ms per row, then the SFO could prefetch two

rows. Prefetching additional rows could block the application since the SFO would be busy in net-

work communications for > 200 ms. Prefetching fewer than two rows could result in a missed

opportunity if the network bandwidth were to decrease later. For example, if the network commu-

nication rate later rises to 300 ms per row, then the remote I/O overhead could delay the applica-

tion (300 ms > 200 ms). The SFO is adaptive to changes in network bandwidth and CPU

performance. When the network bandwidth is higher, it can aggressively prefetch and cache data

that could be used to avoid expensive network access later if the network bandwidth were to sud-

denly fall. Similarly, if the CPU load on the application machine(s) increases, then the requests for

data from the application will slow down, giving a SFO a greater opportunity to prefetch. Later if

the CPU load decreases and the application demand for data increases, cached data could be pro-

vided to avoid expensive network access. We expect machines to be shared in dynamic network

environments, so machine load may indeed fluctuate during an application’s execution.

Adaptive prefetching requires a prediction of the application computation time (or

between I/O requests) associated with each I/O data item (e.g. a row as in Figure 3) and th

munication time to fetch a remote data item. We assume that the application performs id

computations on each I/O data item. This assumption means that the time taken to com

each data item should be similar and vary only if the application machine load varies. The p

2. Multithreaded SFOs are the subject of future work.
9

ar to

 cost

e

com-

n does

ted

unica-
tions of application computation time and communication are based on a weighted average of the

recent past over a time window. More recent values appear to be a strong predictor [7][16][17]

and an exponential decay function is used to model this relationship [15]. The SFO determines the

application computation values, comp, by simply timing the interval between successive requests

from the application. Similarly, the communication times, comm, are computed by timing requests

to the remote file server. They are both scaled to give the time based on a single data item. The

SFO also ignores “network spikes” in the prediction for communication since they appe

occur randomly. Fortunately, they also appear to occur infrequently. The following three

equations are computed and used within the SFO:

The “time window” for prediction is n, where n is the prior number of I/O operations. Th

second term in the equation for Tcomm is a boolean expression that has the value 0 or 1 and ac

plishes spike removal. A spike is defined to be a communication time that is k times the prior pre-

dicted value. If a spike occurs, then the expression evaluates to 0 and that communicatio

not effect Tcomm. If a spike occurs, we will go back to another prior value to ensure that Tcomm is

computed over the last n spike-free communications. The final equation gives the predic

number of data items to prefetch. Observe that it is adaptive to the computation and comm

tion rates.

Tcomm t[] comm t i–[] 2
n i–⋅()

2
n

1–
-- 1 comm t i–[] kT> comm t 1–[]()–[]⋅

i 1=

max n t 1–,()

∑=

Tcomp t[] comp t i–[] 2
n i–⋅()

2
n

1–

i 1=

max n t 1–,()

∑=

Nprefetch t[] max 1
Tcomp t[]
Tcomm t[]
---------------------,

 =

(Eq.2)

(Eq.3)

(Eq.1)
10

ple, the

 SFO

ation-

erent

sses is

 every

rations

terface

ccom-

 to the

t appli-

 [4].

l, objects

t sup-

at
Because the SFO is programmed it can also implement much more flexible prefetching strat-

egies than can OS-based file systems. The vast majority of OS file systems prefetch based on the

assumption that the file will be accessed sequentially (and completely). This may not be true. In

fact, the decision of “what to prefetch next” may be data- or end-user dependent. For exam

user may wish to move-back-and-forth through a multimedia file to browse for content. A

can easily handle this scenario and more arbitrary patterns of file access.

3.3 SFO Interface and Implementation

The SFO adopts an object-oriented interface that facilitates the construction of applic

specific file classes following the ELFS paradigm. The object-oriented model allows diff

SFO classes to be easily defined and ultimately derived. The ability to derive SFO file cla

important because it means that SFO functionality need not be re-written for each and

application. For example, we can define a SFO matrix file class that provides basic file ope

for matrices, and then later define a SFO class for sparse matrix files that inherits this in

together with the caching and prefetching machinery. We believe that all of this can be a

plished with minimal application changes in most cases. The application simply interfaces

SFO for the desired I/O operations and the SFO can perform these activities without direc

cation involvement.

