
A New Metric for Robustness with Application to Job Scheduling

Darin England, Jon Weissman, and Jayashree Sadagopan
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
{ england,jon,sj aya} @ cs,umn.edu

Abstract

Scheduling strategies for parallel and disrributed
computing have mostly been oriented toward perj5or-
tnance, while striving to achieve some notion of fairness.
With the increase in size, camplexiq, and heterogene-
ity of today’s computing environments, we argue that,
in addition to performance metrics, scheduling algo-
rithms should be designed for robustness. That is, they
should have the ability to maintain performance un-
der a wide variery of operating conditions. Although TO-

bustness is easy to define, there are no widely used merrics
for this property. To this end, we present a methodol-
ogy for characterizing and measuring the robustness of a
system to a specific disturbance. The methodology is eas-
ily applied ro many types of computing systems and it does
not require sophisticated mathematical models. To illus-
trace its use, we show three applications of our technique
to job scheduling; one supporting a previous result with re-
spect to backfilling, one examining overload control in
a streaming video serve& and one comparing two dif
ferent scheduling strategies for a distributed network
service. B e last example also demonstrates how consid-
eration of robustness leads to better system design as we
were able to devise a new and efective scheduling heuris-
ric.

1. Introduction

As its name suggests, high-performance computing per-
tains to the execution of large, scientific codes. Users want
results quickly, and job schedulers have evolved to accom-
modate them. There is no disputing the fact that perfor-
mance in job scheduling is paramount. Techniques such as
backfilling 1151 and gang scheduling 161 are designed to get
users’ jobs out of the queue and running as fast as pos-
sible. At the same time, we note that computing systems
are becoming larger, more distributed, and more heteroge-
neous. Huge data sets and large problem instances lead to

very long-running execution times that are inherently un-
predictable. Communication latencies contribute to more
uncertainty. Given these circumstances, we argue that it is
increasingly important for computing systems to be robust.
That is, systems should be able to maintain performance de-
spite various uncertainties in the operating environment. It
is important to emphasize that these uncertainties are out-
side the system’s control. Consider the case of a flash crowd
to a news service when disaster strikes, a distributed denial-
of-service attack, or the researcher who submits a 1 million
by 1 million dense matrix computation. These events oc-
cur with enough frequency to warrant consideration in sys-
tem design. This work presents a new way to measure how
well a system responds to such events.

We have an intuitive notion of robustness, but let us be a
bit more precise by employing the following definition that
we have adapted from the works of Ali et. al. [I] and Carl-
son and Doyle [3].

“Robustness is the persistence of certain specified
system features despite the presence of perturba-
tions in the system’s environment.”

Indeed, robustness is a desirable property, but how can we
evaluate it? We seek a way to characterize the robustness of
a system and obtain a corresponding quantitative metric. In
this article we introduce a methodology for achieving this
goal. In view of our definition above, we will be quite spe-
cific with respect to the performance features that we want
the system to maintain and with respect to the type of dis-
turbance (or perturbation) that is applied. What is unique
(and in our opinion quite necessary) about our methodology
is that it takes into account the full distribution of perfor-
mance observations, as opposed to just using average mea-
surements. This is important for two reasons: (1) The un-
certainty present in todays’ computing systems effect large
deviations in perfomance observations, and (2) The pres-
ence of large deviations (or outliers) can greatly affect the
average of a set of obsemations.

The use of stochastic information to guide system de-
sign is not new [8-10,14,17,18], and in the next section
we discuss the relevant related work. Results from some

0-7803-9037-71051$20.00 02005 IEEE 135

http://cs,umn.edu

of the prior work are restricted in the sense that they ex-
ploit the Markov property in order to make the mathematics
tractable. In reality, inter-arrival times and execution times
may not be exponentially distributed. A nice property of our
methodology is that it is straightfonvard to apply regard-
less of the underlying probability distribution from which
the observations are taken. Constructing the empirical dis-
tribution functions, an easy task, is at the heart of the tech-
nique.

The rest of the paper is organizedas follow,s. In section 2
we discuss related work in the areas of robustness, perfor-
mance evaluation, and scheduling. In section 3 we present
our methodology for characterizing and measuring the ro-
bustness of a system to a specific disturbance. Section 4
presents the application of our methodology to three differ-
ent problems: backfilling jobs on a partitionable supercom-
puter, serving requests for a streaming video service, and
routing requests for a network service to distributed $om-
puting nodes. We provide concluding remarks in section 5.

