
A Resource Leasing Policy for On-demand Computing

Darin England and Jon Weissman
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
{england,jon}@cs.umn.edu

Abstract

Leasing computational resources for on-demand
computing is now a viable option for providers of
network services. Temporary spikes or lulls in de-
mand for a service can be accommodated by flexible
leasing arrangements. From the service provider’s
perspective the problem is how many resources to
lease and for how long. In this work we formulate
and solve the resource leasing problem for the case
of a single service. The objective is to minimize the
cost of leasing resources while still maintaining an
adequate quality of service, which we measure by
the average wait time of requests. Demand for the
service and execution times of service requests are
modelled as random variables. The problem is for-
mulated as continuous-time, infinite-horizon Markov
decision problem. We use the dynamic programming
method of value iteration for its solution and we
characterize the resulting optimal cost function. We
find that the cost of providing a service is convex-like
in the number of resources leased and nondecreasing
in the number of requests in the system. Close ex-
amination of the optimal cost function shows that
the cost of providing a service is more sensitive to
under-deployment than to over-deployment. Thus,
when demand for the service is known to exist, but
is unpredictable, it is better to lease more resources
than fewer resources.

1 Introduction

Creators of software applications are increas-
ingly making use of network services that pro-
vide specific functionality to their applications.
Mathematical programming, graphics render-

ing, and gene sequence comparison represent
some important computation-intensive applica-
tions that are now being offered as on-line
services. In order to accommodate this new
computing paradigm the research community
has created several service-oriented architec-
tures [11, 17, 19–21]. Researchers have focused
particular attention on the area of grid ser-
vices [1, 8, 16, 18] wherein the operating environ-
ment is known to be heterogeneous and unpre-
dictable. Perhaps not coincidentally, makers of
high-performance computers have recently be-
gun to offer on-demand computing solutions,
also known as utility computing. The idea is
that these companies act as resource providers,
owning the computational resources and per-
forming all system administration tasks, while
charging service providers nominal fees for ac-
cess to computing cycles. Such a scenario is
attractive to service providers that experience
temporary spikes in demand for their service.
On-demand computing obviates the need for
purchasing computational infrastructure since
leasing arrangements provide the needed com-
puting capacity at low cost and low risk.

In this work we consider the resource leas-
ing problem from the perspective of the service
provider. The nature of the problem is such
that the demand for the service and the process-
ing times of individual requests are unknown,
but can be modelled with appropriate proba-
bility distributions. Still, the service provider
is faced with the conflicting goals of leasing
enough computational resources to provide an
adequate level of service and keeping the cost
of leasing to a minimum. Leasing too many
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resources to host a service incurs unnecessary
cost. However, leasing too few resources results
in long wait times and client dissatisfaction. In
our model we place a cost on the average wait
time of client requests. Such a cost can repre-
sent a loss in revenue or a loss in goodwill. Due
to its stochastic nature we model and solve the
resource leasing problem in a dynamic program-
ming framework. Given the cost structure of
the lease arrangement, the resulting policy pro-
vides state-dependent rules for service providers
to acquire on-demand resources and to termi-
nate those leases when it is cost-effective to do
so. We characterize the optimal cost function
and we find that the cost is more sensitive to
leasing too few resources than to leasing too
many resources. This indicates that it is better
for a service to be slightly over-deployed than
under-deployed.

In the next section we describe a mechanism
for on-demand, dynamic deployment of network
services, one with which we have experimented.
Section 3, which constitutes the bulk of the pa-
per, is the dynamic programming formulation of
the resource leasing problem. We then describe
the solution method in section 4. Section 5 con-
tains experimental results for an example prob-
lem. We discuss related work in section 6 , and
give some concluding remarks in section 7.

