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Abstract

Scheduling strategies for parallel and distributed
computing have mostly been oriented toward perfor-
mance, while striving to achieve some notion of fairness.
With the increase in size, complexity, and heterogene-
ity of today’s computing environments, we argue that,
in addition to performance metrics, scheduling algo-
rithms should be designed for robustness. That is, they
should have the ability to maintain performance un-
der a wide variety of operating conditions. Although ro-
bustness is easy to define, there are no widely used metrics
for this property. To this end, we present a methodol-
ogy for characterizing and measuring the robustness of a
system to a specific disturbance. The methodology is eas-
ily applied to many types of computing systems and it does
not require sophisticated mathematical models. To illus-
trate its use, we show three applications of our technique
to job scheduling; one supporting a previous result with re-
spect to backfilling, one examining overload control in
a streaming video server, and one comparing two dif-
ferent scheduling strategies for a distributed network
service. The last example also demonstrates how consid-
eration of robustness leads to better system design as we
were able to devise a new and effective scheduling heuris-
tic.

1. Introduction

As its name suggests, high-performance computing per-
tains to the execution of large, scientific codes. Users want
results quickly, and job schedulers have evolved to accom-
modate them. There is no disputing the fact that perfor-
mance in job scheduling is paramount. Techniques such as
backfilling [15] and gang scheduling [6] are designed to get
users’ jobs out of the queue and running as fast as pos-
sible. At the same time, we note that computing systems
are becoming larger, more distributed, and more heteroge-
neous. Huge data sets and large problem instances lead to

very long-running execution times that are inherently un-
predictable. Communication latencies contribute to more
uncertainty. Given these circumstances, we argue that it is
increasingly important for computing systems to be robust.
That is, systems should be able tomaintainperformance de-
spite various uncertainties in the operating environment.It
is important to emphasize that these uncertainties are out-
side the system’s control. Consider the case of a flash crowd
to a news service when disaster strikes, a distributed denial-
of-service attack, or the researcher who submits a 1 million
by 1 million dense matrix computation. These events oc-
cur with enough frequency to warrant consideration in sys-
tem design. This work presents a new way to measure how
well a system responds to such events.

We have an intuitive notion of robustness, but let us be a
bit more precise by employing the following definition that
we have adapted from the works of Ali et. al. [1] and Carl-
son and Doyle [3].

“Robustness is the persistence of certain specified
system features despite the presence of perturba-
tions in the system’s environment.”

Indeed, robustness is a desirable property, but how can we
evaluate it? We seek a way to characterize the robustness of
a system and obtain a corresponding quantitative metric. In
this article we introduce a methodology for achieving this
goal. In view of our definition above, we will be quite spe-
cific with respect to the performance features that we want
the system to maintain and with respect to the type of dis-
turbance (or perturbation) that is applied. What is unique
(and in our opinion quite necessary) about our methodology
is that it takes into account the full distribution of perfor-
mance observations, as opposed to just using average mea-
surements. This is important for two reasons: (1) The un-
certainty present in todays’ computing systems effect large
deviations in performance observations, and (2) The pres-
ence of large deviations (or outliers) can greatly affect the
average of a set of observations.

The use of stochastic information to guide system de-
sign is not new [8–10, 14, 17, 18], and in the next section
we discuss the relevant related work. Results from some



of the prior work are restricted in the sense that they ex-
ploit the Markov property in order to make the mathematics
tractable. In reality, inter-arrival times and execution times
may not be exponentially distributed. A nice property of our
methodology is that it is straightforward to apply regard-
less of the underlying probability distribution from which
the observations are taken. Constructing the empirical dis-
tribution functions, an easy task, is at the heart of the tech-
nique.

The rest of the paper is organized as follows. In section 2
we discuss related work in the areas of robustness, perfor-
mance evaluation, and scheduling. In section 3 we present
our methodology for characterizing and measuring the ro-
bustness of a system to a specific disturbance. Section 4
presents the application of our methodology to three differ-
ent problems: backfilling jobs on a partitionable supercom-
puter, serving requests for a streaming video service, and
routing requests for a network service to distributed com-
puting nodes. We provide concluding remarks in section 5.