2. ReIated Work

2.1. System Design
_.

Gribble [7] makes a strong argument for considering ro-
bustness in the design of complex systems. They provide an

. example of a distributed application which performs we11
under normal operating circumstances. -However, unfore-
seen interactions among the loosely coupled components
lead to poor performance and even corruption of the system.
Gribble’s work gives general suggestions for how to incor-
porate robustness into the design of complex systems, in-
cluding admission control, system introspection, and adap-
tive control. However, they do not provide a mechanism for
measuring the robustness of the resulting system.

2.2. Measuring Robustness

Most closely related to our work, Ali et. al. [11 present a
metric for the robustness of a resource allocation. Their pro-
cedure consists of identifying the performance features that
cause system degradation and quantitatively specifying the
bounds on those features. Then the unpredictable elements
(called perturbation parameters) and their impact on the sys-
tern are assessed by finding a mathematical relationship be-
tween the perturbation parameters and the system perfor-
mance features. The robustness measurement of a system is
determined by finding the smallest variation in the perturba-
tion parameters that cause degradation of the system to vi-
olate the performance bounds. In general, the problem of
finding the smallest acceptable variation, called the robust-
ness radius, is cast as a mathematical optinjzation problem.
The authors of this work do a good job of defining the ro-

bustness metric and they present the application of the met-
ric to three example systems. However, the specification of
the bounds on the performance features seems somewhat
arbitrary and may only apply to systems for which accept-
able performance is well-defined. Our metric for robustness
is generally applicable and is considerably easier to com-
pute.

Although not advertised as a way to measure robustness,
another alternative view to traditional performance mea-
surements is performability. The idea behind perfomabil-
ity is that measurements of either performance or availabil-
ity alone do not indicate the real usefulness ofa system, es-
pecially for multiprocessor and distributed systems. When
used in a modeling context, performance measurements that
ignore failure and repair overestimate the capacity of a sys-
tern, Similarly, availability measurements do not consider
lower levels of performance and hence underestimate the
capacity of a system. Perfomability, as described in [14,
le], measures the amount of useful work that a system can
complete as it undergoes various levels of degradation. In
this way the work of Smith et. al. [18] could be viewed as a
way to measure robustness; however, their method requires
that the system be modelled as a Markov Reward Model.
Then, transient and steady-state methods are applied to view
the accumulated performance. The modeling and solution
techniques require significant work and there exist systems
for which the assumptions of the Markov property do not
hofd. Our robustness metric can be used in any analytical
model for which the CDFs of the disturbance and perfor-
mance can be calculated or estimated. It can also be applied
to the empirical CDFs of actual system data.

2.3. Scheduling

With respect to scheduling, Schopf and Berman [171 ex-
amine the use of the probability distribution of an applica-
tion’s execution time in order to achieve good performance
on multi-user clusters. Their focus is on data parallel appli-
cations where the amount of computation performed is di-
rectly related to how much data is assigned to a processor.
The scheduling policy tries to assign data to each processor
so that all processors finish at about the same time, a policy
known as time balancing. However, execution times vary
because the computing resources are shared, and as a con-
sequence, some machines are more heavily loaded than oth-
ers. The main idea is to assign more data to machines with
smaller variability in performance. The reasoning is such:
suppose that a machine is fast but exhibits high variabil-
ity in performance. More data will be assigned to this ma-
chine because it is fast; however, its high variability will
have a large impact on the overall application execution
time. Through experiments with a distributed application,
Schopf and Berman show that it is possible to o b h bet-

136

ter performance and predictability when using a stochastic
scheduling approach.

Several researchers have found that the execution times
of many computational tasks follow a heavy-tailed proba-
bility distribution [4,8,10,13]. In 191, Harchol-Balter et. al.
present a policy for assigning disrributed servers to such
computational tasks. Their policy, called SITA-E (Size In-
terval Task Assignment with Equal Load), bdances the
workload by computing ranges for execution times and then
assigning tasks whose execution times fall within the same
range to the same server. Thus, a priori knowledge of the
execution times is required for the assignment. They show
through both analysis and simulation that their assignment
policy performs well when the variability of the execution
times is high, i.e. when the execution times follow a heavy-
tailed distribution. The performance metric of interest in [9]
is mean waiting time, Our work differs in that we are con-
cerned with the maintenance of a performance metric as
variability is introduced into the workload. We also make
the important distinction that although we assume knowl-
edge of the distribution of such variability, e.g. execution
times, we do not require a priori knowledge of the execu-
tion times of individual tasks.