2 On-demand Deployment of
Network Services

A key assumption for this work is the ability
for a service provider to dynamically deploy a
service onto the network. This is the nature
of on-demand computing: a quasi-real-time re-
sponse to increased demand for a service. One
architecture that allows such dynamic deploy-
ment of services is described in [18]. Figure 1
shows a simplified logical view of the architec-
ture. Requests for the service form a queue
at the front-end and are dispatched to leased
computing nodes. Initially the network service
is not present on the leased resources. When
demand for the service increases to the point

where a new lease is warranted, an archive file
that contains the service code and required li-
braries is shipped to the node and deployed into
a running servlet engine. The front-end may
then route service requests to the newly leased
node. Thus only basic service-oriented infras-
tructure is required to be in place on the com-
puting nodes, i.e. a running servlet engine. The
package sizes and transfer times for dynamic de-
ployment of network services are discussed in
[18]. We mention here that the overhead asso-
ciated with such deployment, i.e. package trans-
fer and configuration, is acceptable. For exam-
ple, packages sizes less than 1MB require less
than 1 second for configuration in a running
servlet engine. Configuration times for pack-
age sizes over 1MB on are the order of seconds.
However, note that each deployment of the ser-
vice is long-lived. Thus the overhead will be
amortized over multiple requests.

As discussed in the introduction, the decision
to be made by the service provider is the num-
ber of nodes to lease. If too few resources are
leased then waiting time increases and clients
become dissatisfied. The cost associated with
this dissatisfaction could be monetary if clients
are paying for the service or it could be a loss
in goodwill if the service is being provided by
an institution that has committed to serving its
user base. Finally, we note that the method
used to assign service requests to computing
nodes is orthogonal to this work. We address
the issue of resource requirements. The only as-
sumption regarding the scheduling discipline is
that it is work-conserving, i.e. there are no idle
nodes under lease whenever there are requests
in the queue.

3 Problem Formulation

Due to the uncertainty associated with demand
and processing times, the problem of how many
resources to lease for hosting a network ser-
vice is essentially a stochastic decision problem.
Therefore, we chose to model the problem in a
dynamic programming context. In particular,
we formulate an infinite-horizon, continuous-
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Figure 1: Dynamic Deployment of a Network Service

time Markov decision problem with nonuniform
transition rates among the states. Infinite-
horizon methodology is used because the net-
work service is to be deployed for an indefinite
period of time: we assume that the service will
be utilized for a long time or until it is replaced
by a newer version. A finite-horizon version of
the problem in which a service is to be deployed
for a known, relatively short period of time is
modelled and solved in [7]. In this work we as-
sume that the service provider may initiate a
lease at any point in time. Hence, the time be-
tween leasing decisions is random and depends
on the demand for the service and the compu-
tational load imposed by the service requests.
For this reason the problem is modelled as a
continuous-time problem. The rate of transi-
tion from one state to another is nonuniform
because it depends on the state and the leasing
decision. We employ the well-known technique
of uniformization [2, 3, 5, 14, 15] to convert the
problem into a discrete-time Markov decision
problem. We may then employ the standard
dynamic programming method of value itera-
tion to solve the problem.

3.1 State Space

The state of the system at any point in time
is described by a pair of variables (x, m). x
represents the number of service requests that

are currently in the system, which includes both
requests in process and requests in the queue.
This component of the state is random and is
a function of the arrival rate of service requests
and the processing rate of the computational re-
sources. m represents the number of resources
currently under lease and on which the service
is currently deployed. This component of the
state is not random and is under the control of
the decision-maker. Indeed, given that the ser-
vice is currently deployed on m computational
resources, the control variable u is the number of
additional resources that should be leased and
on which the service should be deployed. We
note here that the value of u could be nega-
tive, in which case the decision is to tear-down
the service and terminate the leases on |u| re-
sources. The inclusion of m as part of the state
is necessary because there is a cost for setting up
and taking down the service on a newly leased
resource. In effect, including the number of cur-
rently leased resources as part of the state pre-
vents the policy from thrashing between deploy-
ment and tear-down of the service. We discuss
the components of cost in Section 3.3.

We place a limit K on the maximum number
of service requests that can be in the system
simultaneously. If the system is handling K re-
quests at the time of a request arrival, then the
request is rejected. In practice K may be set
to a large number. We also assume a maximum

3



number of resources, R, are available for lease.
Thus the number of possible states is finite.