2. Related Work

2.1. System Design

Gribble [7] makes a strong argument for considering ro-
bustness in the design of complex systems. They provide an
example of a distributed application which performs well
under normal operating circumstances. However, unfore-
seen interactions among the loosely coupled components
lead to poor performance and even corruption of the system.
Gribble’s work gives general suggestions for how to incor-
porate robustness into the design of complex systems, in-
cluding admission control, system introspection, and adap-
tive control. However, they do not provide a mechanism for
measuring the robustness of the resulting system.

2.2. Measuring Robustness

Most closely related to our work, Ali et. al. [1] present a
metric for the robustness of a resource allocation. Their pro-
cedure consists of identifying the performance features that
cause system degradation and quantitatively specifying the
bounds on those features. Then the unpredictable elements
(called perturbation parameters) and their impact on the sys-
tem are assessed by finding a mathematical relationship be-
tween the perturbation parameters and the system perfor-
mance features. The robustness measurement of a system is
determined by finding the smallest variation in the perturba-
tion parameters that cause degradation of the system to vi-
olate the performance bounds. In general, the problem of
finding the smallest acceptable variation, called the robust-
ness radius, is cast as a mathematical optimization problem.
The authors of this work do a good job of defining the ro-

bustness metric and they present the application of the met-
ric to three example systems. However, the specification of
the bounds on the performance features seems somewhat
arbitrary and may only apply to systems for which accept-
able performance is well-defined. Our metric for robustness
is generally applicable and is considerably easier to com-
pute.

Although not advertised as a way to measure robustness,
another alternative view to traditional performance mea-
surements isperformability. The idea behind performabil-
ity is that measurements of either performance or availabil-
ity alone do not indicate the real usefulness of a system, es-
pecially for multiprocessor and distributed systems. When
used in a modeling context, performance measurements that
ignore failure and repair overestimate the capacity of a sys-
tem. Similarly, availability measurements do not consider
lower levels of performance and hence underestimate the
capacity of a system. Performability, as described in [14,
18], measures the amount of useful work that a system can
complete as it undergoes various levels of degradation. In
this way the work of Smith et. al. [18] could be viewed as a
way to measure robustness; however, their method requires
that the system be modelled as a Markov Reward Model.
Then, transient and steady-state methods are applied to view
the accumulated performance. The modeling and solution
techniques require significant work and there exist systems
for which the assumptions of the Markov property do not
hold. Our robustness metric can be used in any analytical
model for which the CDFs of the disturbance and perfor-
mance can be calculated or estimated. It can also be applied
to the empirical CDFs of actual system data.

2.3. Scheduling

With respect to scheduling, Schopf and Berman [17] ex-
amine the use of the probability distribution of an applica-
tion’s execution time in order to achieve good performance
on multi-user clusters. Their focus is on data parallel appli-
cations where the amount of computation performed is di-
rectly related to how much data is assigned to a processor.
The scheduling policy tries to assign data to each processor
so that all processors finish at about the same time, a policy
known as time balancing. However, execution times vary
because the computing resources are shared, and as a con-
sequence, some machines are more heavily loaded than oth-
ers. The main idea is to assign more data to machines with
smaller variability in performance. The reasoning is such:
suppose that a machine is fast but exhibits high variabil-
ity in performance. More data will be assigned to this ma-
chine because it is fast; however, its high variability will
have a large impact on the overall application execution
time. Through experiments with a distributed application,
Schopf and Berman show that it is possible to obtain bet-



ter performance and predictability when using a stochastic
scheduling approach.

Several researchers have found that the execution times
of many computational tasks follow a heavy-tailed proba-
bility distribution [4, 8, 10, 13]. In [9], Harchol-Balter et. al.
present a policy for assigning distributed servers to such
computational tasks. Their policy, called SITA-E (Size In-
terval Task Assignment with Equal Load), balances the
workload by computing ranges for execution times and then
assigning tasks whose execution times fall within the same
range to the same server. Thus, a priori knowledge of the
execution times is required for the assignment. They show
through both analysis and simulation that their assignment
policy performs well when the variability of the execution
times is high, i.e. when the execution times follow a heavy-
tailed distribution. The performance metric of interest in[9]
is mean waiting time. Our work differs in that we are con-
cerned with the maintenance of a performance metric as
variability is introduced into the workload. We also make
the important distinction that although we assume knowl-
edge of the distribution of such variability, e.g. execution
times, we do not require a priori knowledge of the execu-
tion times of individual tasks.

