
1.0  INTRODUCTION 
Network-based computing has become an attrac-

tive option for obtaining high performance at a low

cost. Two dominant models of network-based comput-

ing are emerging, networks of workstations (NOW),

and metasystems comprising machines of different

types [1][2][3]. The appeal of network-based comput-

ing stems from the maturity of parallel and distributed

toolkit systems and rapid advances in network technol-

ogy. The network computing environment of the future

will routinely support the execution of a wide mix of

job types including sequential, data parallel, task paral-

lel, vector, and mixed-paradigm, over local- and wide-

area networks.

The network computing environment offers two

opportunities for high performance, high job through-

put and reduced completion time. Effective job sched-

uling is required to achieve this high performance

potential. It is well-known that the general scheduling

problem is NP-complete [4] and numerous heuristics

have been developed [5]. Most scheduling systems are

targeted to either high job throughput or reduced com-

pletion time only. Little attention has been paid to the

problem of how to achieve both high job throughput

and reduced completion time in the network environ-

ment. There are many challenges that make this prob-

lem difficult: (1) computing resources may be highly

shared in both time and space, (2) computing resources

are heterogeneous, (3) computing resources are distrib-

uted, and (4) jobs may arrive at any time at any com-

puter. This paper assumes the more common NOW

environment.

Many of the most popular toolkit systems includ-

ing PVM [6], P4 [7], and Linda [8], provide limited

scheduling support in the NOW environment. How-

ever, a number of research projects have addressed

parts of the general scheduling problem. Many of these

scheduling systems are based on the adaptive load shar-

ing model of Eager and Lazowska [9][10]. 

Condor is a software system designed to locate

“idle cycles” for long-running sequential jobs in an
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attempt to reduce job completion time [11]. Condor

runs in a local-area NOW environment. It will use only

idle machines and will migrate a job from a machine if

the workstation user begins to use this machine. By

exploiting only idle resources, the system throughput

achieved by Condor will be limited. Utopia, now called

LSF, will support the scheduling of sequential and par-

allel jobs and assumes that all machines are shareable,

unlike Condor [12]. Utopia is a more scalable system

that runs on hundreds of workstations. It exploits job

information to make the best scheduling decision for a

particular job in an attempt to reduce job completion

time. DQS supports a batch scheduling capability for

both sequential and parallel jobs and is designed to pro-

vide high system throughput [13]. 

The job scheduling problem has also been studied

for single homogeneous parallel supercomputers

[14][15]. This is essentially a special-case of the gen-

eral problem in which sharing is normally limited to

space-sharing. The problem is further simplified by the

presence of a single scheduling agent such as the NQS

job queueing system. In the network environment

scheduling is distributed, and both time- and space-

sharing must be considered. 

A new network-based job scheduling paradigm

that considers the impact of job scheduling on currently

running jobs in both time and space has been investi-

gated. This class of scheduling policies are known as

interference policies. Interference is an increase in job

completion time due to contention for computation and

communication resources. Using the interference met-

ric, a spectrum of job scheduling strategies can be

expressed including policies that are optimized for high

throughput, reduced completion time, or both. A set of

interference policies have been studied in simulation to

determine their throughput and completion time charac-

teristics. The preliminary results indicate that interfer-

ence appears to be an important component of an

effective job scheduling policy that achieves high job

throughput and reduced completion time in a heteroge-

neous NOW environment.

This paper is organized as follows. Section 2.0

describes the network and job model and details the

necessary assumptions. Section 3.0  introduces the

interference paradigm and a set of interference-based

policies. Section 4.0  describes the simulation results

obtained with these policies. Section 5.0  provides a

summary and future work.

2.0  THE MODEL
The network is represented as a collection of clus-

ters. A cluster contains a set of homogeneous comput-

ers that share communication bandwidth. A cluster may

contain a collection of workstations, a single parallel or

vector computer, and so forth. Computers in different

clusters do not share communication bandwidth. To

simplify this presentation, a network segment is

assumed to contain a single cluster only. This assump-

tion is easily relaxed. In the NOW environment, com-

puters communicate via message-passing*. An example

of a hypothetical NOW cluster-based network that con-

tains Sun 4’s, SGI’s, and RS-6000’s is depicted in Fig-

ure 1.

Jobs may arrive at any computer in the system at

any time. Two classes of jobs have been studied in sim-

ulation − sequential jobs consisting of a single task, and

parallel jobs consisting of multiple tasks. All jobs are

assumed to be computationally intensive for their dura-

tion of execution. It is assumed that the tasks for the

parallel job all execute in parallel and communicate

periodically. This property is common to a large class

of parallel computations including data parallel SPMD

computations. The completion time for a parallel job is

*.  Multiprocessor workstations such as the Sparc 20 
support shared-memory communication.