We illustrate the SFO with one of the prototype implementations in the Mentat system

Mentat was selected as one of the prototypes because it supports an object-oriented mode

are active with their own thread of control and communicate via non-blocking RPC, and i

ports a global file system, the legion file system.3 Active objects known as persistent Ment

3. Mentat together with extensions for wide-area computing such as the legion file system were the prototype for the
new Legion system [5].
11

objects are important because they allow the SFO to operate asynchronously and concurrently

with the application. The non-blocking RPC allows non-blocking I/O to be easily supported. The

legion global file system allows the SFO to access remote files through a convenient interface.

The remote file is managed by a Mentat file object (not to be confused with the SFO) that runs on

the remote system and acts as a file server to provide standard Unix-like file methods and seman-

tics. Global files are prefixed by the special name /legion. The details of the legion file system

can be found in [5].

The Matrix SFO of Figure 3 is easily implemented in Mentat using the Mentat Programming

Language MPL (Figure 4). The matrixSFO class derives from a base SFO, called basicSFO,

that provides basic file operations such as open, close, get_file_size, etc. The

Figure 4: MatrixSFO and BasicSFO interface. The MatrixSFO interface
illustrates the high-level interface properties of ELFS.

persistent mentat class basicSFO

{

file_object *remote_FO;

// stored prior values of comp and comm

// used for adaptive prefetching

comp_data comp[MaxW],Tcomp[MaxW];

comm_data comm[MaxW],Tcomm[MaxW];

...

public:

int close();

int open (string *, int, int);

int get_file_size ();

...

};

class matrixSFO

{

matrix_data *cache; // prefetched data

enum {ROW, COL, BLOCK} read_type;

read_type r;

...

public:

matrixSFO(int,int,int);/row,col,elt sz

~matrixSFO ();

// set type of read access

void set_read_type (read_type);

// read operations ...

matrix_data *get_next_row ();

matrix_data *get_next_block ();

matrix_data *get_next_col ();

set_interleave_factor(int);//default=1

// write operations ...

...

};
12

basicSFO contains useful SFO infrastructure such as timers for computation and communica-

tion and an interface to the remote file server object, remote_FO. When open on the matrix-

SFO object is called (inherited from basicSFO), the remote_FO will be automatically created

on the remote system. All subsequent I/O requests will be directed from the matrixSFO to the

remote_FO which supports a standard Unix I/O interface, read, write, etc. Note that the

application can indicate how it wishes to access the file (by row, column, or block, and with a par-

ticular interleave pattern) by calling set_read_type. This information is used by the SFO to

decide what to prefetch. Implementation fragments for the SFO and for a client application are

shown in Figure 5. Non-blocking I/O is supported in the application by delaying use of the return

result until needed (Figure 5b).

In this simple example, get_next_row returns the next row that is in the cache, and then

proceeds to prefetch the next set of rows. It is hoped that the next row is already in the cache, but

Figure 5: MatrixSFO and application fragment

matrix_data *matrixSFO:: get_next_row () {

matrix_data *data;

char *buffer;

int datasize, num_rows;

// stop comp timer, set new value of comp

...

// for simplicity, assume row in cache

mentat_return cache; // RPC return value

// now prefetch ...

// determine num_rows via Tcomp, Tcomm

datasize = num_rows * elt_size;

// allocate data and buffer

// start comm timer

n = remote_FO-> read (buffer, datasize);

// stop comm timer, set new value of comm

// pack n and buffer into data

add data to cache;

// start comp timer again ...

}

main () {

...

// create SFO for nxm matrix of int’s

matrixSFO mySFO (n, m, sizeof(int));

mySFO.open

(“/legion/m1.dat”, O_RDONLY);

for (i=0; i<n; i++) {

// this is non-blocking!

row = mySFO.get_next_row ();

// do other work if we have any ...

...

// now we need to use row -- this

// will cause the system to block

for (j=0; j<m; j++)

sum += row[j] * vector[j];

...

}

(b) application fragment(a) MatrixSFO implementation
13

if it is not, the SFO will have to first prefetch it, blocking the application. This contingency case is

not shown. The objective of prefetching is to avoid this situation. The determination of num_rows

is where the SFO machinery will be used. Notice that the latest values of comp and comm are

timed in this function. The comp time is the time between requests to this function, and the comm

time is the time for the remote I/O. The application code fragment creates the SFO and then uses

it to open a remote matrix file. The application code then loops requesting each row in a non-

blocking fashion before using the row in a dot product calculation. This example is meant to be

illustrative of how a SFO can be defined, implemented, and used, and has omitted some details for

brevity.