3. Measuring Robustness

3.1. Measuring Performance Degradation

A property such as robustness is easy to define, but dif-
ficult to measure in a quantitative manner. Perhaps this is
why there are no commonly used robustness metrics. To be-
gin we first note that robustness is not performance. This
is not to say that the two properties are mutually exclu-
sive, but rather they have different meanings in the context
of computing systems. It is possible for a system to per-
form quite well under normal operating circumstances and
yet exhibit catastrophic failure when subjected to slight dis-
turbances [3]. Alternatively, if a system’s operating environ-
ment is known to be highly variable, one might prefer a sys-
tem with less average performance, but robust to a wide va-
riety of operating conditions. Figure 1 shows an overview
of our situation. We observe a specific performance metric
such as packets per second, waiting time, or utilization un-
der normal system operation and with a disturbance applied.
The idea is to measure the amount of performance degrada-
tion relative to the size of the disturbance. Typical perfor-
mance metrics for some representative computing systems
are shown in Table 1. We list these metrics in order to show
that our methodology for measuring robustness applies to a
wide variety of systems.

Consider the cumulative distribution function (CDF) of
the performance metric. Given a set of performance obser-
vations, the CDF is simply the proportion of observations

Disturbance

Observed performance

Normal operating conditions

Figure 1. Measuring Robustness

System Typical performance metric
Web server Maximum number simultane-

ous connections
FTP server Bytes per second
Media server Delay/jitter
Network router Packets per second
Supercomputer/cluster Utilization

Table 1. System Performance Metrics

less than or equal to a certain value. LetX be an observa-
tion of the system’s performance. LetF (x) = P (X ≤ x)
be the CDF of performance under normal operating con-
ditions and letF ∗(x) = P (X ≤ x) be the CDF of perfor-
mance with perturbations applied. If the the system is robust
with respect to the type of perturbation applied, thenF ∗(x)
should be very similar toF (x). The closer the two func-
tions agree, the more robust the system. However we ex-
pect the perturbations to have some effect on performance,
and this is what we measure. In the case where small ob-
servations of the performance metric are good, e.g. waiting
time or communication delay, we expectF (x) to be greater
thanF ∗(x). That is, for a given value of the performance
metric, x, we expect a greater proportion of the observa-
tions to be less thanx when the system is in normal op-
eration (see Figure 2). To measure the degradation in per-
formance, we measure the maximum distance between the
two functions,F (x) andF ∗(x), as shown in Figure 2. In
fact this distance, which we denote asδ, is the well-known
Kolmogorov-Smirnov (K-S) statistic, which is computed as
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Figure 2. The Kolmogorov-Smirnov Statistic δ

follows1

δ = sup
−∞<x<∞

F (x) − F ∗(x).

Normally, the K-S statistic is employed to either accept
or reject the hypothesis that two sets of observations come
from the same underlying probability distribution. Given
the distanceδ and the sample sizes, one may compute the
probability that a distance ofδ would actually occur if the
two samples really came from the same distribution. Thus
the typical use of the K-S statistic is to make a binary deci-
sion: either we accept or reject the hypothesis that the two
sets of observations are statistically equivalent. For ourpur-
poses we will make further use ofδ by using its magnitude
as an indication of the amount of performance degradation.
A nice property ofδ is its invariance to the scale used for
thex-axis. (Recall that the CDF is the proportion of obser-
vations less than or equal to a given valuex.) For example,
δ will be the same whether we usex or logx as the scale for
the abscissa. We also note thatδ will always be in the range
[0, 1].

However the main reason we useδ to measure the
amount of performance degradation is because it takes into
account the entire distribution of performance observations,
and not just averaged measurements. This is important be-
cause, as mentioned in the Introduction, averages are greatly
affected by the presence of outliers.δ, on the other hand, is
not. Indeed, a robust statistic is one that is not affected by
the presence of outlying data points. This is robustness on
another level; we are using a robust statistic to measure the
robustness of a system.

