Accessibility-based Resource Selection in Loosely-coupled Distributed Systems *

Jinoh Kim, Abhishek Chandra, and Jon B. Weissman
Department of Computer Science and Engineering, University of Minnesota, Twin Cities
{jinohkim,chandra,jon} @cs.umn.edu

Abstract

Large-scale distributed systems provide an attractive
scalable infrastructure for network applications. However,
the loosely-coupled nature of this environment can make
data access unpredictable, and in the limit, unavailable. We
introduce the notion of accessibility to capture both avail-
ability and performance. An increasing number of data-
intensive applications require not only considerations of
node computation power but also accessibility for adequate
Jjob allocations. For instance, selecting a node with intoler-
ably slow connections can offset any benefit to running on a
fast node. In this paper, we present accessibility-aware re-
source selection techniques by which it is possible to choose
nodes that will have efficient data access to remote data
sources. We show that the local data access observations
collected from a node’s neighbors are sufficient to charac-
terize accessibility for that node. We then present resource
selection heuristics guided by this principle, and show that
they significantly outperform standard techniques. The sug-
gested techniques are also shown to be stable even under
churn despite the loss of prior observations.

1. Introduction

Large-scale distributed systems offer the appeal of scal-
ability for hosting network applications. This virtue has
led to the deployment of several distributed applications
in large-scale, loosely-coupled environments such as peer-
to-peer computing [1], distributed storage systems [8], and
Grids [11]. However, a major challenge in such systems is
the network unpredictability and limited bandwidth avail-
able for data dissemination. For instance, the BOINC
project reports an average throughput of only about 289
Kbps, and a significant proportion of BOINC hosts shows
an average throughput of less than 100 Kbps [1]. In such
an environment, even a few MBs of data transfer between

*This work was supported in part by National Science Foundation grant
ITR-0325949.

poorly connected nodes can have a large impact on the over-
all application performance. This has severely restricted the
amount of data used for computation in such platforms, with
most computations taking place on small data objects.

Emerging scientific applications, however, are data-
intensive and require access to a significant amount of dis-
persed data. For example, in high energy physics applica-
tions such as the Large Hadron Collider (LHC), thousands
of physicists worldwide require access to shared, immutable
data on the scale of petabytes [9]. Similarly, in the area
of bioinformatics, a set of gene sequences could be trans-
ferred from a remote database to enable comparison with
input sequences [2]. In these examples, performance de-
pends critically on efficient data delivery to the computa-
tional nodes. The efficiency of data delivery for such ap-
plications would critically depend on the location of data
as well as the point of access. Hence, in order to accom-
modate data-intensive applications in loosely-coupled dis-
tributed systems, it is essential to consider not only the com-
putational capability, but also the data accessibility of com-
putational nodes to the required data objects. The focus of
this paper is on developing resource selection techniques
suitable for such data-intensive applications in large-scale
computational platforms.

Data availability has been widely studied over the past
few years as a key metric for distributed systems. However,
availability is primarily used as a server-side metric that ig-
nores client-side accessibility of data. While availability
implies that at least one instance of the data is present in
the system at any given time, it does not imply that the data
is always accessible from any part of the system. For exam-
ple, while a file may be available with 5 nines (i.e. 99.999%
availability) in the system, real access from different parts
of the system can fail due to reasons such as misconfigu-
ration, intolerably slow connections, and other networking
problems. Similarly, the availability metric does not cap-
ture the efficiency of access from different parts of the net-
work. For example, even if a file is available to two differ-
ent clients, one may have a much better connection to the
file server, resulting in smaller download time compared to
the other. Therefore, in the context of data-intensive appli-

cations, it is important to consider data accessibility: how
efficiently a node can access a given data object in the sys-
tem.