3.2 State Transition Probabilities

3.2.1 One-step Transition Probabilities

Transitions of the random component of the
state x occur when a new request arrives or
when a request finishes execution. We model
the arrival of requests as a Poisson process with
rate λ. The processing time of a single re-
quest is exponentially distributed with param-
eter µ. In effect, the system can be modelled
as an M/M/m/K queueing system; however,
the number of servers m may change at each
decision period. Given that the service is de-
ployed on m resources, the one-step transition
rates for the random component of the state, x,
are shown in Figure 2. Let pi,j(u) be the prob-
ability of going from i requests in the system to
j requests in the system when the leasing de-
cision u is taken. Then the one-step transition
probabilities are given by

pi,j(u) =




λ
λ+iµ if i = j − 1 and i < m,

iµ
λ+iµ if i = j + 1 and i < m,

λ
λ+mµ if i = j − 1 and i ≥ m,

mµ
λ+mµ if i = j + 1 and i ≥ m,

0 otherwise.
(3.1)

When writing transition probabilities we use the
traditional notation of i and j (instead of x) for
specifying the number of requests in the system.

3.2.2 Uniformization

From Figure 2 and our knowledge of the
M/M/m/K queue we note that the time be-
tween state transitions is exponentially dis-
tributed and depends on the number of requests
currently in the system. In addition, the num-
ber of currently leased resources is itself part of
the state and changes with the control u. Thus,
the time from one state transition to the next is
exponentially distributed with a parameter that
depends on both the state and the control. Let

the rate of transition out of a state (x, m) when
control u is applied be denoted by νx,m(u). Fur-
thermore, denote the time of the nth transition
by tn and the number of requests in the system
just after the nth transition by x(tn). Then the
distribution of transition times between states
is given by

P{tn+1 − tn < τ | x, m, u} = 1− e−νx,m(u)τ ,

and the one-step transition rates are given by

νx,m(u) =




λ if x = 0,

λ + xµ if 0 < x < m,

λ + mµ if x ≥ m.

The times between state transitions are expo-
nentially distributed and therefore these times
possess the memoryless property. That is, there
is no benefit in knowing how much time has
elapsed since the last transition. Thus, we do
not include the time since the last transition
as a part of the state, which makes the problem
tractable. Indeed, modelling the random execu-
tion times with any distribution other than the
Exponential distribution coupled with the fact
that we have multiple resources would lead to a
very difficult infinite state space problem. How-
ever, we note that suboptimal techniques [4, 13]
can be used on problems of this type and they
are the focus of future work. The memoryless
property of the Exponential distribution saves
us a lot of work, but in order to employ the stan-
dard dynamic programming algorithm of value
iteration to a continuous-time problem, we need
to convert it into a discrete-time problem using
the technique of uniformization.

The idea behind uniformization is to choose
a new uniform transition rate which is the same
for all states and controls with the caveat that
sometimes a transition will leave the state un-
changed. Statistically, the uniform process is
identical to the original process in that the
amount of time spent in each of the states is
the same. We select a new uniform transition
rate ν such that ν ≥ νx,m(u) for every state
(x, m) and control u. For our resource leasing
problem we choose the rate ν = λ+Rµ, where R
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Figure 2: One-step Transition Rates for Original Problem

is the maximum number of resources that may
be leased. The transition rates for the uniform
version of the problem, given in terms of the
original parameters, are presented in Figure 3.
In order to specify the transition probabilities
corresponding to the uniform rate, we observe
that a transition leads to a new state with prob-
ability νx,m(u)/ν, and remains in the same state
with probability 1− νx,m(u)/ν. Thus, the one-
step transition probabilities for the uniform ver-
sion of the problem are given by

p̃ij(u) =

{
νi,m(u)

ν pij(u) if i �= j,
νi,m(u)

ν pij(u) + 1− νi,m(u)
ν if i = j.

(3.2)

3.2.3 n-step Transition Probabilities

Given that state transitions occur whenever ser-
vice requests enter or depart the system and
the assumption that inter-arrival times and ex-
ecution time are exponentially distributed, we
could choose to impose the leasing decision at
any point in time, and not necessarily in co-
ordination with arrivals and departures. The
question then arises: when should leasing de-
cisions be made, and how often should they
be made? Naturally, we want to make leas-
ing decisions in such a way that demand is ac-
commodated while deployments don’t happen
too often (due to cost concerns). In our model
the deployment/tear-down decisions are made
at the times of service request arrivals and de-
partures, but not after every single arrival or de-
parture event. We let the number of events that
pass in between leasing decisions be specified by
a parameter n. Since arrivals and departures
are independent events, computing the n-step

transition probabilities is accomplished by mul-
tiplication of the one-step probabilities. If we
denote the matrix of one-step transition proba-
bilities by P 1(u), the entries of which are speci-
fied by Equation 3.1, then the n-step transition
probabilities are computed by raising P 1(u) to
the power n:

Pn(u) = {P 1(u)}n. (3.3)

3.3 Cost per Period

Our objective is to minimize cost, but more
specifically we want to find the optimal trade-
off between the cost of leasing resources and the
cost of exorbitant waiting time. Naturally, the
more resources that are leased for the network
service, the shorter the waiting time. Leasing
fewer resources saves money but effects longer
waiting times. In our model the cost of leasing
has two components:

1. a deployment cost s, and

2. a resource holding cost h.