1 The statistic is defined using the supremum instead of the more famil-
iar maximum. This is due to the fact that the maximum is not well-
defined for some sets of numbers.
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Figure 3. Weighting Functions for the K-S
Statistic δ

3.2. Adjusting the K-S Statisticδ

The K-S statisticδ has itsown probability distribution.
Although any particular observed value ofδ is invariant
with respect to thex-axis, its probability distribution is not.
It is known thatδ is most sensitive at values near the median,
whereF (x) = .5, and thatδ is underestimated near the tails
of the CDF [2]. This is particularly important for our work
for two reasons. The first reason is that values at the right
tail of the CDF represent large values of the performance
metric, which represent a larger impact to the system. The
second reason is that many real-world computing systems
exhibit the heavy-tailed phenomenon. This is the notion that
a small percentage of the observations constitute the bulk
of the total disturbance or performance. Well-known exam-
ples include the distribution of file sizes requested by HTTP
and FTP clients, and the distribution of UNIX process life-
times [10]. One way to compensate for this underestima-
tion is to weightδ as a function ofF (x), with the weight
increasing toward the right tail. Denote this weighting func-
tion byψ(F (x)) = ψ(x). Then the adjusted K-S statistic is
given by

δw = sup
−∞<x<∞

(F (x) − F ∗(x))ψ(x).

We considered two different weighting functions, both of
which are based on the fact that the quantityF (x)(1−F (x))
is greatest atF (x) = 0.5. The magnitudes of these two
functions,ψ(x) = 1/

√

F (x)(1 − F (x)), and ψ(x) =
−ln(F (x)(1−F (x))), are shown in Figure 3. (Note the log-
arithmic scale for the ordinate.) Choosing a proper weight-
ing function is somewhat subjective – we want to compen-
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Figure 4. Characterizing the Robustness of a
System

sateδ for underestimation at the right tail, but not by too
much. After some experimentation, we chose the function
ψ(x) = −ln(F (x)(1 − F (x))) to apply in the computa-
tion of δw. We mention here that we only apply the weight
whenδ occurs to the right of the median since these val-
ues have the largest impact on the system. Thus ifδ occurs
to the left of the median, thenψ(x) = 1.

3.3. Characterizing Robustness

So far we have described our technique for measuring
performance degradation. However the measurement,δw,
corresponds to just one level of disturbance. A robust sys-
tem has the connotation of being able to withstand various
levels of disturbance. With this in mind, we can character-
ize the robustness of a system by measuringδw as a function
of the size of the applied perturbations. If the system is ro-
bust, thenδw will show a graceful increase as the size of the
disturbance increases. Systems that are sensitive to the ap-
plied disturbance will exhibit large, possibly nonlinear in-
creases inδw. This idea is illustrated in Figure 4. It is also
possible forδw to decrease as the disturbance is increased,
in which case the term “disturbance” is really a misnomer
since the applied perturbations caused the system to per-
form better, i.e.F (x) < F ∗(x) for all values ofx. When
this happens we could say the system is super-robust. Al-
though it seems counter-intuitive that perturbations outside
the system’s control would be beneficial, our first example
in the next section exhibits this phenomenon.

4. Application to Job Scheduling

In this section we apply our methodology for measur-
ing and characterizing the robustness of a system to a spe-
cific disturbance. The first example, backfilling jobs on par-
allel machines, uses trace data from a real system. The sec-
ond example concerns overload control in a streaming me-
dia server, for which the data was collected from an actual
implementation. Finally, the last example is more theoreti-
cal in nature. Based on data from a simulation, it pertains to
routing requests in a distributed network service.

