A New Metric for Robustness with Application to Job Schedulng

Darin England, Jon Weissman, and Jayashree Sadagopan
Department of Computer Science and Engineering
University of Minnesota, Twin Cities
{england,jon,sjayg@cs.umn.edu

Abstract very long-running execution times that are inherently un-
predictable. Communication latencies contribute to more
Scheduling strategies for parallel and distributed uncertainty. Given these circumstances, we argue that it is
computing have mostly been oriented toward perfor- increasingly important for computing systems to be robust.
mance, while striving to achieve some notion of fairness. Thatis, systems should be ableni@intainperformance de-
With the increase in size, complexity, and heterogene-spite various uncertainties in the operating environmint.
ity of today’s computing environments, we argue that, iS important to emphasize that these uncertainties are out-
in addition to performance metrics, scheduling algo- side the system’s control. Consider the case of a flash crowd
rithms should be designed for robustness. That is, theyto a news service when disaster strikes, a distributed Henia
should have the ability to maintain performance un- of-service attack, or the researcher who submits a 1 million
der a wide variety of operating conditions. Although ro- by 1 million dense matrix computation. These events oc-
bustness is easy to define, there are no widely used metricsur with enough frequency to warrant consideration in sys-
for this property. To this end, we present a methodol- tem design. This work presents a new way to measure how
ogy for characterizing and measuring the robustness of a well a system responds to such events.
system to a specific disturbance. The methodology is eas- We have an intuitive notion of robustness, but let us be a
ily applied to many types of computing systems and it doesbit more precise by employing the following definition that
not require sophisticated mathematical models. To illus- we have adapted from the works of Ali et. al. [1] and Carl-
trate its use, we show three applications of our technique son and Doyle [3].
to job scheduling; one supporting a previous result with re-
spect to backfilling, one examining overload control in
a streaming video server, and one comparing two dif-
ferent scheduling strategies for a distributed network
service. The last example also demonstrates how consid{ndeed, robustness is a desirable property, but how can we
eration of robustness leads to better system deS|gn as W@valuate it? We seek away to characterize the robustness of

tic. this article we introduce a methodology for achieving th|s

goal. In view of our definition above, we will be quite spe-
cific with respect to the performance features that we want
the system to maintain and with respect to the type of dis-
1. Introduction turbance (or perturbation) that is applied. What is unique
(and in our opinion quite necessary) about our methodology
As its name suggests, high-performance computing per-is that it takes into account the full distribution of perfor
tains to the execution of large, scientific codes. Users wantmance observations, as opposed to just using average mea-
results quickly, and job schedulers have evolved to accom-surements. This is important for two reasons: (1) The un-
modate them. There is no disputing the fact that perfor- certainty present in todays’ computing systems effecielarg
mance in job scheduling is paramount. Techniques such agleviations in performance observations, and (2) The pres-
backfilling [15] and gang scheduling [6] are designed to get ence of large deviations (or outliers) can greatly affeet th
users’ jobs out of the queue and running as fast as pos-average of a set of observations.
sible. At the same time, we note that computing systems The use of stochastic information to guide system de-
are becoming larger, more distributed, and more heteroge=sign is not new [8-10, 14,17,18], and in the next section
neous. Huge data sets and large problem instances lead twe discuss the relevant related work. Results from some

“Robustness is the persistence of certain specified
system features despite the presence of perturba-
tions in the system’s environment.”