The challenge we address is the characterization of ac-
cessibility from individual client nodes in large distributed
systems. This is complicated by the dynamics of wide-area
networks which rules out static a priori measurement, and
the cost of on-demand information gathering, which rules
out active probing. Additionally, relying on global knowl-
edge obstructs scalability, so any practical approach must
rely on local information. To achieve accessibility-aware
resource selection, we exploit local, historical data access
observations. This has several benefits. First, it is scal-
able as it does not require global knowledge of the system.
Second, it is inexpensive as we employ observations of the
node itself and its directly connected neighbors (i.e. one-
hop away). Third, past observations are helpful to charac-
terize the access behavior of the node. For example, a node
with a poor access link is likely to show slow access most
of the time. Last, by exploiting relevant access information
from the neighbors, it is possible to obviate the need for ex-
plicit probing (e.g. to determine network performance to
the server), thus minimizing system and network overhead.

Our key research contributions are as follows. First, we
present accessibility estimation heuristics which employ lo-
cal data access observations, and demonstrate that the es-
timated data download times are fairly close to real mea-
surements, with 90% of the estimates lying within a 0.5
relative error in live experimentation on PlanetLab. Sec-
ond, we present accessibility-aware resource selection tech-
niques based on our estimation functions and compare to the
optimal and standard techniques such as latency-based and
random selection. Our results indicate that our approach not
only outperforms the standard techniques, but does so over
a wide range of operating conditions.

2. System Model

Our system model consists of a network of compute
nodes that provide computational resources for executing
application jobs, and data nodes that store data objects re-
quired for computation. In our context, data objects can
be files, database records, or any other data representations.
We assume both compute and data nodes are connected in
an overlay structure. We do not assume any specific type
of organization for the overlay. It can be constructed by us-
ing typical overlay network architectures such as unstruc-
tured [3, 13] and structured [21, 19, 20], or any other tech-
niques. However, we assume that the system provides built-
in functions for object store and retrieval so that objects can
be disseminated and accessed by any node across the sys-
tem. Each node in the network can be a compute node, data
node, or both.

Since scalability is one of our key requirements, we do
not assume any centralized entities holding system-wide in-
formation. For this reason, any node in the system can sub-
mit a job in our system model. A job is defined as a unit
of work which performs computation on an object. To allo-
cate a job, a submission node, called an initiator, selects a
compute node from a set of candidates. We assume the use
of a resource discovery algorithm [14, 11, 23] to determine
the set of candidate nodes, though it may not consider data
locality in its choice. Once the initiator selects a node, the
job is transferred to the selected node, called a worker. The
worker then downloads the data object required for the job
from the network and performs the computation. When the
job execution is finished, the worker returns the result to the
initiator.

Formally, job J; is defined as a computation unit which
requires object o; to complete the task. We assume that
objects, e.g. o0;, have already been staged in the network
and perhaps replicated to a set of nodes R; = {r},r2,...}
based upon projected demand. The job J; is submitted by
the initiator. From the given candidates C' = {c1, co, ...},
the initiator selects one (i.e., worker € (') to allocate the

job.

Due to the decentralized nature of our system, we would
like to make this selection without assuming any global
knowledge. To achieve this goal, we use an accessibility-
based ranking function to order the different candidate
nodes. Since our goal is to maximize the efficiency of data
access from the selected worker node, we use the expected
data download time as the metric to quantify accessibility.
Thus, given a set of candidates C' for job J; that requires ac-
cess to object o;, each candidate node c,,, returns its accessi-
bility accessibility.,, (J;) in terms of the estimated down-
load time for the object o0;, and the initiator then selects the
node with the smallest accessibility value. Note that since
we are assuming lack of any global knowledge, these es-
timates are based on the local information available to the
individual candidate nodes. Therefore, sometimes the can-
didate cannot provide any meaningful estimate of its acces-
sibility to the required data object. In this case, the can-
didate simply returns a value of oo, indicating the lack of
any information. The initiator would filter out such a can-
didate. If all candidates return oo, one of the candidates
is randomly selected. The selection heuristic is a mapping
function of H, : C' — ¢, such that accessibility., (J;) =
min,_y . c|(accessibility., (J;)).