4.1. Backfilling on Supercomputers

The basic premise of fairness in job scheduling on par-
allel machines is the notion of first-come-first-served. How-
ever a job that requires a large number of processors may
delay many smaller jobs while it waits for its required num-
ber of processors to become free. Backfilling was devised
to remedy this situation. Using this technique, a job may
move ahead of other jobs in the queue and begin processing
as long as it does not delay thefirst job in the queue2. This
form of backfilling is commonly employed in parallel job
schedulers such as Maui and IBM Load-leveller. In order to
work, the algorithm requires that users submit run time esti-
mates with their job submissions. It is well-known that these
estimates are notoriously inaccurate [12, 15]. The run time
estimates are generally inflated because users do not want
the system to kill their jobs in case the actual run time ex-
ceeds the estimate. It has also been observed that users sim-
ply do not take the time to provide good estimates [12]. An
interesting feature of backfilling that was reported in [15]
is that over-estimation of run time estimates actually ben-
efits the system. The reason is that the algorithm can find
more “holes” in the schedule to move jobs forward when
the estimated run times are large. By ”benefit the system”
we mean that metrics such as average queue time and uti-
lization are improved.

As a first application of our methodology, We tested the
robustness of the backfilling algorithm to the inaccuracy of
user run time estimates. The backfilling algorithm that we
implemented is exactly the one described in [15] for aggres-
sive backfilling. The parallel workload we used is from the
San Diego Supercomputer Center Blue Horizon machine,
which is available from [16]. This machine is a 144 node
IBM SP with 8 processors per node. The log is for the pe-
riod from April 2000 to January 2003. In this experiment,
the performance metric in which we are interested is the dis-
tribution of queue times and the disturbance is the amount of

2 This is known as aggressive backfilling. Conservative backfilling,
which is not widely used, requires that the job that moves ahead may
not delayany job that was ahead of it in the queue
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Figure 5. Robustness of Backfilling to Inac-
curacy of User Runtime Estimates

inaccuracy in the user run time estimates. Based on the anal-
ysis presented in [15], we expected the system to be robust
against over-estimation, but not against under-estimation.
We tested both. First we ran the backfilling algorithm on
the workload log using the exact run times as the estimates.
Then, we made further runs increasing the run time esti-
mates in increments of 10% up to 100%. To be clear, the
run time of every job was consistently over-estimated by a
certain percentage of its actual run time for the purpose of
backfilling. We ran the experiment for under-estimation of
run times as well. The robustness of the algorithm to over-
estimation and to under-estimation is presented in Figure 5.

As expected, the backfilling algorithm performs well
when run times are over-estimated. In fact, the slope of the
(least-squares) fitted line is negative, which indicates that
over-estimation of run times actually benefits the distribu-
tion of queue times (i.e. the system is super-robust). We also
found that backfilling is very robust to under-estimation,
although the performance does degrade as the amount of
under-estimation increases. Note that the inaccuracy, under-
or over-estimation, applies to the job being considered for
backfilling as well as to the jobs that are in progress. Thus
the scheduler does not know when a job will actually fin-
ish until it does so. We also mention that our simulation did
not kill any jobs due to under-estimation of run time. This
example illustrates how our methodology can be applied to
measure the robustness of a system to a specific disturbance.
Our results support those of a previous work and also indi-
cate that backfilling is robust to inaccurate run time esti-
mates in general. It seems that with respect to backfilling
what the scheduler doesn’t know won’t hurt it.
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Figure 6. SEDA-based Video Server

4.2. Streaming Video Server

The second application of our methodology is to mea-
sure the robustness of a streaming video server to increased
load. Used in a separate project to study adaptive overload
control, this particular server is based on the SEDA [19]
architecture. SEDA (staged event-driven architecture) isa
framework designed for high concurrency and robustness to
large variations in load [19]. An application built on SEDA
consists of a series of stages, each stage having its own
queue. This allows for fine-grained control of separate sec-
tions of an application, including resource allocation ander-
ror reporting. The stages for our video server are shown in
Figure 6.

User satisfaction with a streaming video service depends
on jitter, or delay, between frames. In order to avoid jitter,
the server limits the number of threads that can run simulta-
neously in the video retrieval stage. This can cause a queue
of requests to build up quickly when the server is experi-
encing overload or when the requested videos are large. The
end-to-end delay seen by the user can be controlled by limit-
ing the queue delay and the video retrieval duration, assum-
ing a relatively constant transmission time. This is the mo-
tivation behind the overload control mechanism. The server
stores pre-encoded videos of varying quality. High quality
videos take longer to transmit and consume more server re-
sources than low quality videos. Based on the current sys-
tem load, the server decides which quality of video to de-
liver to the client. The system load is measured by the num-
ber of requests in the queue at the video retrieval stage (see
Figure 6). This technique has the advantage that it reduces
both the queue time and the video retrieval time. The com-
promise is the quality of video delivered to the client when
the system is experiencing heavy load. Hence the system is
better suited for applications where the user values quick re-
sponse over video quality, for example a news on-demand
video server.