3. Measuring Robustness

3.1. Measuring Performance Degradation

A property such as robustness is easy to define, but dif-
ficult to measure in a quantitative mariner. Perhaps this is
why there are no commonly used robustness metrics. To be-
gin we first note'that robustness is not performance. This
is not to say that the two properties are mutually exclu-
sive, but rather they have different meanings in the context
of computing systems. It is possible for a system to per-
form quite well under normal operating circumstances and
yet exhibit catastrophic failure when subjected to slight dis-
turbances [3]. Alternatively, if a system's operating environ-
ment is known to be highly variable, one might prefer a sys-
tem with less average performance, but robust to a wide va-
riety of operating conditions. Figure 1 shows an overview
of our situation. We observe a specific performance metric
such as packets per second, waiting time, or utilization un-
der normal system operation and with a disturbance applied.
The idea is to measure the amount of performance degrada-
tion relative to the size of the disturbance. Typical perfor-
mance metrics for some representative computing systems
are shown in Table 1. We list these metrics in order to show
that our methodology for measuring robustness applies to a
wide variety of systems.

Consider the cumulative distribution function (CDF) of
the performance metric. Given a set of performance obser-
vations, the CDF is simply the proportion of observations

O b s e d performance

Figure 1. Measuring Robustness

Svstem TvDical Derfonnance metric
Web server Maximum number simultane-

FTP server Bytes per second
Media server Delayljitter
Network router Packets per second
Supercomputer/clustes Utilization

ous connections

Table 1. System Performance Metrics

less than or equal to a certain value. Let X be an observa-
tion of the system's performance. Let F (z) = P (X 5 x)
be the CDF of performance under normal operating con-
ditions and let F * (s) = P (X < .) be the CDF of perfor-
mance with perturbations applied. If the the system is robust
with respect to the type of perturbation applied, then F' (x)
should be very similar to F (z) . The closer the two func-
tions agree, the more robust the system. However we ex-
pect the perturbations to have some effect on performance,
and this is what we measure. In the case where small ob-
servations of the performance metric are good, e.g. waiting
time or communication delay, we expect F (z) to be greater
than F*(z) . That is, for a given value of the performance
metric, 5, we expect a greater proportion of the observa-
tions to be less than z when the system is in normal op-
eration (see Figure 2). To measure the degradation in per-
formance, we measure the maximum distance between the
two functions, F (x) and F*(a) , as shown in Figure 2. In
fact this distance, which we denote as 6, is the well-known
Kolmogorov-Smirnov (K-S) statistic, which is computed as

137

X

Figure 2. The Kolmogorov-Smirnov Statistic b . .

-
2. 10'-

I

/

_ * e - - - - _ _ - -
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.Q 0.95 1

FIxI

c

Figure 3. Weighting Functions for the K-S
follows' Statistic d -

5 = sup F(rc) -F*(z) .
--co<X<oO

Normally, the K-S statistic is employed to either accept
or reject the hypothesis that two sets of observations come
from the same underlying probability distribution. Given
the distance S and the sample sizes, one may compute the
probability that a distance of 6 would actually occur if the
two samples really came from the same distribution. Thus
the typical use of the K-S statistic is to make a binary deci-
sion: either we accept or reject the hypothesis that the two
sets of observations are statistically equivalent. For our pur-
poses we will make furcher use of d by using its magnitude
as an indication of the amount of performance degradation.
A nice property of 6 is its invariance to the scale used for
the z-axis. (Recall that the CDF is the proportion of obser-
vations less than or equal to a given value 5.) For example,
b will be the same whether we use x or log 2 as the scale for
the abscissa. We also note that 6 will always be in the range

However the main reason we use 6 to measure the
amount of performance degradation is because it takes into
account the entire distribution of performance observations,
and not just averaged measurements. This is important be-
cause, as mentioned in the Introduction, averagesare greatly
affected by the presence of outliers. 6, on the other hand, is
not. Indeed, a robust statistic is one that is not affected by
the presence of outlying data points. This is robustness on
another level; we are using a robust statistic to measure the
robustness of a system.