4.0 Results

We have developed SFOs for three different applications: distributed matrix computations,

parallel gene sequence comparison, and mpeg-view. The SFO within each application also inter-

faces with a different remote server type: Unix process, Mentat File Object, and a Web Server

respectively. The range of applications and server types demonstrates the flexibility of the SFO

approach and its wide applicability. Most importantly, however, the insertion of a SFO was able to

boost performance for all of the applications. The results were obtained using an Internet testbed

containing sites at the University of Virginia, University of Texas at San Antonio, and Southwest

Research Institute in San Antonio.

4.1 Matrix Operations

Matrix operations are a simple example that nicely illustrates the performance benefits possi-

ble using SFOs for both reads and writes. The matrix SFO and client applications were written in

C with TCP-IP communications. The remote file server is simply a Unix process that we have

written to serve remote files to the client side of the network. A matrix SFO was created that sup-
14

ports methods similar to Figure 4. We have chosen to use matrix multiplication of square matrices

A x B = C as a client application where A is stored with the client and B and C are remote matri-

ces stored with the same server (Figure 6). We assume that B is stored in column-major order and

it is read by column to enable an easy dot-product calculation. There are two SFOs used, one for

B (reading the columns of B), and one for C (writing the columns of C).

In the first set of experiments, the application is sequential and running on a single

UltraSparc. We compared the cost of different read methods for the SFO: download first, block-

ing remote access, static prefetch of a single column, and adaptive prefetch. Download first brings

the entire matrix B to the application site before the application begins. Blocking remote access

allows the SFO to fetch a column at a time on demand, but does not perform any prefetching.

Static prefetch will always prefetch a single column while adaptive prefetch will adjust the

amount of prefetching based on Eq. 3 using a window of n=5. We then compared the cost of dif-

ferent write methods: upload last and write overlap. In upload last, the SFO stores the entire result

matrix on the client side and then transmits it to the server when it is completely formed. Write

overlap allows the SFO to concurrently transmit the columns of C as they are computed in paral-

lel with the application (Figure 7).

Figure 6: Matrix multiply using multiple SFOs

remote file serverapplication SFOs

Internet

B C

A get_next_col

put_next_col
15

Download first is clearly the most expensive option. Remote access provides a 35% improve-

ment by reducing network load and avoiding local disk access (the columns of B are stored only

in the memory of the SFO). Static prefetch provides an additional 25% performance gain over

remote access. For matrix multiply, adaptive prefetch provided only a modest performance gain

since the Internet communication performance was fairly constant during the course of the runs

and little opportunity for adaptation was available. However, these results indicate that the

machinery employed to perform adaptive prefetching does not add significant overhead. In the

next section, we will show an example where adaptivity improved performance due to Internet

variance. The benefit of write overlap is around 20% (with read prefetching enabled).

In the next set of experiments, we use a parallel matrix multiply in which the rows of A are

distributed in contiguous chunks across a set of processors (Linux cluster of x86 machines on 100

Mbps ethernet). The parallel application uses MPI for intra-application communication and TCP-

IP for SFO communication as before. The processors are arranged in a pipeline where the head of

the pipeline reads a column from the SFO and then it sends it down to the next processor and so

on. However, each processor directly sends its computed result columns for C to the SFO for C.

Figure 7: Sequential matrix multiply results. Application and remote file server are running
on an UltraSparc. Each data point is the result of averaging at least five runs.

0

500

1000

1500

2000

0 500 1000 1500

Matrix Size

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
s)

Download First

Remote Access

Prefetch 1

Adaptive Prefetch

0

200

400

600

800

1000

0 500 1000 1500

Matrix Size

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
s)

Upload Last
Write Overlap
16

For a 2Kx2K problem, the insertion of a SFO for reads and writes improved performance for a

range of processor configurations (Figure 8).

4.2 Parallel Gene Sequence Comparison

Complib is a parallel Mentat application that compares a source library of DNA sequences to

a target library of DNA sequences. The libraries are ascii text files. Complib utilizes several heu-

ristics for string matching and we present results for Fasta, a well-known fast heuristic that sacri-

fices some accuracy for speed [6]. Complib statically decomposes the target library across a set of

workers each assigned to a processor. The application then fetches a source sequence and passes it

to all workers which compare it to their target sequences in parallel. This process repeats for each

source sequence. The workers are arranged in a tree with the leaves performing the computation

(Figure 9). The results contain a score for the current source sequence generated by each worker

based on a comparison to its target sequences. Complib is a computationally-intensive application

and is well-suited to metacomputing since it is likely that the data sources (source and target librar-

ies) may in fact, be geographically separated from the actual computation (the workers).

