

Dynamic Replica Management in the Service Grid

Byoung-Dai Lee and Jon B. Weissman
Department of Computer Science and Engineering,

University of Minnesota, Twin Cities
{blee, jon}@cs.umn.edu

Abstract
As the Internet is evolving away from providing simple
connectivity towards providing more sophisticated
services, it is difficult to provide efficient delivery of
high-demand services to end-users due to the dynamic
sharing of the network and connected servers. To
address this problem, we propose the service grid
architecture that incorporates dynamic replication and
deletion of services

1. Introduction

The Service Grid [2] is an infrastructure for generic
service delivery that has been designed to address several
bottlenecks of the current Internet. Most notably, lack of
reliability, transparency, and efficiency in service
delivery. Our solution is to perform dynamic replication
and deletion of services in response to user demand and
system outages. Replication is the process by which one
or more copies of a service are made. Although the idea
of replication is not new, it presents several interesting
challenges in the context of network services.

2. Architecture

Our architecture consists of three core components:
Replication Manager (RM), Group Manager (GM) and
Site Manager (SM). RM is the decision-maker for global
replica selection, creation and deletion, and tracks the
location and state of all the replicas.

The GM maintains a cache of local replicas allocated
to it by the RM over time. This replica pool is available
to the clients within the GM.

Every site in the service grid runs SM, whose primary
job is to interact with GM to determine the network
performance between replicas and client groups.

Each replica maintains a list of GMs that are
currently using the replica and reports its load status to
them periodically so that the GMs can have up-to-date
information on the replica status. To reduce unnecessary

network resource consumption, replicas can dynamically
change window size for status report. Among all GMs
that are sharing a replica, a primary GM is responsible
for propagating the information to the RM so that the
RM will also have an up-to-date global view of the
system. With this protocol, the GM offloads much of the
traffic that would otherwise reach the RM, promoting
scalability. In addition to information collection and
replica selection, the GM is also responsible for
decision-making about when to acquire replicas and
when to release replicas based on perceived performance
and replica utilization.

Replica creation and deletion are initiated by the GMs
in a distributed fashion. When the RM receives a replica
acquisition request from the GMs, it decides whether to
return an existing replica or to create a new replica based
on the replica utilization by other groups. When a GM
sends a replica release request and there is no other GM
that is using the released replica, the RM put that replica
in an idle replica pool.

3. Replica Management in GM

The GM runs three algorithms for replica
management: replica selection, replica acquisition, and
replica release. The challenge in designing algorithms for
replica acquisition and replica release is that these
algorithms should combine the goal of providing good
performance to end-users with the goal of utilizing the
system resources efficiently.

3.1 Replica Selection

Replica selection is the process by which the GM
selects a replica among its local cache of replicas that is
predicted to provide the best performance for the
requesting client. Replica selection in the GM is based
on response time prediction. With up-to-date state
information about replicas in its local cache, the GM can
predict the response time of the service accurately.

Response time (Tresp) is consists of four components:
service time (Ts), waiting time (Tw), communication time
(Tc) and overhead (To) and can be formulated as Tresp =
Ts + Tw + Tc + To. The GM will select a replica that
achieves a predicted minimum Tresp from its cache pool.

3.2 Replica Acquisition

Periodically, the GM computes the average response
time (Tresp) for all local replicas over a recent time
window. Once the average response time of each replica
is computed, the GM next applies the replica acquisition
algorithm to decide if it needs to acquire an additional
replica from the RM.

The algorithm is based on a response time threshold
(Tthreshold) and two parameters, P and Q (Q>P), that
control the degree of aggressiveness of replication. Each
GM is free to select these parameters differently. With P,
the GM can avoid acquiring unnecessary replicas due to
temporary network congestion or transient increase of
client demand. P requires that response time be
monotonically increasing above the threshold for P
consecutive time epochs. If the test on P fails, we apply
the Q test which is less restrictive. Q requires that the
response time be simply above the threshold for Q
consecutive time epochs. Smaller values of P and Q lead
to more aggressive replication. P allows an immediate
response to rapidly growing demand, while Q permits
some performance fluctuation and is more conservative.

3.3. Replica Release

If the GM caches more replicas than it needs to meet
its current threshold, some replicas may be idle and
system resources would in turn be wasted.

As a utilization metric, the number of requests that the
replica has served within this group over the time
window is used. This is the local utilization. The replica
may be actively used by other groups. As in replica
acquisition, the GM should not respond to a transient
decrease in client demand. We apply the same principle
within the release algorithm as in replica acquisition. The
difference is that the algorithm should be applied against
each local replica. Release does not mean that the replica
is deleted. Deletion is a decision that is ultimately up to
the RM, analogous to replica creation.

4. Replica Management in RM

The RM must perform the following replica
management tasks: replica acquisition and replica
release. Replica acquisition first examines the pool of
available replicas not currently used by the group making
the request. The RM determines whether an existing

replica can provide predicted performance below the
group�s threshold while not compromising the
performing of other groups sharing the replica. If these
criteria cannot be met, the RM will create a new replica.
Replica release simply indicates to the RM that the
replica has been removed from the GMs cache. The RM
notifies the replica of this change which allows the
replica to eliminate any status updates to this GM saving
network resources. In addition, the RM periodically
checks the status of idle replicas (replicas released by all
GMs). The RM is configured to maintain a minimum
pool of idle replicas in the system. When this limit is
exceeded, the RM will delete the replica that has been
idle for the longest period of time.

5. Conclusion

We described a new architecture for the efficient
delivery of high-demand network services, the Service
Grid. To achieve scalable, reliable and adaptive
performance, the Service Grid performs dynamic service
replication and deletion in response to changing client
demand. It implements an algorithmic framework for
dynamic replica management that controls the degree of
aggressiveness in creating and removing replicas.

A Service Grid prototype was built using the Legion
system [1] and preliminary results for a compute-
intensive service indicate that dynamic replica
management can be done to meet end-user performance
goals at a much lower cost than fully static replication.

6. References

[1] A.S. Grimshaw and W.A. Wulf, �The Legion Vision of a
Worldwide Virtual Computer�, Communications of the ACM,
Vol. 40(1), 1997

[2] Jon B. Weissman and Byoung-Dai Lee, �The Service Grid
Supporting Scalable Heterogeneous Services in Wide-Area
Networks�, Proceedings of symposium on Applications and the
Internet, 2001