I

.

IO, 11.

The statistic is defined using the supremum instead of the more famil-
iar maximum. This i s due to the fact that the maximum is not well-
defined for some Sets of numbers.

3.2. Adjusting the K-S Statistic d

The K-S statistic d has its own probability distribution.
Although any particular observed value of d is invariant
with respect to the x-axis, its probability distribution is not.
It is known that d is most sensitive at values near the median,
where F (z) = .5, and that 6 is underestimated near the tails
of the CDF [2]. This is particularly important for our work
for two reasons. The first reason is that values at the right
tail of the CDF represent large values of the performance
metric, which represent a larger impact to the system. The
second reason is that many real-world computing systems
exhibit the heavy-tailed phenomenon. This is the notion that
a small percentage of the observations constitute the bulk
of the total disturbance or performance. Well-known exam-
ples include the distribution of file sizes requested by HlTP
and FTF' clients, and the distribution of UNai process life-
times [lo]. One way to compensate for this underestima-
tion is to weight 8 as a function of F (x) , with the weight
increasing toward the right tail. Denote this weighting func-
tion by ~ (F (z)) = $(x). Then the adjusted K-S statistic is
given by

6, = sup (F (s) - F*(z))$(z) .
-w<z<m

We considered two different weighting functions, both of
which are basedonthe fact thatthequantity F (z) (l - F (a))
is greatest at F (s) = 0.5. The magnitudes of these two
functions, $(z) = l/dF(z)(l - F (s)) , and $(z) =
-In(F(z)(l-F(z))),are showninFigure 3. (Notethe log-
arithmic scale for the ordinate.) Choosing a proper weight-
ing function is somewhat subjective - we want to compen-

138

4. Application to Job Scheduling

Size of Disturbance

Figure 4. Characterizing the Robustness of a
System

sate d for underestimation at the right tail, but not by too
much. After some experimentation, we chose the function
$(x) = -In(F(z)(l - F (z))) to apply in the computa-
tion of 6,. We mention here that we only apply the weight
when S occurs to the right of the median since these val-
ues have the largest impact on the system. Thus if d occurs
to the left of the median, then $(x) = 1.

3.3. Characterizing Robustness

So far we have described our technique for measuring
performance degradation. However the measurement, S,,
corresponds to just one level of disturbance. A robust sys-
tem has the connotation of being able to withstand various
levels of disturbance. With this in mind, we can character-
ize the robustness of a system by measuring 8, as a function
of the size of the applied perturbations. If the system is ro-
bust, then d, will show a graceful increase as the size of the
disturbance increases. Systems that are sensitive to the ap-
plied disturbance wilf exhibit large, possibly nonlinear in-
creases in 6,. This idea is illustrated in Figure 4. It is also
possible for 6, to decrease as the disturbance is increased,
in which case the term “disturbance” is really a misnomer
since the applied perturbations caused the system to per-
form better, i.e. F (z) < F * (z) for all vatues of z. When
this happens we could say the system is super-robust. Al-
though it seems counter-intuitive that perturbations outside
the system’s control would be beneficial, our first example
in the next section exhibits this phenomenon.

In this section we apply our methodology for measur-
ing and characterizing the robustness of a system to a spe-
cific disturbance. The first example, backfilling jobs on par-
allel machines, uses trace data from a red system. The sec-
ond example concerns overload control in a streaming me-
dia server, for which the data was collected from an actual
implementation. Finally, the last example is more theoreti-
cal in nature. Based on data from a simulation, it pertains to
routing requests in a distributed network service.

4.1. Backfilling on Supercomputers

The basic premise of fairness in job scheduling on par-
allel machines is the notion of first-come-first-served. How-
ever a job that requires a large number of processors may
delay many smallerjobs while it waits for its required num-
ber of processors to become free. Backfilling was devised
to remedy this situation. Using this technique, a job may
move ahead of other jobs in the queue and begin processing
as long as it does not delay thefirst job in the queue’. This
form of backfilling is commonly employed in parallel job
schedulers such as Maui and IBM Load-leveller. In order to
work, the algorithm requires that users submit run time esti-
mates with their job submissions. It is well-known that these
estimates are notoriously inaccurate [12,153. The run time
estimates a n generaily inflated because users do not want
the system to kill their jobs in case the actual run time ex-
ceeds the estimate. It has also been observed that usen sim-
ply do not take the time to provide good estimates [12]. An
interesting feature of backfilling that was reported in [15]
is that over-estimation of run time estimates actually ben-
efits the system. The reason is that the aIgorithm can find
more “holes” in the schedule to move jobs forward when
the estimated run times are large. By ”benefit the system”
we mean that metrics such as average queue time and uti-
lization are improved. ’