of the prior work are restricted in the sense that they ex- bustness metric and they present the application of the met-
ploit the Markov property in order to make the mathematics ric to three example systems. However, the specification of
tractable. In reality, inter-arrival times and executionds the bounds on the performance features seems somewhat
may not be exponentially distributed. A nice property of our arbitrary and may only apply to systems for which accept-
methodology is that it is straightforward to apply regard- able performance is well-defined. Our metric for robustness
less of the underlying probability distribution from which is generally applicable and is considerably easier to com-
the observations are taken. Constructing the empirical dis pute.
tribution functions, an easy task, is at the heart of the-tech Although not advertised as a way to measure robustness,
nique. another alternative view to traditional performance mea-
The rest of the paper is organized as follows. In section 2 surements iperformability The idea behind performabil-
we discuss related work in the areas of robustness, perfority is that measurements of either performance or availabil
mance evaluation, and scheduling. In section 3 we presenity alone do not indicate the real usefulness of a system, es-
our methodology for characterizing and measuring the ro- pecially for multiprocessor and distributed systems. When
bustness of a system to a specific disturbance. Section 4ised in a modeling context, performance measurements that
presents the application of our methodology to three differ ignore failure and repair overestimate the capacity of a sys
ent problems: backfilling jobs on a partitionable supercom- tem. Similarly, availability measurements do not consider
puter, serving requests for a streaming video service, andower levels of performance and hence underestimate the
routing requests for a network service to distributed com- capacity of a system. Performability, as described in [14,
puting nodes. We provide concluding remarks in section 5. 18], measures the amount of useful work that a system can
complete as it undergoes various levels of degradation. In
2. Related Work this way the work of Smith et. al. [18] could be viewed as a
way to measure robustness; however, their method requires
that the system be modelled as a Markov Reward Model.
Then, transient and steady-state methods are appliedto vie
Gribble [7] makes a strong argument for considering ro- e accumulated performance. The modeling and solution
bustness in the design of complex systems. They provide ar{echnlques require S|gr_1|f|cant work and there exist systems
example of a distributed application which performs well for which the assumptions of the Markov property do not
under normal operating circumstances. However, unfore-nold. Our robustness metric can be used in any analytical
seen interactions among the loosely coupled componentgnodel for which the CDFs of the disturbance and perfor-
lead to poor performance and even corruption of the system.Mance can be calculated or estimated. It can also be applied
Gribble’s work gives general suggestions for how to incor- © the empirical CDFs of actual system data.
porate robustness into the design of complex systems, in-
cluding admission control, system introspection, and adap 2 3. Scheduling
tive control. However, they do not provide a mechanism for

2.1. System Design

measuring the robustness of the resulting system. With respect to scheduling, Schopf and Berman [17] ex-
amine the use of the probability distribution of an applica-
2.2. Measuring Robustness tion’s execution time in order to achieve good performance

on multi-user clusters. Their focus is on data parallel iappl

Most closely related to our work, Ali et. al. [1] present a cations where the amount of computation performed is di-
metric for the robustness of a resource allocation. Their pr rectly related to how much data is assigned to a processor.
cedure consists of identifying the performance featuras th The scheduling policy tries to assign data to each processor
cause system degradation and quantitatively specifyiag th so that all processors finish at about the same time, a policy
bounds on those features. Then the unpredictable elementknown as time balancing. However, execution times vary
(called perturbation parameters) and theirimpact on the sy because the computing resources are shared, and as a con-
tem are assessed by finding a mathematical relationship besequence, some machines are more heavily loaded than oth-
tween the perturbation parameters and the system perforers. The main idea is to assign more data to machines with
mance features. The robustness measurement of a system s@naller variability in performance. The reasoning is such:
determined by finding the smallest variation in the perturba suppose that a machine is fast but exhibits high variabil-
tion parameters that cause degradation of the system to viity in performance. More data will be assigned to this ma-
olate the performance bounds. In general, the problem ofchine because it is fast; however, its high variability will
finding the smallest acceptable variation, called the robus have a large impact on the overall application execution
ness radius, is cast as a mathematical optimization problemtime. Through experiments with a distributed application,
The authors of this work do a good job of defining the ro- Schopf and Berman show that it is possible to obtain bet-

ter performance and predictability when using a stochastic
scheduling approach.

Several researchers have found that the execution times
of many computational tasks follow a heavy-tailed proba-
bility distribution [4, 8, 10, 13]. In [9], Harchol-Balterteal.
present a policy for assigning distributed servers to such
computational tasks. Their policy, called SITA-E (Size In-
terval Task Assignment with Equal Load), balances the

workload by computing ranges for execution times and then y,ai operating conditions
assigning tasks whose execution times fall within the same :> :>
range to the same server. Thus, a priori knowledge of the Observed performanc

execution times is required for the assignment. They show
through both analysis and simulation that their assignment
policy performs well when the variability of the execution
times is high, i.e. when the execution times follow a heavy-
tailed distribution. The performance metric of intereg@h

is mean waiting time. Our work differs in that we are con-
cerned with the maintenance of a performance metric as
variability is introduced into the workload. We also make
the important distinction that although we assume knowl-
edge of the distribution of such variability, e.g. execntio