Having described the accessibility-based resource selec-
tion process, the question is how the candidate nodes can es-
timate their accessibility using local information (e.g., their
own observations to the object if known or their neighbors),
and what factors they can use for this estimation. We ex-
plore this question in the next section.

3. Accessibility Estimation

To answer the above question, we performed a rich set of
exploration to see what parameters would impact accessi-
bility in terms of data download time. We report important
correlations we found in the experiments with 133 nodes
on PlanetLab [17]. Our intuition was that a node’s acces-
sibility to a data object will depend on two main factors:
the location of the data object with respect to the node,
and the node’s network capabilities, such as its connectivity
and bandwidth. As expected, we find a negative correla-
tion (r = —0.56) between RTT and download time, indi-
cating that latency can be a useful factor when estimating
accessibility between node pairs. In addition, we discov-
ered a correlation (r = 0.6) between the download speed
of a node and the past average download speed of the node,
suggesting that the past download behavior of a node can be
a useful component for accessibility estimation.

Based on the statistical correlations we discovered, we
next present estimation techniques to predict data access
capabilities of a node for a data object by utilizing local
information.

3.1. Self-Estimation

As described above, latency to the server! and download
speed of a node are useful to assess its accessibility to a data
object. We first provide an estimation technique that uses
historical observations made by a node during its previous
downloads to estimate these parameters. Note that these
past downloads can be to any objects and need not be for
the object in question. We refer to this technique as self-
estimation.

To employ past observations in the estimation process,
we assume that the node records access information it has
observed. Suppose H}I, is the ¢-th download entry at host
h. This entry includes the following information: object
name, object size, download elapsed time, server, distance
to server, and timestamp.

We first estimate a distance factor between the node
and the server, based on their inter-node latency. We con-
sider two latency models for the distance metric: RTT and
square-root of RTT. These are often used in TCP studies to
cope with congestion efficiently to improve system through-
put. Studies of window-based [16] and rate-based [15]
congestion control revealed that RTT and square-root of
RTT are inversely proportional to system throughput, re-
spectively. We consider both latency models for the dis-
tance metric and compare them to see which is prefer-
able later in this section. The mean distance of node h

IFor ease of exposition here, we assume each data object is located
on a single server. However, we relax this assumption and consider data
replication in our experiments in Section 4.7.

ez
’
09 e == Distance=RTT+1

Distance=sqrt(RTT+1) | |

Cumulative Fraction
o
o

0 0.5 1 5 2 25 3
Ratio = (Estimated/Measured)

Figure 1. Self estimation result

to the servers it has seen thus far is then calculated by
Distancey, = IH—lh\ S\l distance.

We then characterize the network characteristics of the
node by estimating its mean download speed based on prior

observations. The mean download speed of node & is de-

Mmoo o7 1 |Hn| H"’L.size
fined as DownSpeedy = w7 - 21 m

Using the above factors, we estimate the expected down-
load time for a host h to download object o as:

size(0)

Sel f Estimp(0) = & (1)

. DownSpeedy,

distancey, (server(o))
Distancey,
of object o, server(o) means the server for object o, and

distance,(b) means the distance between nodes a and b.

Intuitively, the parameter ¢ is the ratio of the distance to
the server for object o to the mean distance to all servers
it has observed thus far. Smaller § means that the distance
to the server is closer than the average distance the node
has seen so far, and hence its estimated download time is
likely to be smaller than previous downloads. The other
part of Equation 1 uses the mean download speed to derive
the estimated download time as being proportional to the
object size.

Figure 1 shows the results of self-estimation. In the fig-
ure, the x-axis is ratio of the estimated time to the real
measured time. Thus a ratio of 1 means that the estima-
tion is exactly correct. As shown in the figure, we can see
that v/ RT'T yields better estimation results than the simple
RTT. Using v RTT, almost 90% of the total estimations
fall within a ratio of 0.5 — 1.5 (i.e., relative error=0.5). In
contrast, the simple RTT yields 76% of the total estima-
tions within the same error margin. Based on this result,
we set distance = /RIT + 1, where RTT is expressed
in milliseconds?. We will see in Section 4 that this level of

where 0

, size(o) means the size

2we add 1 to avoid division by zero.

accuracy is sufficient for use as a ranking function to order
different candidate nodes for resource selection.