In this experiment, we measure the robustness of the
system as the load on the server is increased. The perfor-
mance feature that we wish to maintain is response time, the
elapsed time between the client’s request and the arrival of



the first video byte. Although the system is capable of drop-
ping requests at extremely high loads, the threshold for do-
ing so is set high enough to ensure that all requests are pro-
cessed. Both the video objects and the requests for them (the
workload) were generated using GISMO [11], a synthetic
streaming media load generator. The details of the load gen-
erator are presented in [11]. Here we briefly describe the rel-
evant parameters for our experiments. Video file sizes fol-
low a lognormal distribution, which is somewhat similar to
a normal distribution, but is skewed to the right. This allows
the probability of having larger file sizes than are possible
under a normal distribution with the same mean. The pop-
ularity of any particular video is determined by a Zipf-like
distribution. This is a power-law distribution wherein a few
videos are extremely popular while most videos are rarely
requested. The interarrival times of individual requests for
the video service are generated from a truncated Pareto dis-
tribution, which is also a power-law distribution. The pur-
pose of generating the interarrival times in this manner is to
simulate periods of heavy activity mixed with periods of rel-
atively light activity.

There are two versions of the server: one version con-
tains the overload control mechanism, and the other ver-
sion does not. The server and client are executed on sepa-
rate machines in a local area network. To inject load on the
server, the client generates requests for the video servicefor
a duration of 90 seconds, increasing the total number of re-
quests for each experiment. Figure 7 shows the robustness
of each version of the video server to increased load. When
the load on the server is low, both systems give compara-
ble performance. As the number of simultaneous requests
increases, the queue begins to build up. The video server
with the overload control mechanism adapts to this situa-
tion by degrading the quality of video being served. The
gradual increase in the weighted K-S statistic indicates a
more graceful degradation in response time than the version
of the server that does not use overload control. Of course
this result is expected since the overload control mechanism
was designed to handle large variations in load. But what
we want to show is that the application of our methodol-
ogy provides a quantitative way to measure the robustness
of the overload control mechanism.

4.3. Distributed Network Service

In this section we apply the robustness metric to a sim-
ulated network service. Requests for the service arrive ac-
cording to a Poisson process at the rate of 2 requests per
minute. The service is hosted on three computing nodes and
requests are routed to one of the three nodes according to
a scheduling policy. Each node contains its own separate
queue to hold requests before processing (see Figure 8) and
the performance feature of interest is the amount of time re-
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quests spend in the queue. Naturally, it is desirable for the
queue times to be as small as possible. Suppose that under
normal operating conditions the execution times of the re-
quests are exponentially distributed with a mean of 4 min-
utes. However, the computing nodes are time-shared with
other applications and during periods of heavy load the exe-
cution times follow a heavy-tailed Weibull distribution with
shape parameterα = .42 and scale parameterβ = 1.35,
which also has a mean of 4 minutes, but much higher vari-
ance. The nature of this distribution is such that most exe-
cution times are very short; however, there are a few exe-
cution times that are very long in duration. We would like
to know which of two scheduling policies is more robust to
long-running execution times. The two polices to be consid-
ered are:



Shortest QueueRoute incoming requests to the node with
the least number of queued requests.

Alternate Method Route requests to the node with the
most recently started execution.

It has been shown that when the execution times are ex-
ponentially distributed the shortest queue policy is optimal
for this type of distributed queueing system [5]. This is not
necessarily the case in the presence of very long execu-
tion times (i.e. as the tail of the distribution becomes heav-
ier). The philosophy behind the alternate scheduling policy
centers on recognition of the decreasing failure rate of the
Weibull distribution (withα < 1). Under this distribution,
the longer a request has been in execution the more likely
it is to execute even longer [8]. Thus the policy attempts
to avoid sending requests to nodes that are already process-
ing long-running requests. We use the term “attempt” be-
cause individual execution times are not known a priori.