Figure 1: NOW Network organization

Sun 4 SGI RS-6000



defined to be the maximum task execution time plus the

communication execution time for the job. Many paral-

lel jobs including synchronous SPMD computations

have this structure.

For each job that arrives into the system, a set of

candidate schedules are generated using global system

information. A schedule consists of the set of machine

assignments with a single task assigned to a single com-

puter. The number of schedules that are generated for

each job is a simulation parameter. For parallel jobs,

different candidate schedules may contain different

numbers of processors. Schedule generation is outside

the scope of this paper and a method for generating

schedules for data parallel SPMD computations is

described in [16]. This paper is concerned with the pro-

cess of selecting a schedule from among the possible

candidates. It has been demonstrated that the use of glo-

bal system information can be used to efficiently sup-

port run-time scheduling [16][17]. However, for larger

wide-area networks a strategy that limits the amount of

global information exchanged is being developed.

Because this environment is heterogeneous both

in the computation and communicates rates of the clus-

ters, it is assumed that jobs will have different affinities

for different clusters. Different schedules will have dif-

ferent projected completion times due to different affin-

ities and resource sharing. For example, suppose the

system has three clusters C1, C2, C3 with the total num-

ber of processors in each cluster N1, N2, and N3 respec-

tively. The individual processors within each Ci may be

denoted by pi,1, pi,2, .., pi, Ni. The schedules for a

sequential job Js and a parallel job Jp might be as

depicted in Figure 2.†

For sequential job Js, the execution time of the

single task would be 50 time units on processor p1,1, 60

time units on p1,2, or 80 time units on p3,1, etc. The exe-

cution time for Js on processors in the same cluster,

although homogeneous (e.g., p1,1 and p1,2), might be

different due to previously assigned tasks. From the

schedule for Js, it is clear that the load on p1,2 is larger

†.  These numbers are hypothetical.

than the load on p1,1. For parallel job Jp, each schedule

consists of a set of task assignments and the computa-

tion time for each component task. Each schedule also

contains the communication time Tcomm and it is

assumed that each task incurs this communication over-

head as is typical in SPMD computations. A technique

for estimating the execution costs associated with a

schedule are discussed in Section 3.0 . The simulation

parameters that govern schedule generation and job

arrival are described later in Section 4.0 .

3.0  THE INTERFERENCE PARADIGM

Effective job scheduling is needed to maintain an

acceptable level of system performance. A poor job

scheduling decision can compromise performance both

for the job and the system as a whole. This is especially

true as increasing demands are placed on computing

resources. At high system loads, it is likely that there

will be contention for computing resources and jobs

may need to share resources. Most scheduling policies

for distributed systems are ineffective at high loads

since they often adopt simple algorithms that do not

exploit system and job information [9]. Policies that

exploit system and job information can perform better

than these simple policies. One such class of policies

exploits information about the impact of resource shar-

ing and are known as interference policies.

When a job is scheduled using a set of computa-

tion or communication resources already allocated to

another job(s), then the new job creates interference for

currently running jobs. This interference is observed as

an increase in the completion time of the old jobs due to

resource contention. Interference is proposed as a novel

way to study a range of scheduling policy options. Two

forms of interference are considered here, computation

cycles, and communication bandwidth. Other forms of

interference such as memory interference are the sub-

ject of future work. Computation cycle interference

occurs when two or more tasks are assigned to the same

processor and share the CPU. Communication band-

width interference occurs when two or more parallel

jobs are assigned to processors in the same cluster and

share communication bandwidth. A newly scheduled

job may create interference for several currently run-

ning jobs. For example, the tasks of a parallel job may



be assigned to processors already running sequential or

parallel jobs. The model for computation and communi-

cation interference described next is based on empirical

evidence obtained in the NOW environment.

Computation cycle interference is calculated from

the processor run-queue-length and the amount of each

task’s remaining computation time. For example, sup-

pose a task ti is assigned to an initially idle processor

with a projected execution time of 80 time units at time

0. Next suppose that a task tj is assigned to the same

processor at time 50 and has an execution time of 20

time units. At time 50, ti will have advanced in execu-

tion and will have 30 time units of execution time

remaining. However for the next 30 time units, ti will

share the processor with tj for 20 time units. If equal

sharing of the CPU is assumed, the remaining execution

time for ti will rise to 50 time units (20 * 2 + 10). For ti,

the first 20 time units are shared between both tasks (2

* 20), and the remaining 10 time units of execution will

be dedicated to ti, if no other tasks arrive during the

final 10 time units. The execution time of ti rose from

80 to 100 time units, with an interference of 20 time

units. By symmetry ti creates interference for tj. This is

easily generalized for any number of tasks that may

share a processor. For example, if n tasks are sharing

the processor during a time interval, then the multipli-

cative factor would be n.