As a first application of our methodology, We tested the
robustness of the backfilling algorithm to the inaccuracy of
user run time estimates. The backfilling algorithm that we
implemented is exactly the one described in [lS] for a,g a res-
sive backfilling. The parallel workload we used is from the
San Diego Supercomputer Center Blue Horizon machine,
which is available from [161. This machine is a 144 node
IBM SP with X processors per node. The log is for the pe-
riod from April 2000 to January 2003. In this experiment,
the performance metric in which we are interested is the dis-
tribution of queue times and the disturbance is the amount of

2 This is known as aggressive backfilling. Conservative backfilling.
which is not widely used, requires lhat the jab that moves ahead may
not delay m y job that was ahead of it in the queue

139

Weighted K-S Statistic I , vs Inaccuracy of Runtime Estimate
0 9 , , , , , , , , , , ,

* A - - . . -

o IO 20 90 aa M 50 70 m 93 103
Percent 01 Over/Uoder-estimation

4 1

Figure 5. Robustness of Backfilling to Inac-
curacy of User Runtime Estimates

inaccuracy in the user run time estimates. Based on the anal-
ysis presented in [15], we expected the system to be robust
against over-estimation, but not against under-estimation.
We tested both. First we ran the backfilling algorithm on
the workload log using the exact run times as the estimates.
Then, we made further runs increasing the run time esti-
mates in increments of 10% up to 100%. To be clear, the
run time of every job was consistently over-estimated by a
certain percentage of its actual run time for the purpose of
backfilling. We ran the experiment for under-estimation of
run times as well. The robustness of the algorithm-to over-
estimation and to under-estimation is presented in Figure 5.

As expected, the backfilling algorithm performs well
when run times are over-estimated. In fact, the slope of the
(least-squares) fitted line is negative, which indicates that
over-estimation of run times actually benefits the distribu-
tion of queue times (i.e. the system is super-robust). We also
found that backfilling is very robust to under-estimation,
although the performance does degrade as the amount of
under-estimation increases. Note that the inaccuracy, under-
or over-estimation, applies to the job being considered for
backfilling as well as to the jobs that are in progress. Thus
the scheduler does not know when a job will actually fin-
ish until it does so. We also mention that our simulation did
not kill any jobs due to under-estimation of run time. This
.example illustrates how our methodology can be applied to
measure the robustness of a system to a specific disturbance.
Our results support those of a previous work and also indi-
cate that backfilling is robust to inaccurate run time esti-
mates in general. It seems that with respect to backfilling
what the scheduler doesn’t know won’t hurt it.

-

I

Figure 6. SEDA-based Video Server

4.2. Streaming Video Server

The second application of our methodology is to mea-
sure the robustness of a streaming video server to increased
load. Used in a separate project to study adaptive overIoad
control, this particular server is based on the SEDA [I91
architecture. SEDA (staged event-driven architecture) is a
framework designed for high concurrency and robustness to
large variations in load [191. An application built on SEDA
consists of a series of stages, each stage having its own
queue. This allows for fine-grained control of separate sec-
tions of an application, including resource allocation and er-
ror reporting. The stages for our video server are shown in
Figure 6.

User satisfaction with a streaming video service depends
on jitter, or delay, between frames. In order to avoid jitter,
the server limits the number of threads that can run simulta-
neously in the video retrieval stage. This can cause a queue
of requests to build up quickly when the server is experi-
encing overload or when the requested videos are large. The
end-to-end delay seen by the user can be conkoiled by limit-
ing the queue delay and the video retrieval duration, assum-
ing a relatively constant transmission time. This is the mo-
tivation behind the overIoad control mechanism. The server
stores pre-encoded videos of varying quality. High quality
videos take longer to transmit and consume more server re-
sources than low quality videos. Based on the current sys-
tem load, the server decides which quality of video to de-
liver to the client. The system load is measured by the num-
ber of requests in the queue at the video retrieval stage (see
Figure 6). This technique has the advantage that it reduces
both the queue time and the video retrieval time. n e com-
promise is the quality of video delivered to the client when
the system is experiencing heavy load. Hence the system is
better suited for applications where the user values quick re-
sponse over video quality, for example a news on-demand-
video server.