Figure 1. Measuring Robustness

: . . System Typical performance metric
times, we do not require a priori knowledge of the execu- : .
Lo L Web server Maximum number simultane-
tion times of individual tasks. :
ous connections
. FTP server Bytes per second
3. Measuring Robustness Media server Delayljitter
Network router Packets per second

3.1. Measuring Performance Degradation Supercomputer/cluster Utilization

A property such as robustness is easy to define, but dif- Table 1. System Performance Metrics

ficult to measure in a quantitative manner. Perhaps this is
why there are no commonly used robustness metrics. To be-
gin we first note that robustness is not performance. This
is not to say that the two properties are mutually exclu-
sive, but rather they have different meanings in the contextless than or equal to a certain value. Détbe an observa-
of computing systems. It is possible for a system to per- tion of the system’s performance. LE{(z) = P(X < x)
form quite well under normal operating circumstances and be the CDF of performance under normal operating con-
yet exhibit catastrophic failure when subjected to slightd ditions and letF'*(z) = P(X < x) be the CDF of perfor-
turbances [3]. Alternatively, if a system’s operating eowi mance with perturbations applied. If the the system is robus
ment is known to be highly variable, one might prefer a sys- with respect to the type of perturbation applied, ter{z)
tem with less average performance, but robust to a wide va-should be very similar td"(x). The closer the two func-
riety of operating conditions. Figure 1 shows an overview tions agree, the more robust the system. However we ex-
of our situation. We observe a specific performance metric pect the perturbations to have some effect on performance,
such as packets per second, waiting time, or utilization un-and this is what we measure. In the case where small ob-
der normal system operation and with a disturbance applied servations of the performance metric are good, e.g. waiting
The idea is to measure the amount of performance degradatime or communication delay, we expdctx) to be greater
tion relative to the size of the disturbance. Typical perfor than F*(x). That is, for a given value of the performance
mance metrics for some representative computing systemsnetric, z, we expect a greater proportion of the observa-
are shown in Table 1. We list these metrics in order to showtions to be less tham when the system is in normal op-
that our methodology for measuring robustness applies to aeration (see Figure 2). To measure the degradation in per-
wide variety of systems. formance, we measure the maximum distance between the
Consider the cumulative distribution function (CDF) of two functions,F'(z) and F*(z), as shown in Figure 2. In
the performance metric. Given a set of performance obser-fact this distance, which we denote @ds the well-known
vations, the CDF is simply the proportion of observations Kolmogorov-Smirnov (K-S) statistic, which is computed as

- Two Possible Weighting Functions
-7 10 T T T T

W(x) = (sart(F(L-F(x)))
-7 — T W) = -In(F)(A-F(X))

=21
N

Cumulative Distribution Function
W(x)

==

| I I I I I
05 055 06 065 07 075 08 08 09 095 1

Figure 2. The Kolmogorov-Smirnov Statistic ~ §

Figure 3. Weighting Functions for the K-S
follows! Statistic §

0= sup F(z)— F*(x).
—oo<w<oo 3.2. Adjusting the K-S Statisticé
Normally, the K-S statistic is employed to either accept . . e
or reject the hypothesis that two sets of observations come | e K-S statistio) has itsown probability distribution.
from the same underlying probability distribution. Given Although any particular observed value &fis invariant
the distance and the sample sizes, one may compute theW!th respect to the:-ams, its pr_obablhty distribution is not.
probability that a distance @ would actually occur if the Itis known that is most sensitive at values near the median,

two samples really came from the same distribution. Thus WhereF'(x) = .5, and that is underestimated near the tails
the typical use of the K-S statistic is to make a binary deci- ©f the CDF [2]. This is particularly important for our work

sion: either we accept or reject the hypothesis that the twofof two reasons. The first reason is that values at the right
sets of observations are statistically equivalent. Fopowr @il of the CDF represent large values of the performance
poses we will make further use by using its magnitude ~ Mewic, which represent a larger impact to the system. The
as an indication of the amount of performance degradation S€¢0nd reason is that many real-world computing systems
A nice property ofs is its invariance to the scale used for exhibit the heavy-tailed phenomenor_l. Thisis th_e notioh tha
the z-axis. (Recall that the CDF is the proportion of obser- & small percentage of the observations constitute the bulk
vations less than or equal to a given valugFor example, of thg total d|sturpan_ce or perfqrma}nce. Well-known exam-
& will be the same whether we useor log = as the scale for ples include the distribution of file sizes requested by HTTP

the abscissa. We also note thatill always be in the range and FTP clients, and the distribution of UNIX process life-
0, 1]. times [10]. One way to compensate for this underestima-