We have modified Complib to experiment with SFOs (Figure 10). The source library is located

remotely via the /legion file system with access controlled by a SFO, SourceSFO. The basic

Figure 8: Parallel matrix multiply results. Application is running on a Linux cluster of
x86 machines. Each data point is the result of averaging at least five runs.

Parallel SFO Performance (2K x 2K matrix)

0

500

1000

1500

2000

0 5 10

Processors

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
s)

No overlap

Only Read overlap

Only write overlap

Both read & write
overlap
17

d

 option

rned by

e SFO
I/O data item in this application is a source sequence (4K bytes), and the comp and comm functions

of (Eqs. 1-3) are based on a single source sequence. The target library and the workers were collo-

cated in the same site. The job of the SourceSFO is to prefetch source sequences in parallel with

the sequence comparison computation of the workers. The primary operation supported by the

SourceSFO is get_next_sequence which delivers the next source sequence to the applica-

tion. The SourceSFO can access the remote source library in the same four modes as in the matrix

application: download first, blocking remote access, static prefetch 1 sequence, and adaptive

prefetch. The download first option was implemented by the developers of Complib − it first down-

loads the entire source library file first without any prefetching or overlapping. The next option

keeps the file remote and returns a single sequence at a time without prefetching. The third option

uses the “generic” property of a SFO to prefetch needed data − the next sequence is prefetche

while the current sequence undergoes the comparison computation. The adaptive prefetch

adjusts the rate of prefetching based on the current network and load conditions as gove

(Eqs. 1-3) to further improve performance. We compare these methods and show that th

machinery actually works and performance is improved for Complib.

source
result

Target library
AACT ...

...

Source library
TACCG ...

...

Figure 9: Complib structure
18

e

 prob-
We performed a series of Complib experiments using a fixed source library of 100 sequences

and several target libraries: TG-12, TG-25, TG-50, and TG-100 (12, 25, 50, and 100 sequences

respectively) that show the spectrum of performance for the SFO. Each sequence in the target and

the source library was 4K bytes in length. The results are summarized in Table 1.

As expected, downloading is the most expensive option (as performed in the original Com-

plib). Remote access of a single sequence performs better than downloading, and prefetching is

clearly a performance advantage for this application. The precise benefit of prefetching depends

on the particular problem instance and network. Since the application requests a single sequence

one at a time, prefetching a single sequence is sufficient in the event that communication and

computation performance is constant. However, in the event that communication and/or computa-

tion performance exhibits variability, the SFO can adapt to further improve performance. For the

Complib runs, we observed that Internet communication performance was not constant [15]. We

ran the SourceSFO with a “time window” of n=5 and n=10 to see if this variance could b

exploited. The results indicate that performance could be further improved for appropriate

Source library

AACT ...

...

Target library
TACCG ...

...

Figure 10: Complib with SFO. The application, SourceSFO, and target library
are all located on the “fast” side of the network. The source library file is
located remotely in /legion and managed by source_FO. Access to the
source library file is controlled by the SourceSFO which adapts its behavior to
the network and application.

source_FOSourceSFOworkers

get_next_sequence

/legion/DNA/source_LIB.dat

Internet

AACT
GACC
19

lem sizes. The window of n=10 performed best since the time window associated with 10 I/Os

more accurately captured the Internet variance during the Complib runs in all but one instance

(TG-12) [15]. This window outperformed both larger and smaller values of n. Clearly for this

application, prefetching a single sequence (prefetch 1) provided the biggest performance boost

(10-30%). However, the SFO was able to squeeze additional performance (~ 5%) out of the sys-

tem by adapting to network and application characteristics.

4.3 MPEG

Currently, the most common way of viewing an MPEG file that is located on a remote file

server is to download the entire file and then start the MPEG viewer. This solves the problem of

unpredictable network access overhead for fetching MPEG frames, but introduces a potentially

long latency into the viewing process. A better method is to overlap download and playtime as

much as possible such as in streaming approaches. We developed a streaming SFO to interface

between the MPEG player and a remote server to address this problem (Figure 11). The MPEG

SFO is different from the other SFOs described thus far. In the matrix and gene sequence SFOs,

the goal was to determine the optimal amount of prefetching between requests for data. With

MPEG, the goal is to determine the smallest initial amount to prefetch such that the remainder of

Table 1: Complib results. All times shown are in milliseconds. The data was collected over a
two hour period, each data point is an average of 25 runs. Bold indicates best average time.
The application and source_FO are running on UltraSparcs.