Since self-estimation is not required to have prior obser-
vations for the object in question, it must first search for the
server and then determine the network distance to it. Search
is often done by flooding in unstructured overlays [3, 13],
or by routing messages in structured overlays [21, 19, 20],
which may introduce extra traffic. Distance determination
would require probing which adds additional overhead.

3.2. Neighbor Estimation

While self-estimation uses a node’s prior observations
(to all objects) to estimate the accessibility to a data ob-
ject, it is possible that the node may have only a few prior
download observations (e.g., if it has recently joined the net-
work), which could adversely impact the accuracy of its es-
timation. Further, as mentioned above, self-estimation also
needs to locate the object’s server and determine its latency
to get a more accurate estimation. These will add additional
overhead and latency to the resource selection.

To avoid these problems, we now present an estimation
approach that utilizes the prior download observations from
a node’s neighbors in the network overlay for its estima-
tion. We call this approach neighbor estimation. The goal
of this approach is to avoid both search and probing, thus
avoiding their costs. Moreover, by utilizing the neighbors’
information, it is likely to obtain a richer set of observations
to be used for estimation. However, the primary challenge
with using neighbor information is to correlate a neighbor’s
download experience to the node’s experience given that the
neighbor may be at a different location and may have dif-
ferent network characteristics from the node.

To assess the downloading similarity between a candi-
date node and a neighbor, we first define the notion of down-
load power (DP) to quantify the data access capability of
a node. The idea is that a node with higher DP is consid-
ered to be superior in downloading capability to a node with
lower DP. We formulate DP for host / as follows:

1 i) Hi .size
DP, = (L X Hi dist) 2
" |Hn| ; H;, .elapse p-gastance)

Intuitively, this metric combines the metrics of download
speed and distance defined in the previous subsection. As
seen from Equation 2, DP « download speed, which is in-
tuitive, as it captures how fast a node can download data in
general. Further, we also have DP « distance to the server,
which implies that for the same download speed to a server,
the download power of a node is considered higher if it is
more distant from the server. This is because if two clients
show the same download time for the same object, the more
distant one might be considered to have better download-
ing capability for more distant servers, as the closer client’s

CDF of Neighbor Estimation Results

Cumulative Fraction
o
o

0 0.5 1 5 2 25 3
Ratio = (Estimated/Measured)

Figure 2. Neighbor estimation resulit

download speed could be attributed to its locality. Hence,
access over greater distance is given greater weight in this
metric.

Next we define a function for neighbor estimation at host
h by using information from neighbor n for an object o:

NeighborEstimy(n,0) = a - 3 - elapse,(0) (3)

where o = DP, ﬁ __ distancey (server(0))

DP,’ Y T distance, (server(0))’ and ela’pse"(o)
is the download time observed by the neighbor for the ob-
jects.

Intuitively, to estimate the download time for object o
based on the information from neighbor n, this function
uses the relevant download time of the neighbor. As a rule,
the estimation result is the same if all conditions are equiva-
lent to the neighbor. To account for differences, we employ
two parameters « and 3. The parameter o compares the
download powers of the node and the neighbor for similar-
ity. If the DP of the node is higher than the neighbor, the
function gives smaller estimation time because the node is
considered superior to the neighbor in terms of accessibil-
ity. The parameter 3 compares the distances to the server,
so that if the distance to the server is closer for the node than
the neighbor’s, the resulting estimation will be smaller.

Figure 2 illustrates the cumulative distribution of neigh-
bor estimation results. The x-axis is the ratio of the esti-
mation result to the real measured value, while the y-axis
is the cumulative fraction of the estimations. As seen from
the figure, a substantial portion of the estimated values are
located near the ratio 1. Nearly 85% of estimations reside
within a relative error of 0.5. This suggests that neighbor
estimation produces useful hints to rank nodes with respect
to accessibility.