In this experiment, we measure the robustness of the
system as the load on the server is increased. The perfor-
mance feature that we wish to maintain is response time, the
elapsed time between the client’s request and the arrival of

.

140

the first video byte. Although the system is capable of drop-
ping requests at extremely high loads, the threshold for do-
ing so is set high enough to ensure that all requests are pro-
cessed. Both the video objects and the requests for them (the
workload) were generated using GISMO [111, a synthetic
streaming media load generator. The details of the load gen-
erator are presented i n [1 1 J . Here we briefly describe the rel-
evant parameters for our experiments. Video file sizes fol-
low a lognormal distribution, which is somewhat similar to
a normal distribution, but is skewed to the right. This allows
the probability of having Iarger file sizes than are possible
under a normal distribution with the same mean. The pop-
ularity of any particular video is determined by a Zipf-like
distribution. This is a power-law distribution wherein a few
videos are extremely popular while most videos are rarely
requested. The interarrival times of individual requests for
the video service are generated from a truncated Pareto dis-
tribution, which is also a power-law distribution. The pur-
pose of generating the interarrival times in this manner is to
simulate periods of heavy activity mixed with periods of rel-
atively light activity.

There are two versions of the server: one version con-
tains the overload control mechanism, and the other ver-
sion does not. The server and client are executed on sepa-
rate machines in a local area network. To inject Ioad on the
server, the client generates requests for the video service for
a duration of 90 seconds, increasing the total number of re-
quests for each experiment. Figure 7 shows the robustness
of each version of the video server to increased load. When
the load on the server is low, both systems give compara-
ble perfomance. As the number of simultaneous requests
increases, the queue begins to build up. The video server
with the overload control mechanism adapts to t h i s situa-
tion by degrading the quality of video being served. The
gradual increase in the weighted K-S statistic indicates a
more graceful degradation in response time than the version
of the server that does not use overload control. Of course
this result is expected since the overload control mechanism
was designed to handle large variations in load. But what
we want to show is that the application of our methodol-
ogy provides a quantitative way to measure the robustness
of the overload control mechanism.

4.5.

4 -

4.3. Distributed Network Service

* VdRlBarver
0 V I m wilh enamif se- degredatim

In this section we apply the robustness metric to a sim-
ulated network service. Requests for the service arrive ac-
cording to a Poisson process at the rate of 2 requests per
minute. The service is hosted on three computing nodes and
requests are routed to one of the three nodes according to
a scheduling policy. Each node contains its own separate
queue to hold requests before processing (see Figure 8) and
the performance feature of interest is the amount of time re-

Number of requests

Figure 7. Robustness of Video Server to In-
creased Load

t

Figure 8. Network Service Hosted on Three
Resources

quests spend in the queue. Naturally, it is desirable for the
queue times to be as small as possible. Suppose that under
normal operating conditions the execution times of the re-
quests are exponentially distributed with a mean of 4 min-
utes. However, the computing nodes are time-shared with
other applications and during periods of heavy load the exe-
cution times follow a heavy-tailed Weibull distribution with
shape parameter cy = .42 and scaIe parameter p = 1.35,
which also has a mean of 4 minutes, but much higher vari-
ance. The nature of this distribution is such that most exe-
cution times are very short; however, there are a few exe-
cution times that are very long in duration. We would like
to know which of two scheduling policies is more robust to
long-running execution times. Thi two polices to be consid-
ered are:

141

Shortest Queue Route incoming requests to the node with
the least number of queued requests.

AlternateMethod Route requests to the node with the
most recently started execution.

It has been shown that when the execution times are ex-
ponentially distributed the shortest queue policy is optimal
for this type of distributed queueing system [5] . This is not
necessarily the case-in the presence of very long execu-
tion times (i.e. as the taiI of the distribution becomes heav-
ier). The philosophy behind the alternate scheduling policy
centers on recognition of the decreasing failure rate of the
Weibull distribution (with cy < 1). Under this distribution,
the longer a request has been in execution the more likely
it i s to execute even longer [XI. Thus the policy attempts
to avoid sending requests to nodes that are already process-
ing long-running requests. We use &e term “attempt” be-
cause individual execution times are not known a priori.