Problem
instance Download first Remote Access Prefetch 1

Adaptive Prefetch
(n=5)

Adaptive Prefetch
(n=10)

TG-12 18728 17990 16489 16091 16265
TG-25 21821 20854 17148 17034 16419
TG-50 26321 23863 17070 17242 16547
TG-100 37466 31959 27205 25994 25947
20

the playtime can be fully overlapped with the retrieval of the rest of the MPEG file. Therefore,

there is no need for an adaptive prefetching window. The MPEG SFO is written in C and uses

TCP-IP communications. One of the goals of the MPEG SFO is to minimize the amount of code

changes required to the MPEG player.

The MPEG SFO works as follows. When the user requests an MPEG from a web server, the

SFO establishes a TCP-IP connection with the server, requests the MPEG file and stores the

downloaded data in a local file. While the file is being downloaded, the SFO is measuring the rate

at which it is receiving data and estimating the amount time the MPEG will play. Estimating play-

time of an MPEG is complex. The SFO calculates what percentage of the MPEG must be down-

loaded before the player can begin and still be reasonably assured that the rest of the MPEG will

be downloaded before it is needed. When that percentage has been reached, the SFO creates a sec-

ond process. The parent process resets the handle to the beginning of the file before it returns it to

the player. The player begins decoding and displaying the MPEG at this time. The child continues

to download the file until it is complete. In essence, the file becomes a form of inter-process com-

munication with one process reading from the head of the file while the other process is still writ-

ing to the end of the file.

The estimation method used by the SFO for Tcomm is to take the total number of bytes down-

loaded and divide it by the time elapsed since downloading began. This method gives an accurate

http serverplayer

Figure 11: MPEG with SFO

SFO

Internet
21

picture of the actual download rate so far. Estimating the time an MPEG will play (Tcomp) is far

more complicated. The data collected showed most of the MPEG playtime falls into one of four

steps: decoding, dithering, displaying or sleeping. The techniques used by the SFO to estimate the

amount of time spent in each step are as follows: for each frame type, there is a linear relationship

between the frame length and the number of CPU cycles it takes to decode them and a similar

relationship between the decoded image size and the time required to dither and display the

images. Linear regression was used to determine these cost equations for a given hardware plat-

form. As the MPEG is downloaded, it is scanned for details such as frame type and length and

image size. The details of these cost equations can be found in [3].

The MPEG SFO was tested on a suite of twelve MPEGs. The MPEGs came from different

sources and, therefore, have different frame patterns, frame rates, resolutions, and picture size.

The actual playtimes varied from ten seconds to over five minutes. On average, the SFO reduced

total viewing time by 20% over downloading the entire MPEG file first. More importantly, an

average of 50% of the download time is now overlapped with the MPEG playback. This means a

much more pleasant viewing experience as the start latency is significantly reduced (Table 2).

The playback was also smooth in almost all cases. In only two of the sixty test runs, was the

player was forced to pause for data. This can only be explained by a burst of traffic somewhere on

the Internet between the two sites. Unlike traditional streaming approaches, no special protocols

or server support was required.

5.0 Summary

This paper introduced the SFO paradigm for achieving optimized performance for remote file

access. The SFO is based on the ELFS concept of files as typed objects to provide high-level

interfaces and allow file specific properties to be exploited for performance. SFOs provide a prac-
22

tical implementation of the ELFS ideas in dynamic wide-area networks. SFOs achieve their per-

formance gain by exploiting features of the application and of the network. To date, we have

applied our SFO prototype implementation to three small applications as a proof-of-concept:

matrix operations, parallel gene sequence comparison, and a MPEG player each using a different

server technology. The results indicate that the SFO paradigm can indeed improve application

performance in a significant way. The SFO improved performance for the distributed matrix mul-

tiplication by 50% for reads and 20% for writes. For parallel gene sequence comparison, the SFO

improved performance by 10-30%. Lastly for an MPEG player accessing movies across the Inter-

net, the SFO reduced total playtime by 20% and reduced playtime latency by over 50%. In addi-

tion, insertion of SFOs into these existing applications required very minor code changes to the

application.