To realize neighbor estimation, it is necessary to gather
information from neighbors. Thus it is possible that multi-
ple neighbors provide different information for the object,

31t is possible that the neighbor has multiple observations for the same
object, in which case we pick the smallest download time as the represen-
tative.

Table 1. Download Traces

Trace | #nodes | # objects | # downloads
M 153 72 22,509
2M 231 83 25,934
4M 167 107 28,439
&M 158 85 26,105

thus yielding different estimation results. In this case, we
simply take the median of the estimations based on our ex-
periments (see [10]). In addition, we can avoid the need
for active probing to measure the latency to the server by
exploiting the server latency estimates obtained from the
neighbors themselves. In [10], we extend latency inference
heuristics to more accurately work with a limited number of
neighbors.

4. Evaluation
4.1. Experimental Setup

We conducted over 100K actual downloading for a span
of 5 months with 241 PlanetLab nodes geographically dis-
tributed across the globe. For this, we deployed a Pas-
try [20, 6] network, a structured overlay based on a DHT
ring. We distributed data objects of four sizes: 1M, 2M,
4M, and 8M bytes, over the network, each object with a
unique key. We then generated a series of random queries
so that the selected nodes perform downloading the relevant
objects. Table 1 provides the details of the download traces.
In the simulations, we use a mixture of all traces rather than
individual traces, unless otherwise mentioned.

To evaluate resource selection techniques, we design and
implement a simulator which inputs the ping maps and the
collective downloading traces and outputs performance re-
sults according to the selection algorithms. Initially, the
simulator constructs a network in which nodes are con-
nected to each other with a predefined neighbor size*. After
constructing the network, the simulator runs each resource
selection algorithm. At first, it constructs a virtual trace
in which the list of candidates and the download time from
each candidate are recorded. The candidate nodes are ran-
domly chosen for each allocation. As the candidate may
have more than one actual download record for a server, the
download time is also randomly selected from them. The
simulator then selects a worker based on each selection al-
gorithm. Based on the selected worker, the download time
is returned from the virtual trace. As the default configura-
tion, we set both the candidate size and the neighbor size to
8, unless otherwise mentioned.

4To minimize error due to the construction, we repeated simulations 50
times and report the results with 95% confidence intervals as needed.

Impact of Candidate Size (Mix, N=8, Allocation=50k)
90 — T T T

—-&— OMNI
ol g RANDOM |
A -~ PROXIM
SELF
701 Foxd — - — NEIGHBOR|]
Y \

Mean Elapse Time (sec)
N
3

16 32
Candidate Size

Figure 3. Impact of candidate size

For our evaluation, we compare the following resource
selection techniques:

Technique Selection

OMNI omniscient selection (optimal)
RANDOM random selection

PROXIM latency-based selection

SELF self-estimation-based selection
NEIGHBOR | neighbor-estimation-based selection

4.2. Impact of Candidate Size

In our system model, a set of candidate nodes are evalu-
ated for their accessibility before allocating a job. We inves-
tigate the impact of candidate size (|C|). Figure 3 demon-
strates the mean downloading time with respect to candidate
size. SELF continues to produce diminished elapsed times
as the candidate size increases, yielding the best results
among selection techniques. NEIGHBOR follows SELF
with considerable gaps against the standard techniques. In-
terestingly, PROXIM shows unstable results with greater
fluctuation than RANDOM over the candidate sizes. This
result indicates that the proposed techniques not only work
better than standard ones across candidate sizes, but also
further improve as the candidate size increases.