To test the robustness of the two scheduling policies to
the presence of very long executions we simulated the sys-
tem for different values the Weibull shape parameter a.
Holding the scale parameter fi constant while decreasing
Q increases the right tail of the Weibull distribution. In this
way we simulated increasing levels of disturbance in the
form of execution times of very long duration. Each of the
two scheduling policies was simulated for 10,000 requests
for each level of a. The robustness characteristics of both
scheduling policies are shown in Figure 9. Naturally, the
performance of both policies degrade with the increasing
presence of extremely long execution times, but the alter-
nate method is clearly more robust as evidenced by the lin-
ear increase in 6,. Compare this to the steep, nonlinear in-
crease in 6, for the shortest queue policy. The fitted curve
is a polynomiaI of degree 4, which seemed to best describe
the trend.

. .

Let us explicate the conchsions from this example. We
cannot simply state that the alternate policy is more robust
than shortest queue in any case. What we can state, with
a quantitative measurement, is that the ahernate policy is
more robust than shortest queue in the presence of long-
running execution times. We view this detailed nature of the
metric as an attribute, not a limitation. Indeed, claiming that
a system is robust without stating the type of disturbance it
can withstand is so generic as to be almost useless. This ex-
ample further shows how consideration of robustness in sys-
tem design can lead to new strategies. Although our alter-
nate method is a heuristic, and thus not provabIy optimal,
we have shown that it performs better than shortest queue
as the disturbance increases, and performs as good as short-
est queue when the level of disturbance is low.

Weighted K-S Statistic S, vs. lang-running Exectiin Times .

I I

Shape Parameier a
,415 ,410 .a5 400 395 .w ,385 38) ,975

Figure 9. Robustness of Scheduling Strategy
to Long-running Executions

S. Conclusion

Robustness is a desirable property for computing sys-
tems. It is not the same thing as performance, but rather,
it measures the ability of a system to maintain performance
in the presence of adverse operating conhtions. This notion
is important for today’s large, .complex high-performance
computing systems because they are increasingly subject to
uncertainty in load, communication latency, and even re-
source availability. While acknowledging that performance
is the namesake in high-performance computing, we have
argued that it also important to consider robustness in sys-
tem design. Robust systems are able to withstand distur- .
bances and maintain performance features. Ideally, comput-
ing systems should achieve both performance and robust-
ness.

We presented a new methodology to characterize and
quantitatively measure the robustness of a system to a sp5-
cific disturbance. The technique is easy to understand and
easy to apply: measure the degradation in performance
as reflected in the cumulative distribution functions and
plot this measurement against increasing levels of the dis-
turbance. In this way we consider the entire distribution
of performance observations and we do not rely on aver-
ages that can be greatly affected by the presence of out-
lying data points, itself another level of robustness. We
also presented three example applications of our method-
ology. The first example tested the robustness of the aggres-
sive backfdling algorithm to the inaccuracy that is inher-
ent in users’ estimates of run time. Using trace data from
the SDSC Blue Horizon machine we incrementally over-

142

estimated (and under-estimated) user run times and then
measured the resulting change in the distribution of queue
times. Characterization of the system’s robustness to inac-
curate run time estimates showed that over-estimation actu-
ally improves queue times while underestimation degrades
them, albeit only slightly. The second application was to as-
sess the robustness of an overload control mechanism in a
streaming media server. The server was implemented on the
SEDA framework and the workload was created using the
GISMO Ioad generator, By employing the overload control
mechanism the server was shown to be robust against very
high load, albeit at the cost of degraded video quality as
seen by the client.

The final example application of our methodology com-
pared the robustness of two different scheduling policies
to the presence of long-running execution times in a dis-
tributed network service. Again, the performance metric of
interest was queue time. We showed that when the exe-
cution times foilow a heavy-tailed probability distribution
it is more robust to avoid routing requests to nodes that
are (likely to be) processing long-running requests. Fur-
thermore, taking robustness into consideration led to a new
scheduling heuristic, one that performs much better than the
traditional strategy as the disturbance grows and aIso per-
forms well under normal operating conditions. The exam-
ples demonstrate the utility of our methodology. Character-
izing and measuring the robustness of a system in this way
is intuitive and easy to apply. The results can then be used
as one measure of the overall usefulness of a system.