Total Download and Playtime Time Before Playback Began
Title w/o Overlap w/ Overlap % Decrease w/o Overlap W/ Overlap % Decrease

Blade 30.30 24.53 19.05% 12.16 6.38 47.49%
Blazer 363.81 335.29 7.84% 49.82 21.30 57.26%
Indy 49.00 34.62 29.35% 23.15 8.77 62.12%
lizard1 82.70 60.51 26.83% 35.18 12.99 63.08%
lizard2 57.74 44.23 23.41% 33.98 20.47 39.77%
Reichst 60.37 48.73 19.29% 20.17 8.52 57.75%
sci2 21.25 14.68 30.89% 11.31 4.75 58.04%
Ski 64.25 56.29 12.39% 13.68 5.71 58.22%
sts1 28.08 24.76 11.84% 7.68 4.36 43.26%
sts2 21.26 18.59 12.57% 9.91 7.24 26.97%
sts3 27.74 23.95 13.65% 9.60 5.82 39.43%
Ulysses 19.90 15.06 24.30% 8.85 4.01 54.67%
Average: 19.29% 50.67%

Table 2: MPEG results. All times shown are in seconds. The player was running on a Linux x86
machine and the remote server was running on an UltraSparc. The data is the average of five runs.
23

r,”
6.0 Future Work

We recognize that a full-range of customized behaviors is not possible with the client-only

architecture. Predictability and reliability will likely require server-side support. For example,

server-side optimizations such as compressing or dropping data might be required for predictable

performance. Similarly, supporting application-specific levels of reliability also requires server-

side support since this is the logical place to replicate data or files. A client-server architecture in

which SFOs have a client and server presence is being designed. The result will be a more inte-

grated architecture for the SFO much like a true distributed file system with distinct client and

server components. A key part of this architecture is the design of appropriate APIs for both the

client- and server-side SFO. This API will allow an application to express its I/O needs to the SFO

and allows application requirements to be communicated to the SFO which will enable the appli-

cation to effectively customize the SFOs behavior. The server-side SFO will also store meta-data

describing the layout of the remote file on disk and make this important information available via

an API as well. The use of server-side SFOs also allows user-specified sharing semantics to be

supported (e.g. session-semantics, Unix semantics, etc.). If several applications are accessing the

same file then they would each have their own client-side SFO, but would share the same server-

side SFO which would enforce the desired customized sharing semantics.

7.0 Bibliography

[1] T.E. Anderson et al., “Serverless Network File Systems, “Proceedings of the 15th ACM
Symposium on Operating System Principles, 1995.

[2] I. Foster et al. “Remote I/O: Fast Access to Distant Storage,” Proceedings of the Fifth
Annual Workshop on I/O in Parallel and Distributed Systems, 1997.

[3] M. Gingras and J.B. Weissman, “Smart Multimedia File Objects,” 1999 IEEE Workshop
on Internet Applications, July 1999.

[4] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE
Computer, May 1993.

[5] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Compute
24

 with

or

ny,”

h to

on,”

uted

an-
Communications of the ACM, Vol. 40(1), 1997.
[6] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences

Mentat on Biological Application,” Concurrency: Practice & Experience, Vol. 5, issue 4,
July, 1993.

[7] M. Harchol-Balter, A.B. Downey, “Exploiting Process Lifetime Distributions f
Dynamic Load Balancing,” SIGMETRICS, 1996.

[8] J.K. Hollingsworth and P.J. Keleher, “Prediction and Adaptation in Active Harmo
Proceedings of the Seventh IEEE International Symposium on High Performance Distrib-
uted Computing, July 1998.

[9] J. Karpovich et al., “Extensible File Systems ELFS: Am Object-Oriented Approac
High Performance File I/O,” Proceedings of the 9th OOPSLA, 1994.

[10] T.M. Madhyastha and D. Reed, “Intelligent, Adaptive File System Policy Selecti
Proc. of the Sixth Symposium on the Frontiers of Massively Parallel Computation, Octo-
ber 1996.

[11] R.L. Ribler et al., “Autopilot: Adaptive Control of Distributed Applications,” Proceedings
of the Seventh IEEE International Symposium on High Performance Distributed Comput-
ing, July 1998.

[12] M. Spasojevic and M. Satyanarayanan, “An Empirical Study of a Wide-Area Distrib
File System,” ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

[13] A. Vahdat, “WebOS: Operating System Services for Wide Area Applications,” Proceed-
ings of the Seventh IEEE International Symposium on High Performance Distributed
Computing, July 1998.