The deployment cost s is a one-time cost that is
charged whenever the service is deployed onto
a resource for the first time, or whenever it is
removed from a resource. Intuitively it is un-
desirable for a service provider to rapidly de-
ploy and then take-down a network service in
quick succession. This would serve no purpose
for users of the service and would cause unnec-
essary overhead. The deployment cost prevents
this type of deploy/take-down thrashing effect.
The second component of the cost of leasing is
the resource holding cost, h, which is the cost
per unit time for keeping a lease active. Once
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Figure 3: One-step Transition Rates for Uniform Version

the service is deployed, the service provider may
hold the lease for as long as desired.

If leasing costs were the only concern, then
the service provider would lease as few resources
as possible; however, we assume that quality of
service is important. Therefore, we impose a
cost c per unit of average waiting time W . For
the dynamic programming algorithm we use an
approximation to average waiting time that is
based on Little’s Law [12]. First we compute
the one-step and the n-step transition matrices,
P 1(u) and Pn(u), as described in Sections 3.2.1
and 3.2.3. Given the number of requests cur-
rently in the system, x, we can then compute
the expected number of requests in the system
after n arrivals or departures have taken place,
i.e. after n steps. Denote this number by L.
Then

L = E{x(tn) | x(t0) = i} =
K∑

j=0

pn
ij(u)× j.

To get the expected average waiting time W , we
invoke Little’s Law, which states

W =
L

λ
.

We note that using this method is only an ap-
proximation to the average waiting time and be-
comes more accurate for large values of n. Com-
bining the three cost components we specify the
total cost per period as

g(x, m, u) = s|u|+ h(m + u) + cW. (3.4)

4 Solution Method

In the previous section we described the state
space, transition probabilities, and cost per pe-

riod of a continuous-time, infinite-horizon for-
mulation of the resource leasing problem. Using
the technique of uniformization we converted
the problem into an equivalent discrete-time for-
mulation which may be solved by employing
the dynamic programming method of value it-
eration. We refer the interested reader to the
monograph by Bertsekas [3] for detailed infor-
mation on the theory of dynamic programming
and its solution methods. Below we provide
an outline of the solution method that we em-
ployed.

The solution is the optimal cost function and
the associated decisions that achieve the mini-
mum costs. Given an initial state the dynamic
programming cost function, denoted by J , is the
minimum over all admissible decisions of the
cost of the current period plus the discounted
cost of all future periods starting from the sub-
sequent state. The theory of dynamic program-
ming states that the optimal cost function sat-
isfies the following set of equations, which are
known as Bellman’s equations.

J(i, m) = min
u

[
g(i, m, u)

+ α

K∑
j=0

p̃ij(u)J(j, m + u)
]
,

i = 0, . . . , K, m = 0, . . . , R, (4.1)

where the cost per period g is given by Equa-
tion 3.4, the uniform transition probabilities
p̃ij(u) are given by Equation 3.2, and α is a dis-
count factor applied to future costs (0 < α < 1).
Aside from having nice theoretical properties
regarding convergence, discounting future costs
are appropriate in our case for two reasons: 1)
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the future is more uncertain than the present;
therefore, we should place less emphasis on costs
that are further into the future since those es-
timates are less accurate, and 2) the time value
of money — money is simply worth more today
than it will be in the future.