Communication bandwidth interference is more

difficult to compute. It is only an issue for parallel jobs

since sequential jobs by definition do not communicate.

To simplify matters, it is assumed that only a parallel

job can create communication bandwidth interference

for another parallel job. On workstation networks

where communication cost is often paid as processor

cost due to protocol processing, a competing sequential

job could reduce the effective communication band-

width by loading the processor and creating delay.

However, this is currently assumed to be negligible rel-

ative to the interference caused by parallel job commu-

nication and is ignored. There is no problem with

relaxing this assumption.

In the NOW environment, cluster interconnection

networks are still dominated by ethernet. In this envi-

ronment, the communication interference is often linear

in the number of communicating processors due to con-

tention for the shared channel. Switch based technolo-

gies that provide multiple communication channels

such as ATM and Myrinet, will likely produce a much

smaller communication interference. In this paper, the

linear model of the ethernet-NOW is assumed. The

study of switch based technologies including the ATM-

NOW is the subject of future work. The amount of

communication interference for a job is based on the

number of communicating processors in the other jobs,

np, and the amount of communication time overlap

between the job and the interfering jobs. The interfer-

ence is linear in np by a small constant α (α > 1/np), α
* np, over the duration of communication overlap. This

is a conservative measure since it assumes that the

interfering jobs are all communicating at the same time. 

To illustrate the calculation of communication

interference, assume that a parallel job J1 has been

scheduled to use 8 processors within cluster C1 with a

communication duration of 15 time units at time 0.

Next suppose that a parallel job J2 is assigned to 4 pro-

cessors within C1 with a communication duration of 5

time units also at time 0. For the first 5 time units, J1

will share C1’s communication bandwidth with J2. The

communication time for J1 is calculated to be: α*4*5 +

10. The amount of overlap is 5 time units, np is 4 pro-

cessors (in J2), and the amount of communication left

for J1 after J2 completes is 10 time units. The commu-

nication time of J1 rose from 15 to 20α + 10 time units,

with an interference of (20α + 10 - 15) time units. Since

Figure 2: Candidate schedules

Js: { (p1,1, 50), (p1,2, 60), (p3,1, 80), ... }

Jp: { [(p1,1, 30), (p1,2, 30), (p1,2, 30), Tcomm=10], [(p1,1, 40), (p3,1, 80), Tcomm=5], ... }



α > 1/4, the interference is > 0. A slightly more com-

plex calculation is needed when a job uses processors in

multiple clusters and the interference is caused by the

sharing of a subset of these clusters.

Three interference-based scheduling policies are

defined for the simulation studies:

• Minimize Total Interference (MTI)

• Minimize Completion Time (MCT)

• Minimize Num Interference (MNI)

MTI chooses the schedule that gives the smallest

total interference, where total interference is the sum of

the interference created for each currently running job

and the projected completion time for the new job. MNI

chooses the schedule that minimizes the number of jobs

that experience interference. MNI is equivalent to an

adaptive load sharing policy based on queue lengths

[9]. MCT is a greedy policy that does not consider the

interference created by the scheduling decision. It

chooses the schedule that is predicted to give the small-

est completion time only. For each policy, a tie between

one or more candidate schedules is broken by choosing

the schedule with the smallest projected completion

time for the new job.

For interference policies to be practical, they must

be efficiently implementable. Gathering global system

information to support schedule generation will be the

primary source of overhead. This overhead will be stud-

ied as these policies are implemented in a live NOW.

On the other hand, the calculations performed by the

interference policies are fairly minimal given the sched-

ule information. These policies also require that infor-

mation about a job’s expected computation and

communication execution time be known. This infor-

mation can be obtained by benchmarking. An accurate

technique for benchmarking SPMD data parallel com-

putations is described in [16]. 

4.0  Simulation Results

A discrete event simulator for job scheduling in

the NOW environment was constructed. The schedul-

ing policies were implemented within the simulator. A

network containing 4 clusters each with 8 processors

was simulated. Job arrival is modeled as a poisson pro-

cess with an adjustable arrival mean. To vary the load

conditions, arrival mean times were 5, 6, 7, 8, 9, and 10

time units respectively. The distribution of sequential

and parallel jobs for all simulation runs was 90%

sequential jobs and 10% parallel jobs. Other simulation

parameters include the simulation length (10000 time

units). 

For each job, a set of synthetic candidate sched-

ules are generated. The number of generated schedules

is proportional to the number of clusters. The number of

processors (tasks) for a parallel job schedule is uni-

formly distributed over the number of processors in a

cluster. Within each candidate schedule, the execution

time of each component task was uniformly distributed

over the interval [1 .. 100] * affinity_factor time units.