6. Acknowledgements

The authors would like to acknowledge the support of the
National Science Foundation under grants CNS-0305641
and ITR-0325949, the Department of Energy’s Office of
Science under grant DE-FG02-03ER25554, and the Min-
nesota Supercomputing Institute for Digital Simulation and
Advanced Computation and the Digital Technology Center
at the University of Minnesota.

References

[I] S . Ali et al. Measuring the robustness of a resource allo-
cation. IEEE Transactions on ParalEel and Disiributed Sys-
tems, 15(5), May 2004.

[2] T. W. Anderson and 13. A. Darling. Asymptotic theory of cer-
tain “goodness of fit” criteria based on stochastic processes.
The Annals of Mathematical Sraristics, 23(2): 193-212, June
1952.

[3] J. M. Carlson and J. Doyle. Highly optimized tolerance: Ro-
bustness and design in complex systems. Physical Review
Letters, 84:2529-2532, 2000.

Formal models of
heavy-tailed behavior in combinatorial search. In Pmceed-

[4] H. Chen, C. Gomes, and B. Selman.

ings of the Sevetzfh International Conference on Principles
and Practices of Constraint Programming, 2001.

[5] A. Ephremides, P. Varaiya, and 1. Walrand. A simple dy-
namic routing problem. IEEE Transactions on A m m r i c
Control, AC-25(4):690-693, Aug. 1980.

[6] D. G. Feitelson. Packing schemes for gang scheduling. In
D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Pmcessing, volume 1162, pages 89-
110. Springer-VerIag, 1996. Lecture Notes in Computer Sci-
ence.

[7] S . D. Gribble. Robustness in complex systems. In Proceed-
ings IEEE Eighrh Workshop on Hoi Topics in Operating Sys-
rems, pages 21-26, May 2001.

I81 M. Harchol-Balter. The effect of heavy-tailed job size dis-
tributions on computer system design. In In Proceedings of
ASA-IMS Conference on Applications of Heavy Tailed Dis-
rribufions in Economics, Engineering and Staiistics, June
1999. Washington, DC.

[9] M. Harchol-Balter, M. E. Crovella, and C. D. M u m . On
choosing a task assignment policy for a distributed server
system. in Prvceedings of Peg5orrnance Tools 1998, pages
231-242, 1998. Springer-Verlag Lecture Notes in Computer
Science.

[IO] M. Harchol-Balter and A. Downey. Exploiting process life-
time distributions for dynamic load balancing. ACM Trans-
actions on Computer Systems, 15(3), 1997.

1111 S . Jin and A. Bestavros. Gismo: a generator of internet
streaming media objects and workloads. SIGMETRICS Per-
form. Eval. Rev., 29(3):2-10,2001.

I121 C. B. Lee et al. Are user runtime estimates inherently in-
accurate? In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Srrategies for PamlIel Processing. Springer Ver-
lag, 2004. Lecture Notes in Computer Science.

1131 W. Leland and T. J. Ott. Load-balancing heuristics and pro-
cess behavior. In ACMSIGMETRICSJoinr Corlference Com-
puter Petformance Modelling, Measurement and Evaluatiois
pages 54-69, 1986. Raleigh, NC.

[I41 J. E Meyer. On evaluating the performability of degradable
computing systems. IEEE Transactions on Compuiers, C-
29(8):720-731, Aug. 1980.

[151 A. Mu’alem and D. Feitelson. Utilization, predictability,
workloads, and user run time estimates in scheduling the ibm
sp2 with backfilling. IEEE Transactions on Parallel aid Ris-
rributed Systems, 12(6), June 2001.

The hebrew university of
jerusalem, school of computer science and engineering.
www.cs.huji.ac.il/labs/parallel/workload,
2005.

I171 J. M. Schopf and E Berman. Stochastic scheduling. In Pro-
ceedings of the I999 ACM/IEEE Conference on Supercom-
puting, 1999.

[I81 R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performabil-
ity analysis: Measures, an algorithm, and a case study. IEEE
Transactions on Computers, C-37(4):40&417, Apr. 1988.

[19] M. Welsh, D. Culler, and E. Brewer. Seda: An architec-
ture for well-conditioned, scalable internet services. In
18th ACM Symposium on Operating Systems Principles,
SOSP’OI, 2001.

[I61 Parallel Workload Archive.

143