4.3. Impact of Neighbor Size

We next investigate the impact of neighbor size on
NEIGHBOR (the other heuristics are not affected by this
parameter). Figure 4 shows how the selection techniques
respond across the number of neighbors (| N]). As can be
seen, increasing the neighbor size dramatically improves
the performance, while the others make no changes as ex-
pected. For example, the average download time in |N| =
16 is dropped to about 70% of the time for | N| = 2. This is
because it has more chances to obtain relevant observations
with more many neighbors, thus decreasing the possibility

Impact of Neighbor Size (Mix, N=8, Allocation=50k)

~
=)

—&— OMNI
RANDOM

== PROXIM

SELF

— — — NEIGHBOR

-3
<]

=]
a
=]

IS
S

@

S
’

L]

1

Mean Elapse Time (sec)
/

N
S}

o

16 32
Neighbor Size

Figure 4. Impact of neighbor size

Impact of Data Size (C=8, N=8, Allocation=50k)
100 T T T T

—&— OMNI

90| RANDOM
== PROXIM
SELF

— — — NEIGHBOR

80|

701

60

50

40t

Mean Elapse Time (sec)

30+

20+

. . . .
1iMB 2MB 4mB 8MB
Data Size

Figure 5. Impact of data size

of random selection. This result suggests that NEIGHBOR
will work better in environments where the node has con-
nectivity with a greater number of neighbors.

4.4. Impact of Data Size

We continue to investigate how the selection techniques
work over different data sizes. Since the size of accessed
objects can vary depending on applications in reality, tech-
niques should work consistently across a range of data sizes.
In this experiment, we run the simulation with individual
traces rather than the mixture of the traces. Figure 5 shows
linear relationship between data size and mean download
time. However, we can see that each technique shows a
different degree of slope: SELF and NEIGHBOR increase
relatively gently compared to the standard heuristics. With
simple calculation, the slopes (i.e. Ay/Ax) of the tech-
niques are RANDOM=10.9, PROXIM=8.1, SELF=3.8, and
NEIGHBOR=5.1. This result implies that the proposed
techniques not only work consistently across different data
sizes, but they are also more useful for data-intensive appli-
cations.

CDFs of Download Speed (Mix, C=8, N=8, Allocation=100k)

PROXIM

Cumulative Fraction

Download Speed (KB/s)

Figure 6. Timeliness

4.5. Timeliness

It is crucial to choose good nodes for job allocation. On
the other extreme, it is also important to avoid bad nodes
when making a decision. For instance, selecting intolera-
bly slow connections may lead to job incompletion due to
excessive downloading cost or time-outs. However, it is al-
most impossible to pick a good node every time because
there are many contributing factors.

We observed how many times the techniques choose
slow connections. Figure 6 shows cumulative distributions
of the speed of connections with log-log scales. In the
figure, we can see that the proposed techniques more of-
ten avoid slow connections. SELF most successfully ex-
cludes low speed connections, and NEIGHBOR also per-
forms well compared to the standard techniques. When we
count the number of poor connections selected, SELF has
chosen under 5 KB/s connections less than 30 times, while
PROXIM made over 290 selections which is almost an or-
der of magnitude greater than SELF. One interesting result
is that PROXIM selects poor connections more frequently
than RANDOM (293 and 194 times respectively). This im-
plies that relying only on latency information alone greatly
increases the chance of very poor connections, thus lead-
ing to unpredictable response time. Compared to this, our
proposed techniques successfully reduce chances to choose
low speed connections by taking accessibility into account.

4.6. Impact of Churn

Churn is prevalent in loosely-coupled distributed sys-
tems. To see the impact of churn, we assume that mean
session lengths of nodes are exponentially distributed. In
this context, the session length is equivalent to the simula-
tion time. For example, if the session length of a node is
100, the node changes its status to inactive after 100 simu-
lation time steps. The node then joins again after another

Impact of Churn (Mix, C=8, N=8, Allocation=50k)

I OVINI
I RANDOM
[PROXIM
 — 7
[_INEIGHBOR

~
=)

-3
S

Mean Elapse Time (sec)
@ IS @
=] o o

N
S}

o

No churn 10000 1000 100
Mean Session Length

Figure 7. Performance under churn

100 time steps. We assume that nodes lose all past ob-
servations when they change status. Therefore, churn will
have a greater impact on our selection techniques because
we rely on historic observations. In contrast, the standard
techniques suffer little from churn since they do not have
any dependence on past observations. The virtual trace ex-
cludes objects for which the relevant servers are inactive.
We tested three mean session lengths: s = 100, s = 1000,
and s = 10000, corresponding to extreme, severe, and light
churn rates respectively.