The affinity_factor models task affinities for particular

machines. In the NOW environment, affinities might be

due to floating point or integer performance, cache

memory size, etc. It is used to scale the expected com-

putation time for a task on a machine. For a NOW with

greater heterogeneity, the affinity_factor has a larger

variance. Four heterogeneous NOW’s are simulated

and the affinity_factor is uniformly distributed over the

following real intervals associated with each NOW: (1)

[1 .. 1], (2) [1 .. 2], (3) [1 .. 4], and (4) [1 .. 8]. The

NOW in (1) is homogeneous with the other NOW’s (2-

4) having an increased degree of heterogeneity. In an

ethernet-NOW containing Sun 4 IPC’s, Sparc 2’s, and

SGI Indigo’s, affinity factors in this range were

observed for a suite of scientific applications [18].

The job communication time (for parallel jobs)

was uniformly distributed over the cost interval [0 .. 10]

time units. It is assumed that there is no particular affin-

ity for communication resources in the ethernet-NOW −
each cluster is on a single ethernet segment that runs at

10 Mb/sec. All of these settings are adjustable parame-

ters. Statistics are gathered by the simulator for each

run including the average delay for a job, system

throughput, etc. 

The performance of the scheduling policies is

measured by calculating the difference between the



actual completion time for a job and the ideal comple-

tion time. The ideal completion time is the best sched-

ule from the candidate set given the current system

state. The actual completion time may be larger than the

ideal due to the arrival of future jobs and resource shar-

ing. The difference between the actual and ideal elapsed

times is called the delay. The average delay over all

jobs as a function of the job inter-arrival rate is depicted

in Figure 3. The units of average delay and arrival time

are simulation time units. Each point on the graph is the

result of 10 distinct simulation traces each running for

10000 time units. The number of jobs that enter the sys-

tem during the 10000 time units varied from 1000 to

2000, depending on the arrival rate. The same 10 traces

were used for all experiments. The graphs (a-d) are for

a NOW environment with increasing heterogeneity.

The most striking result that is common to all

graphs is that MTI performs the best under all condi-

tions and this suggests the importance of interference as

a component of an effective scheduling policy. Under

low loads, all policies perform about the same since the

interference is negligible. A simple interference policy

(MNI) performs well for the homogeneous NOW under

low load (as predicted by [9]), but begins to tail off as

the degree of heterogeneity increases. As the degree of
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Figure 3: Performance of scheduling policies



heterogeneity increases and the load increases, all of the

scheduling policies begin to degrade in performance

(observe the change in scale on the y-axis). This is due

to contention for the best resources. In a more homoge-

neous NOW, there is less resource contention due to the

absence of affinities. Consequently, effective job

scheduling policies become even more important in

heterogeneous NOWs. 

Another interesting result is that all scheduling

policies reach a point at which performance dramati-

cally falls off (e.g., MCT at an arrival rate of 5). When

the load is sufficiently high with all processors running

at least 1 task, the interference increases rapidly and

performance can be very poor. At this point, the system

is essentially thrashing and a mechanism for throttling

jobs is needed to reduce the level of network multipro-

gramming. It is likely that a queueing strategy is needed

to prevent the system from reaching this point. One of

the principle benefits for interference policies such as

MTI is that this point does not occur until the system

load gets very high. On the other hand, this point is

reached at lower loads for the other policies.

5.0  Summary and Future Work
The preliminary results indicate that the interfer-

ence paradigm appears to be an effective metric for net-

work job scheduling. This is especially true for

heterogeneous NOWs under high loads − precisely

where traditional scheduling policies perform poorly. 

Future work includes developing additional inter-

ference-based policies and investigating their perfor-

mance. For example, policies that have bias toward

parallel or sequential jobs are of interest. Some sites

may wish to tune their schedulers to limit interference

to sequential jobs only since parallel jobs may be run in

more of a batch mode. The ultimate objective is to iden-

tify a set of policies that perform best for different

workload distributions and system needs. Another ave-

nue of investigation is to permit jobs to be queued at

high loads and to study the impact on performance.

In all cases, real workload studies are also needed

to validate the performance of the proposed scheduling

policies and to determine their impact in a practical set-

ting. Such workload studies have been performed for

single parallel supercomputers, but not for the NOW

environment. 

Another area of future work is the impact of exter-

nal load on the proposed scheduling policies. It is

unlikely that the scheduling of all jobs will ever be

under the control of a single software scheduler in the

network environment. External workload may arrive

into the system and perturb the currently running jobs.

The addition of external load events will be incorpo-

rated into the simulator and the performance impact

studied. Another source of interference is the collection

of system state information required for schedule gen-

eration. This overhead needs to be quantified and added

to the simulator. Finally, extending the simulator from a

NOW environment to a more general metasystem envi-

ronment with greater heterogeneity is planned. 
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