[14] G. Voelker et al., “Implementing Cooperative Prefetching and Caching in a Globally-M
aged Memory System,” SIGMETRICS, 1998.

[15] J.B. Weissman, “Smart File Objects: A Remote File Access Paradigm,” Sixth ACM Work-
shop on I/O in Parallel and Distributed Systems, May 1999.

[16] R. Wolski, “Forecasting Network Performance to Support Dynamic Scheduling,” Pro-
ceedings of the Sixth IEEE International Symposium on High Performance Distributed
Computing, 1997.

[17] R. Wolski, “Predicting the Availability of Time-shared Unix Systems,“ Proceedings of the
Eighth IEEE International Symposium on High Performance Distributed Computing,
1999.
25

	(Eq.1)
	(Eq.2)
	(Eq.3)
	Optimizing Remote File Access for Parallel and Distributed Network Applications
	Jon B. Weissman*, Mahesh Marina+, and Michael Gingras+
	Department of Computer Science and Engineering
	University of Minnesota, Twin Cities*
	Division of Computer Science
	University of Texas at San Antonio+
	(jon@cs.umn.edu)
	Abstract
	1.0 Introduction
	2.0 Related Work
	3.0 SFO Architecture
	Figure 1:� Layered architecture
	3.1 Extensible File Systems (ELFS)
	3.2 Inside the SFO
	Figure 2:� Client-side SFO
	Figure 3:� Matrix SFO in action

	3.3 SFO Interface and Implementation
	Figure 4:� MatrixSFO and BasicSFO interface. The MatrixSFO interface illustrates the high-level i...
	Figure 5:� MatrixSFO and application fragment

	4.0 Results
	4.1 Matrix Operations
	Figure 6:� Matrix multiply using multiple SFOs
	Figure 7:� Sequential matrix multiply results. Application and remote file server are running on ...
	Figure 8:� Parallel matrix multiply results. Application is running on a Linux cluster of x86 mac...

	4.2 Parallel Gene Sequence Comparison
	Figure 9:� Complib structure
	Figure 10:� Complib with SFO. The application, SourceSFO, and target library are all located on t...
	Table 1:� Complib results. All times shown are in milliseconds. The data was collected over a two...

	4.3 MPEG
	Figure 11:� MPEG with SFO
	Table 2:� MPEG results. All times shown are in seconds. The player was running on a Linux x86 mac...

	5.0 Summary
	6.0 Future Work
	7.0 Bibliography
	[1] T.E. Anderson et al., “Serverless Network File Systems, “Proceedings of the 15th ACM Symposiu...
	[2] I. Foster et al. “Remote I/O: Fast Access to Distant Storage,” Proceedings of the Fifth Annua...
	[3] M. Gingras and J.B. Weissman, “Smart Multimedia File Objects,” 1999 IEEE Workshop on Internet...
	[4] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE Computer,...
	[5] A.S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,” Communicat...
	[6] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on B...
	[7] M. Harchol-Balter, A.B. Downey, “Exploiting Process Lifetime Distributions for Dynamic Load B...
	[8] J.K. Hollingsworth and P.J. Keleher, “Prediction and Adaptation in Active Harmony,” Proceedin...
	[9] J. Karpovich et al., “Extensible File Systems ELFS: Am Object-Oriented Approach to High Perfo...
	[10] T.M. Madhyastha and D. Reed, “Intelligent, Adaptive File System Policy Selection,” Proc. of ...
	[11] R.L. Ribler et al., “Autopilot: Adaptive Control of Distributed Applications,” Proceedings o...
	[12] M. Spasojevic and M. Satyanarayanan, “An Empirical Study of a Wide-Area Distributed File Sys...
	[13] A. Vahdat, “WebOS: Operating System Services for Wide Area Applications,” Proceedings of the...
	[14] G. Voelker et al., “Implementing Cooperative Prefetching and Caching in a Globally-Managed M...
	[15] J.B. Weissman, “Smart File Objects: A Remote File Access Paradigm,” Sixth ACM Workshop on I/...
	[16] R. Wolski, “Forecasting Network Performance to Support Dynamic Scheduling,” Proceedings of t...
	[17] R. Wolski, “Predicting the Availability of Time-shared Unix Systems,“ Proceedings of the Eig...