Figure 7 illustrates performance changes under churn.
As mentioned, there is little impact on standard techniques.
In contrast, our techniques are degraded in performance due
to loss of observations. As can be seen in the figure, SELF
outperforms or is comparable to PROXIM. NEIGHBOR
degrades and becomes worse than PROXIM under severe
churn (s = 1000). This is because NEIGHBOR is likely to
fail to collect the relevant observations, thus relying more
on random selection. Nonetheless, NEIGHBOR still works
better than PROXIM in light churn (s = 10000) with lower
overhead. To summarize, the proposed techniques are fairly
stable under churn in which nodes suffer from loss of obser-
vations. The results show that SELF is at least comparable
to PROXIM, while NEIGHBOR is comparable to PROXIM
when churn is light.

4.7. Impact of Replication

In loosely-coupled distributed systems, replication is of-
ten used to disseminate objects to provide locality in data
access as well as high availability. We investigate the im-
pact of replication to see if the proposed techniques work
consistently in replicated environments. For lack of space,
we briefly report the experimental results, and the details
can be found in a technical report [10].

Figure 8 shows performance changes under replication.
It is likely that the performance of all selection techniques
improve as the replication factor increases because of data

Impact of Replication (Mix, C=8, N=8, Allocation=50k)
60 T T T

—&— OMNI
RANDOM

— = PROXIM

SELF

— — = NEIGHBOR

o
S

IS
S

Mean Elapse Time (sec)
w
8

4
Replication Factor

Figure 8. Performance under replicated envi-
ronments

locality, and the result agrees with this expectation, as
shown in the figure. PROXIM has significantly diminished
mean download time (nearly half) with replication. How-
ever, it is still behind the proposed techniques. SELF and
NEIGHBOR outperform the standard techniques over all
the replication factors. In particular, SELF continuously
narrow the gap to optimal favorably exploiting the replica-
tion. This result suggests that the proposed selection tech-
niques consistently outperform the standard techniques in
replicated environments.

5. Related Work

Several techniques have been introduced to improve data
access. Some reactive or proactive replication techniques
have been studied in unstructured overlays [3, 13] and struc-
tured overlays [4, 7]. These replication techniques are help-
ful in data access by disseminating objects in advance, but
they tend to use proximity as a guiding principle. We have
found that proximity is not sufficient to guarantee good ac-
cessibility.

Prediction of network bandwidth and data transfer times
may also be useful to estimate data access when allocating
jobs. Previous studies in [22, 5] suggested prediction meth-
ods, but their approaches were based on explicit network
probing. Unlike this, we rely on local, historic observa-
tions without intrusive probing which may be expensive in
loosely-coupled environments.

Resource discovery is also closely related to our work.
Condor provides a matchmaking framework which provides
a stateless matching service [18]. Jik-Soo et al. [11] pre-
sented a decentralized matchmaking based on aggregation
of resource information and CAN (Content Addressable
Network) routing [19]. The CCOF (Cluster Computing on
the Fly) project [23] seeks to harvest CPU cycles by using
search methods in a peer-to-peer computing environment.

These resource discovery techniques focus on the specifi-
cations of individual nodes, e.g. CPU, memory, and disk
space. However, they are less concerned about data access
performance.

Finally, the Data Grid has been proposed to enable re-
searchers to access and analyze significant volumes of data
on the order of terabytes [9, 12]. For efficient data access,
the Data Grid provides integrated functionalities for data
store, replication, and transfer. However all these efforts
have been made under the assumption of well-organized
environments where sites are managed carefully and inter-
connected with high bandwidth links to each other. Un-
like this assumption, our intention is to accommodate such
applications in loosely-coupled distributed systems where
bandwidth may be less available. For this reason, we focus
more on decentralization, minimal message overhead, and
predictable data access.