However the main reason we useto measure the Uon is to weights as a function off'(z), with the weight

amount of performance degradation is because it takes intd"créasing toward the right tail. Denote this weightingdun
account the entire distribution of performance observatio 10N BY ¥(F(x)) = ¢ (z). Then the adjusted K-S statistic is
and not just averaged measurements. This is important bediven by

cause, as mentioned in the Introduction, averages ardygreat _ %

affected by the presence of outliefs.on the other hand, is bw = ,OOS<LLD<OO(F(36) - @)yl

not. Indeed, a robust statistic is one that is not affected by) . N .

the presence of outlying data points. This is robustness on Ve considered two different weighting functions, both of

another level; we are using a robust statistic to measure the hich are based on the fact that the ql?afm(yfﬂl*F(f))
robustness of a system. is greatest af’(z) = 0.5. The magnitudes of these two

functions, ¢ (z) = 1//F(z)(1 - F(x)), and ¢(z) =

1 The statistic is defined using the supremum instead of tive famil- —In(F(z)(1-F(x))), are shown in Figure 3. (Note the log-
iar maximum. This is due to the fact that the maximum is nodwel arithmic scale for the ordinate.) Choosing a proper weight-
defined for some sets of numbers. ing function is somewhat subjective — we want to compen-

4. Application to Job Scheduling

In this section we apply our methodology for measur-
Failure\ ing and characterizing the robustness of a system to a spe-

cific disturbance. The first example, backfilling jobs on par-
allel machines, uses trace data from a real system. The sec-
ond example concerns overload control in a streaming me-
dia server, for which the data was collected from an actual
implementation. Finally, the last example is more theereti
cal in nature. Based on data from a simulation, it pertains to
routing requests in a distributed network service.

4.1. Backfilling on Supercomputers

Size of Disturbance
The basic premise of fairness in job scheduling on par-

allel machines is the notion of first-come-first-served. How
ever a job that requires a large number of processors may
delay many smaller jobs while it waits for its required num-
ber of processors to become free. Backfilling was devised
to remedy this situation. Using this technique, a job may
move ahead of other jobs in the queue and begin processing
sated for underestimation at the right tail, but not by too as long as it does not delay tfiest job in the queug This
much. After some experimentation, we chose the function form of backfilling is commonly employed in parallel job
Y(z) = —In(F(z)(1 — F(x))) to apply in the computa- schedulers such as Maui and IBM Load-leveller. In order to
tion of 6,,. We mention here that we only apply the weight work, the algorithm requires that users submit run time esti
whend occurs to the right of the median since these val- mates with their job submissions. It is well-known that thes
ues have the largest impact on the system. Thii®dcurs estimates are notoriously inaccurate [12, 15]. The run time
to the left of the median, thep(z) = 1. estimates are generally inflated because users do not want
the system to kill their jobs in case the actual run time ex-
ceeds the estimate. It has also been observed that users sim-
ply do not take the time to provide good estimates [12]. An
interesting feature of backfilling that was reported in [15]
is that over-estimation of run time estimates actually ben-
efits the system. The reason is that the algorithm can find
So far we have described our technique for measuringmore “holes” in the schedule to move jobs forward when
performance degradation. However the measurensgnt, the estimated run times are large. By "benefit the system”
corresponds to just one level of disturbance. A robust sys-we mean that metrics such as average queue time and uti-
tem has the connotation of being able to withstand variouslization are improved.
levels of disturbance. With this in mind, we can character- As a first application of our methodology, We tested the
ize the robustness of a system by measufings a function robustness of the backfilling algorithm to the inaccuracy of
of the size of the applied perturbations. If the system is ro- user run time estimates. The backfilling algorithm that we
bust, therv,, will show a graceful increase as the size of the implemented is exactly the one described in [15] for aggres-
disturbance increases. Systems that are sensitive to the agsive backfilling. The parallel workload we used is from the
plied disturbance will exhibit large, possibly nonlineari San Diego Supercomputer Center Blue Horizon machine,
creases ird,,. This idea is illustrated in Figure 4. Itis also which is available from [16]. This machine is a 144 node
possible fors,, to decrease as the disturbance is increased,|BM SP with 8 processors per node. The log is for the pe-
in which case the term “disturbance” is really a misnomer riod from April 2000 to January 2003. In this experiment,
since the applied perturbations caused the system to perthe performance metric in which we are interested is the dis-
form better, i.e.F'(x) < F*(x) for all values ofz. When tribution of queue times and the disturbance is the amount of
this happens we could say the system is super-robust. Al-
though it seems counter-intuitive that perturbationsidets > This is known as aggressive backfilling. Conservative fiio,
the system’s control would be beneficial, our first example which is not widely used, requires that the job that movesdimeay
in the next section exhibits this phenomenon. not delayanyjob that was ahead of it in the queue