To test the robustness of the two scheduling policies to
the presence of very long executions we simulated the sys-
tem for different values the Weibull shape parameterα.
Holding the scale parameterβ constant while decreasing
α increases the right tail of the Weibull distribution. In this
way we simulated increasing levels of disturbance in the
form of execution times of very long duration. Each of the
two scheduling policies was simulated for 10,000 requests
for each level ofα. The robustness characteristics of both
scheduling policies are shown in Figure 9. Naturally, the
performance of both policies degrade with the increasing
presence of extremely long execution times, but the alter-
nate method is clearly more robust as evidenced by the lin-
ear increase inδw. Compare this to the steep, nonlinear in-
crease inδw for the shortest queue policy. The fitted curve
is a polynomial of degree 4, which seemed to best describe
the trend.

Let us explicate the conclusions from this example. We
cannot simply state that the alternate policy is more robust
than shortest queue in any case. What we can state, with
a quantitative measurement, is that the alternate policy is
more robust than shortest queuein the presence of long-
running execution times. We view this detailed nature of the
metric as an attribute, not a limitation. Indeed, claiming that
a system is robust without stating the type of disturbance it
can withstand is so generic as to be almost useless. This ex-
ample further shows how consideration of robustness in sys-
tem design can lead to new strategies. Although our alter-
nate method is a heuristic, and thus not provably optimal,
we have shown that it performs better than shortest queue
as the disturbance increases, and performs as good as short-
est queue when the level of disturbance is low.
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Figure 9. Robustness of Scheduling Strategy
to Long-running Executions

5. Conclusion

Robustness is a desirable property for computing sys-
tems. It is not the same thing as performance, but rather,
it measures the ability of a system to maintain performance
in the presence of adverse operating conditions. This notion
is important for today’s large, complex high-performance
computing systems because they are increasingly subject to
uncertainty in load, communication latency, and even re-
source availability. While acknowledging that performance
is the namesake in high-performance computing, we have
argued that it also important to consider robustness in sys-
tem design. Robust systems are able to withstand distur-
bances and maintain performance features. Ideally, comput-
ing systems should achieve both performance and robust-
ness.

We presented a new methodology to characterize and
quantitatively measure the robustness of a system to a spe-
cific disturbance. The technique is easy to understand and
easy to apply: measure the degradation in performance
as reflected in the cumulative distribution functions and
plot this measurement against increasing levels of the dis-
turbance. In this way we consider the entire distribution
of performance observations and we do not rely on aver-
ages that can be greatly affected by the presence of out-
lying data points, itself another level of robustness. We
also presented three example applications of our method-
ology. The first example tested the robustness of the aggres-
sive backfilling algorithm to the inaccuracy that is inher-
ent in users’ estimates of run time. Using trace data from
the SDSC Blue Horizon machine we incrementally over-



estimated (and under-estimated) user run times and then
measured the resulting change in the distribution of queue
times. Characterization of the system’s robustness to inac-
curate run time estimates showed that over-estimation actu-
ally improves queue times while underestimation degrades
them, albeit only slightly. The second application was to as-
sess the robustness of an overload control mechanism in a
streaming media server. The server was implemented on the
SEDA framework and the workload was created using the
GISMO load generator. By employing the overload control
mechanism the server was shown to be robust against very
high load, albeit at the cost of degraded video quality as
seen by the client.

The final example application of our methodology com-
pared the robustness of two different scheduling policies
to the presence of long-running execution times in a dis-
tributed network service. Again, the performance metric of
interest was queue time. We showed that when the exe-
cution times follow a heavy-tailed probability distribution
it is more robust to avoid routing requests to nodes that
are (likely to be) processing long-running requests. Fur-
thermore, taking robustness into consideration led to a new
scheduling heuristic, one that performs much better than the
traditional strategy as the disturbance grows and also per-
forms well under normal operating conditions. The exam-
ples demonstrate the utility of our methodology. Character-
izing and measuring the robustness of a system in this way
is intuitive and easy to apply. The results can then be used
as one measure of the overall usefulness of a system.
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