We mention here that since we are using
the technique of uniformization, a portion of
the cost per period g is also discounted by an
amount 1/(β + ν), where 0 < β < 1. In the in-
terest of space we state without justification the
fact that α = ν/(β+ν) (see [3].) The portion of
g that is discounted is the holding cost per unit
time and the waiting cost per unit time. The
deployment cost is a one-time cost that does
not accumulate over time and therefore is not
discounted. Thus, Bellman’s equation for our
problem becomes

J(i, m) = min
u

[
s|u|+ h(m + u) + cW

β + ν

+ α
∑

j

p̃ij(u)J(j, m + u)
]
. (4.2)

Rewriting Equation 4.2 in terms of the transi-
tion probabilities of the original problem and
eliminating α gives

J(i, m) =
1

β + ν
min

u

[
(β + ν)s|u|+ h(m + u)

+ cW + (ν − νi(u))J(i, m + u)

+ νi(u)
∑

j

pn
ij(u)J(j, m + u)

]
, (4.3)

which is the form that we use in the implementa-
tion of the value iteration method. Note that we
use the n-step transition probabilities as com-
puted in Equation 3.3.

The method of value iteration is the applica-
tion of Bellman’s equation. Beginning with an
initial cost function J(i, m) for every state (the
zero function), the costs are updated at each
iteration according to Equation 4.3. The algo-
rithm terminates when the difference in the cost
functions between successive iterations becomes
small enough, i.e. the algorithm converges.

Convergence is guaranteed under the assump-
tions of a finite state space and a bounded cost
function, both of which apply to our problem.
The method of value iteration for the resource
leasing problem is presented as Algorithm 1.

5 Experimental Results

5.1 Example Problem

In this section we characterize the optimal cost
function and the leasing policy obtained from
the solution of an example problem. The pa-
rameters for the problem, which are the input
to Algorithm 1, are presented in Table 1. We
implemented Algorithm 1 in Matlab. For our
example problem the value iteration method
converged after 255 iterations1. The result-
ing optimal cost function is presented in Fig-
ure 4 and the associated leasing policy is shown
in Figure 5. The shape of the optimal cost
function reveals some intuitive but interesting
properties: 1) the cost is nondecreasing in the
number of requests in the system, and 2) the
cost is convex-like in the number of leased re-
sources, i.e. the cost increases when the ser-
vice is under-deployed or over-deployed. How to
choose the correct (minimum cost) level of de-
ployment is determined from the optimal leasing
policy shown in Figure 5. Recall that the leasing
policy is state-dependent. After n events have
occurred, the decision-maker, i.e. the schedul-
ing software, observes the current number of re-
quests in the system and the current number
of leased resources and consults the policy to
obtain the leasing decision u. Referring to Fig-
ure 5, more resources are leased as the system
becomes busier or when the service is under-
deployed. The policy is to terminate leases
when the service is over-deployed. However,
there is a large “flat area” in the policy where
the decision is to leave the service deployed at
its current level. This is partly a result of in-

1To speed convergence we implemented the Gauss-
Seidel method for updating costs in Algorithm 1. This
technique is not shown in order to improve the clarity of
the presentation. We refer interested readers to [3].
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Algorithm 1: Value Iteration Method for the Resource Leasing Problem

Data: λ, µ, R, K, β, n, c, h, s, ε
Initialize: k ← 0, Jk ← 0, ν ← λ + Rµ
1: repeat
2: for i← 0 to K do � For every possible state
3: for m← 0 to R do
4: for u← −m to R−m do � For every admissible leasing decision
5: Compute P 1

6: Compute Pn

7: L←∑K
j=0 pn

ij × j � Expected number in system
8: W ← L/λ � Expected waiting time
9: g ← (β + ν)s|u|+ h(m + u) + cW

10: if i < m + u then
11: C ← g + (ν − λ− iµ)Jk(i, m + u) + (λ + iµ)

∑
j pn

ijJk(j, m + u)
12: else
13: C ← g+(ν−λ−(m+u)µ)Jk(i, m+u)+(λ+(m+u)µ)

∑
j pn

ijJk(j, m+u)
14: end if
15: Store the minimum cost Cmin found so far and the associated decision u
16: end for
17: Jk+1(i, m)← (1/(β + ν))× Cmin � Update entry for state (i, m)
18: end for
19: end for
20: k ← k + 1
21: until ‖Jk+1 − Jk‖ < ε

cluding the deployment cost s in the cost func-
tion. Ideally the system operates in this range
and avoids deployment/tear-down cycles.