Figure 4. Characterizing the Robustness of a
System

3.3. Characterizing Robustness

Weighted K-S Statistic §,, vs Inaccuracy of Runtime Estimate To Client
09 T T T T T T T T T ,_LTT](Error Reporter J—=

st Over-estimation of runtime F Client
081 O Under-estimation of runtime 7] rom Clien
—_ [[T |(Accept Connectiopr—>=" Parse Packet

To Client
06 B Retrieve Video J—=
05f b Adjust
quality

Figure 6. SEDA-based Video Server

Weighted K-S Statistic 3,

4.2. Streaming Video Server

1‘0 2‘0 3‘0 4‘0 5‘0 E;D 7‘0 B‘O 9‘0 100
Percent of Over/Under-estimation The second application of our methodology is to mea-
sure the robustness of a streaming video server to increased
load. Used in a separate project to study adaptive overload
control, this particular server is based on the SEDA [19]
architecture. SEDA (staged event-driven architecture) is
framework designed for high concurrency and robustness to
large variations in load [19]. An application built on SEDA
consists of a series of stages, each stage having its own
inaccuracy in the user run time estimates. Based on the analgueue. This allows for fine-grained control of separate sec-
ysis presented in [15], we expected the system to be robustions of an application, including resource allocation and
against over-estimation, but not against under-estimatio ror reporting. The stages for our video server are shown in
We tested both. First we ran the backfilling algorithm on Figure 6.
the workload log using the exact run times as the estimates. User satisfaction with a streaming video service depends
Then, we made further runs increasing the run time esti-on jitter, or delay, between frames. In order to avoid jjtter
mates in increments of 10% up to 100%. To be clear, thethe server limits the number of threads that can run simulta-
run time of every job was consistently over-estimated by a neously in the video retrieval stage. This can cause a queue
certain percentage of its actual run time for the purpose of of requests to build up quickly when the server is experi-
backfilling. We ran the experiment for under-estimation of encing overload or when the requested videos are large. The
run times as well. The robustness of the algorithm to over- end-to-end delay seen by the user can be controlled by limit-
estimation and to under-estimation is presented in Figure 5 ing the queue delay and the video retrieval duration, assum-
As expected, the backfilling algorithm performs well ing a relatively constant transmission time. This is the mo-
when run times are over-estimated. In fact, the slope of thetivation behind the overload control mechanism. The server
(least-squares) fitted line is negative, which indicates th stores pre-encoded videos of varying quality. High quality
over-estimation of run times actually benefits the distribu Videos take longer to transmit and consume more server re-
tion of queue times (i.e. the system is super-robust). We als sources than low quality videos. Based on the current sys-
found that backfilling is very robust to under-estimation, tem load, the server decides which quality of video to de-
although the performance does degrade as the amount oliver to the client. The system load is measured by the num-
under-estimation increases. Note that the inaccuracgmrind ber of requests in the queue at the video retrieval stage (see
or over-estimation, applies to the job being considered for Figure 6). This technique has the advantage that it reduces
backfilling as well as to the jobs that are in progress. Thus both the queue time and the video retrieval time. The com-
the scheduler does not know when a job will actually fin- promise is the quality of video delivered to the client when
ish until it does so. We also mention that our simulation did the system is experiencing heavy load. Hence the system is
not kill any jobs due to under-estimation of run time. This better suited for applications where the user values qaick r
example illustrates how our methodology can be applied to Sponse over video quality, for example a news on-demand
measure the robustness of a system to a specific disturbancideo server.
Our results support those of a previous work and also indi- In this experiment, we measure the robustness of the
cate that backfilling is robust to inaccurate run time esti- system as the load on the server is increased. The perfor-
mates in general. It seems that with respect to backfilling mance feature that we wish to maintain is response time, the
what the scheduler doesn’t know won't hurt it. elapsed time between the client’s request and the arrival of