6. Conclusion

Accessibility is a crucial concern for an increasing num-
ber of data-intensive applications in loosely-coupled dis-
tributed systems. Such applications require more sophisti-
cated resource selection due to bandwidth and connectivity
unpredictability. In this paper, we presented decentralized,
scalable, and efficient resource selection techniques based
on accessibility. Our techniques rely on local, historic ob-
servations, so it is possible to keep network overhead toler-
able. We showed our estimation techniques are sufficiently
accurate to provide a meaningful rank order of nodes based
on their accessibility. Our techniques outperform standard
approaches and are reasonably close to the optimal selec-
tion. In particular, the self and neighbor estimation-based
selections were 52% and 70% more efficient respectively
than latency-based selection. We also investigated how our
techniques work under node churn and showed that they
work well under churn circumstances in which nodes suf-
fer from loss of observations. Finally, we showed that our
techniques consistently outperform standard techniques in
replicated environments.

References

[1] D. P. Anderson and G. Fedak. The computational and stor-
age potential of volunteer computing. In Proceedings of CC-
GRID’06, pages 73-80, 2006.

[2] BLAST: The basic local alignment
http://www.ncbi.nlm.nih.gov/blast.

[3] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. In Proceedings of SIGCOMM
’02, pages 177-190, 2002.

[4] P. Druschel and A. Rowstron. PAST: A large-scale, persis-
tent peer-to-peer storage utility. In HotOS VIII, pages 75-80,
May 2001.

search tool,

(5]

(6]
(7]

(8]

(9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]
(18]

(19]

(20]

[21]

(22]

(23]

M. Faerman, A. Su, R. Wolski, and F. Berman. Adaptive
performance prediction for distributed data-intensive appli-
cations. Technical Report CS1999-0619, 18, 1999.
FreePastry, http://freepastry.org.

V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and
P. Keleher. Adaptive replication in peer-to-peer systems. In
Proceedings of ICDCS’ 04, pages 360-369, 2004.

A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proceedings of NSDI’05, May 2005.

W. Hoschek, F. J. Jaén-Martinez, A. Samar, H. Stockinger,
and K. Stockinger. Data management in an international
data grid project. In Proceedings of GRID 00, pages 77-90,
2000.

J. Kim, A. Chandra, and J. B. Weissman. Accessibility in
loosely-coupled distributed systems. Technical Report 07-
028, University of Minnesota, November 2007.

J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattachar-
jee, and A. Sussman. Resource discovery techniques in dis-
tributed desktop grid environments. In Proceedings of GRID
2006, September 2006.

Y.-F. Lin, P. Liu, and J.-J. Wu. Optimal placement of repli-
cas in data grid environments with locality assurance. In
Proceedings of ICPADS 06, pages 465474, 2006.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. In
Proceedings of SIGMETRICS ’02, pages 258-259, 2002.
D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Design and implementation tradeoffs for wide-area resource
discovery. In Proceedings of HPDC’05, 2005.

Ozgiir B. Akan. On the throughput analysis of rate-based
and window-based congestion control schemes. Comput.
Networks, 44(5):701-711, 2004.

J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Model-
ing tcp reno performance: a simple model and its empirical
validation. I[EEE/ACM Trans. Netw., 8(2):133-145, 2000.
PlanetLab, http://www.planet-lab.org.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. In Proceedings of HPDC’98, page 140, 1998.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of SIGCOMM 01, pages 161-172, 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218:329+,
2001.

L. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of SIGCOMM 01,
pages 149-160, 2001.

R. Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing,
1(1):119-132, 1998.

D. Zhou and V. Lo. Cluster computing on the fly: resource
discovery in a cycle sharing peer-to-peer system. In Pro-
ceedings of CCGRID 04, pages 6673, 2004.