Table 1: Parameters for Example Problem
Arrival rate λ 4
Processing rate µ 1
Max number of resources R 12
Max system capacity K 50
Discount factor β .9
Number of events in a period n 20
Wait cost per unit time c 10
Lease cost per unit time h 5
Deployment cost s 5
Convergence criterion ε 10−3

Taking a closer look at the optimal cost func-
tion, the cost versus number of resources is pre-
sented in Figure 6 for five different values of
i (number of requests). The figure shows the

convex-like appearance of the cost. A minimum
cost is achieved when the service is deployed
on between five and seven resources. An in-
teresting characteristic is that the optimal cost
is more sensitive to under-deployment than to
over-deployment, as evidenced by the spread
of cost function at the left end of the graph
and the closeness at the right end of the graph.
This indicates that when demand for the service
is known to exist but is highly irregular, it is
better to be slightly over-deployed than under-
deployed. Knowledge of the sensitivity is also
beneficial in the case where consistency and pre-
dictability of the leasing cost is of concern, e.g.
service providers who budget for leasing costs.

Regarding cost versus number of requests in
the system, Figure 7 shows the optimal cost for
five different levels of m (number of resources).
We see that the cost is nondecreasing in the
number of requests. The lowest costs are natu-
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rally achieved when there are very few requests
in the system since there is no waiting cost.
Figure 7 shows that the optimal cost function
is not very sensitive to the number of requests
in the system. This can perhaps be taken as
good news since, unlike the number of leased re-
sources, the number of requests is random and
cannot be directly controlled. We note, how-
ever, that for higher levels of deployment, m = 8
and m = 11, the optimal cost does not vary as
much from one end of the graph to the other,
which corresponds with our earlier discussion of
Figure 6.

5.2 Sensitivity of the Model

The values of the parameters in the example
problem were chosen not for their absolute val-
ues, but rather for their relative values. For
example, we assume that the arrival rate of re-
quests, λ = 4, is considerably greater than a
single resource can handle, µ = 1, so that the
policy will result in the lease of multiple re-
sources. The choice of n, the number of events
in a period, indirectly controls the length of a
decision period. Note the difference between the
two alternatives to determine the length of a de-
cision period: 1) a fixed-length decision period
that lasts for t time units, and 2) letting the
length of the decision period be determined by
some number of events. Option 2 is more re-
sponsive to abrupt increases in demand for the
service. A flash crowd of arrivals would cause
the number of events to reach n very quickly
and thus a new leasing decision would be made
to increase the number of resources. On the
other hand, if demand trailed off significantly,
then it could take a long time for the system to
recognize that it should terminate the leases on
some resources, whereas leasing decisions that
were made on fixed-length time intervals would
recognize this situation sooner. Note that since
both the inter-arrival times and the execution
times are exponentially distributed, and there-
for possess the memoryless property, it is possi-
ble to build a hybrid model wherein the length
of a decision period is determined by the mini-

mum of a number of events n and a fixed length
of time t.

The cost parameters were also chosen for their
relative values. In the example problem we as-
sume that the cost of waiting time, c = 10, is
relatively more important than the cost of hold-
ing a lease, h = 5. This corresponds to most sit-
uations, otherwise there is not much incentive
to host the service at all. We ran additional
experiments with increasing values of c and h.
Holding h at 5, we increased the value of c to
15, 20, and 25. Similarly, holding c at 10, we
increased the value of h to 10, 15, and 20. Al-
though the overall cost of hosting the service
naturally increased, and the values of the state
(i, m) that trigger leasing decisions are different,
the general shape and trend of the optimal cost
function and the leasing policy did not change.
For this reason we omit those figures.

The parameters that have the largest impact
on the model are those that affect the size of the
state space: the size of the resource pool, R, and
the system capacity, K. It is well-known that
explosion in the size of the state space is a draw-
back of using dynamic programming methodol-
ogy [2, 4]. In Algorithm 1, we compute the cost
of every every possible leasing decision for every
possible state. This leads to (K + 1)× (R + 1)2

cost computations for each iteration of the algo-
rithm. Figure 8 shows the increase in the size of
the state space for increasing values of R (with
K = 50). For comparison purposes, our exam-
ple problem with K = 50 and R = 12 results in
a state space of size 8,619. Recall that the algo-
rithm terminated after 255 iterations. A larger
problem with K = 100 and R = 24, which has
a state space of size 63,125, terminated after
321 iterations. So not only are there more com-
putations per iteration, but more iterations are
required for convergence because the matrix of
optimal costs, J , is larger. It is important to
note, however, that the algorithm is not an “on-
line” algorithm. All of the computations are
performed before the system begins operation.
At the beginning of each decision period, only
the (pre-computed) policy is consulted, which
is just a simple look-up. Whenever there is a
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permanent change in one of the underlying pa-
rameters, e.g. arrival rate or cost parameter,
then the algorithm is executed using the new
parameters and a new leasing policy is gener-
ated.