Figure 5. Robustness of Backfilling to Inac-
curacy of User Runtime Estimates

the first video byte. Although the system is capable of drop-

ping requests at extremely high loads, the threshold for do-
ing so is set high enough to ensure that all requests are pro
cessed. Both the video objects and the requests for them (thi

workload) were generated using GISMO [11], a synthetic

streaming media load generator. The details of the load gen-

erator are presented in [11]. Here we briefly describe the rel
evant parameters for our experiments. Video file sizes fol-
low a lognormal distribution, which is somewhat similar to
a normal distribution, but is skewed to the right. This akow
the probability of having larger file sizes than are possible

Weighted K-S Statistic éw vs. Number of requests
5

T T
* Video server
O Video server with dynamic service degradation

»
&)
T

w
w

w o ES

T T T

N
o
T

Weighted K-S Statistic &
=
[$,]

-
T

under a normal distribution with the same mean. The pop-
ularity of any particular video is determined by a Zipf-like
distribution. This is a power-law distribution wherein avfe
videos are extremely popular while most videos are rarely
requested. The interarrival times of individual requests f
the video service are generated from a truncated Pareto dis-
tribution, which is also a power-law distribution. The pur-
pose of generating the interarrival times in this mannew is t
simulate periods of heavy activity mixed with periods of rel
atively light activity.

There are two versions of the server: one version con-
tains the overload control mechanism, and the other ver-
sion does not. The server and client are executed on sepa-
rate machines in a local area network. To inject load on the
server, the client generates requests for the video sdvice
a duration of 90 seconds, increasing the total number of re-Aurival rate A
quests for each experiment. Figure 7 shows the robustness
of each version of the video server to increased load. When
the load on the server is low, both systems give compara-
ble performance. As the number of simultaneous requests
increases, the queue begins to build up. The video server
with the overload control mechanism adapts to this situa-
tion by degrading the quality of video being served. The
gradual increase in the weighted K-S statistic indicates a
more graceful degradation in response time than the version
of the server that does not use overload control. Of course
this result is expected since the overload control mechanis
was designed to handle large variations in load. But what
we want to show is that the application of our methodol-
ogy provides a quantitative way to measure the robustnes
of the overload control mechanism.

o
o
T

® ®
1200

I I I I I
1800 2000 2200 2400 2600

Number of requests

I I
1400 1600 2800

Figure 7. Robustness of Video Server to In-
creased Load

T—C)—

Processing rate

T—C)r—
T)—

Figure 8. Network Service Hosted on Three
Resources

guests spend in the queue. Naturally, it is desirable for the
Queue times to be as small as possible. Suppose that under
normal operating conditions the execution times of the re-
guests are exponentially distributed with a mean of 4 min-
utes. However, the computing nodes are time-shared with
other applications and during periods of heavy load the exe-
cution times follow a heavy-tailed Weibull distributiontivi

In this section we apply the robustness metric to a sim- shape parameter = .42 and scale parametgr = 1.35,
ulated network service. Requests for the service arrive ac-which also has a mean of 4 minutes, but much higher vari-
cording to a Poisson process at the rate of 2 requests peance. The nature of this distribution is such that most exe-
minute. The service is hosted on three computing nodes andtution times are very short; however, there are a few exe-
requests are routed to one of the three nodes according teution times that are very long in duration. We would like
a scheduling policy. Each node contains its own separateto know which of two scheduling policies is more robust to
queue to hold requests before processing (see Figure 8) antbng-running execution times. The two polices to be consid-
the performance feature of interest is the amount of time re-ered are:

4.3. Distributed Network Service

Shortest Queue Route incoming requests to the node with
the least number of queued requests.

Weighted K-S Statistic §,, vs. Long-running Exection Times

T T T
6 ¥ Shortest queue scheduling
O Alternative scheduling

o
T

Alternate Method Route requests to the node with the
most recently started execution.

IS
T

w
T

It has been shown that when the execution times are ex-
ponentially distributed the shortest queue policy is optim
for this type of distributed queueing system [5]. This is not
necessarily the case in the presence of very long execu
tion times (i.e. as the tail of the distribution becomes heav
ier). The philosophy behind the alternate scheduling golic ‘ ‘ ‘ ‘ ‘ ‘ ‘
centers on recognition of the decreasing failure rate of the s AR P, T T
Weibull distribution (witha: < 1). Under this distribution,
the longer a request has been in execution the more likely
it is to execute even longer [8]. Thus the policy attempts
to avoid sending requests to nodes that are already process- Figure 9. Robustness of Scheduling Strategy
ing long-running requests. We use the term “attempt” be- to Long-running Executions
cause individual execution times are not known a priori.