6 Related Work

In [7] the authors formulate and solve a finite-
horizon version of the resource leasing problem.
Our previous work is appropriate for the case
where the service is to be deployed for a known,
relatively short period of time. There are, how-
ever, some important limitations that we ad-
dress in this article. First, this work is targeted
toward services that are to be maintained for a
long period of time, hence the infinite-horizon
formulation. The solution methods for these
types of problems are different from the finite-
horizon case. In addition, the work presented
in [7] is for a discrete-time problem wherein the
lengths of the decision periods are constant (and
somewhat arbitrarily determined). In contrast,
in this work we solve a continuous-time prob-
lem (by conversion to a discrete-time represen-

tation) in which the lengths of the decision pe-
riods are determined by the frequency of events,
i.e. arrivals and departures. A final important
difference is that our previous work did not con-
sider queueing. Every request required a re-
source upon its arrival, triggering a new lease
whenever no resources were available. More re-
alistically, in this work requests are queued to
the point where the cost of leasing outweighs the
cost of waiting time. The objective is to find the
optimal balance between these two conflicting
costs.

A number of works have proposed service-
oriented architectures and have tested high-
performance applications in those environ-
ments [8, 18–20]. In [20], Weissman and Lee
present an architecture and middle-ware for dy-
namic replica selection and creation in response
to service demand. Their work answers the
questions of when and where to deploy a service.
In contrast, this work focuses on the question of
how many resources are required to host a net-
work service in the presence of random demand
and execution times.

Buyya et. al. [6] and Wolski et. al. [22, 23]

12



examine the use of supply and demand-based
economic models for the purpose of pricing and
allocating resources to the consumers of grid
services. In this work we assume a supply and
demand-based economy in which both software
services and computational resources are in de-
mand. In particular, we assume a separation of
interests between the service provider and the
resource provider. The service provider obtains
the necessary computational resources at a cost.
The user then, is only concerned with the soft-
ware services that are required for the appli-
cation, rather than negotiating directly with a
resource owner for computing time.

7 Conclusion

In this work we present a formulation and a so-
lution method for the resource leasing problem
for on-demand computing. We view the prob-
lem from the perspective of the service provider:
how many resources should be leased in the
presence of random demand for the service and
random execution times of service requests. The
objective is to minimize the cost of leasing
while maintaining quality of service. Due to its
stochastic nature we model the problem in a
dynamic programming framework. Specifically,
we formulate an infinite-horizon, continuous-
time Markov decision problem. Using the tech-
nique of uniformization we convert the problem
into an equivalent discrete-time representation,
which may be solved by the dynamic program-
ming method of value iteration. The output of
the algorithm is an optimal cost function and
its associated leasing policy. We present these
results for one example problem and we find
that the shape of the optimal cost function is
convex-like in the number of leased resources
and is nondecreasing in the number of service
requests in the system. Furthermore, the opti-
mal cost is sensitive to the number of leased re-
sources. Examination of the contour of the cost
function reveals that it is better for a service
provider to slightly over-deploy than to under-
deploy in the case where demand for the ser-
vice is known to exist but has large fluctuations.

This knowledge is important whenever consis-
tency and predictability of the leasing cost are
of particular concern to the service provider.

A model such as the one presented in this
article provides a useful abstraction for the re-
source leasing problem. In addition there are
some important direct uses for the model. A
service provider may want to predict the cost
of leasing for budget purposes. One may also
employ the model to choose among alternative
leasing arrangements. For example, given the
cost structures of different resource providers,
the model may be used to select the lowest-
cost provider. Even in the case where leasing
is not an option and the service provider owns
the computational resources, the cost of deploy-
ment (disk space, memory) and the cost of wait-
ing time (client satisfaction) may still pose a
trade-off that requires analysis. In this case the
model can aid in determining the resource re-
quirements for the network service.
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