Weighted K-S Statistic §,,
N

[
T

To test the robustness of the two scheduling policies to
the presence of very long executions we simulated the sys5. Conclusion
tem for different values the Weibull shape parameter
Holding the scale parametgr constant while decreasing
« increases the right tail of the Weibull distribution. Inghi
way we simulated increasing levels of disturbance in the
form of execution times of very long duration. Each of the
two scheduling policies was simulated for 10,000 requests

for each level (_)fq. The robustne_ss C_haracterlstlcs of both computing systems because they are increasingly subject to
scheduling policies are shown in Figure 9. Naturally, the uncertainty in load, communication latency, and even re-
performance of both policies degrade with the increasing source availability. While acknowledging that performanc
presence of gxtremely long execution times, but the aIt<.ar—iS the namesake in high-performance computing, we have
nate method is clearly more robust as evidenced by the lin-5 4,64 that it also important to consider robustness in sys-
ear increase in,,. Compare this to the steep, nonlinear in- tem design. Robust systems are able to withstand distur-

crease in,, for the shortest queue policy. The fitted curve once5 and maintain performance features. Ideally, comput
is a polynomial of degree 4, which seemed to best describejg ystems should achieve both performance and robust-
the trend. ness.

Let us explicate the conclusions from this example. We We presented a nhew methodology to characterize and
cannot simply state that the alternate policy is more robustquantitatively measure the robustness of a system to a spe-
than shortest queue in any case. What we can state, witlcific disturbance. The technique is easy to understand and
a guantitative measurement, is that the alternate policy iseasy to apply: measure the degradation in performance
more robust than shortest queimethe presence of long- as reflected in the cumulative distribution functions and
running execution time§Ve view this detailed nature of the plot this measurement against increasing levels of the dis-
metric as an attribute, not a limitation. Indeed, claiminatt turbance. In this way we consider the entire distribution
a system is robust without stating the type of disturbance it of performance observations and we do not rely on aver-
can withstand is so generic as to be almost useless. This exages that can be greatly affected by the presence of out-
ample further shows how consideration of robustness in sys-ying data points, itself another level of robustness. We
tem design can lead to new strategies. Although our alter-also presented three example applications of our method-
nate method is a heuristic, and thus not provably optimal, ology. The first example tested the robustness of the aggres-
we have shown that it performs better than shortest queuesive backfilling algorithm to the inaccuracy that is inher-
as the disturbance increases, and performs as good as shomnt in users’ estimates of run time. Using trace data from
est queue when the level of disturbance is low. the SDSC Blue Horizon machine we incrementally over-

Robustness is a desirable property for computing sys-
tems. It is not the same thing as performance, but rather,
it measures the ability of a system to maintain performance
in the presence of adverse operating conditions. This motio
is important for today’s large, complex high-performance

estimated (and under-estimated) user run times and then

measured the resulting change in the distribution of queue

ings of the Seventh International Conference on Principles
and Practices of Constraint Programmin2001.

times. Characterization of the system’s robustness to inac [5] A. Ephremides, P. Varaiya, and J. Walrand. A simple dy-

curate run time estimates showed that over-estimation actu
ally improves queue times while underestimation degrades
them, albeit only slightly. The second application was to as

(6]

sess the robustness of an overload control mechanism in a
streaming media server. The server was implemented on the

SEDA framework and the workload was created using the
GISMO load generator. By employing the overload control

(7]

mechanism the server was shown to be robust against very

high load, albeit at the cost of degraded video quality as
seen by the client.

The final example application of our methodology com-
pared the robustness of two different scheduling policies
to the presence of long-running execution times in a dis-
tributed network service. Again, the performance metric of

(8]

interest was queue time. We showed that when the exe- 9]

cution times follow a heavy-tailed probability distriboni
it is more robust to avoid routing requests to nodes that
are (likely to be) processing long-running requests. Fur-

thermore, taking robustness into consideration led to a new[10]

scheduling heuristic, one that performs much better than th

traditional strategy as the disturbance grows and also per-
forms well under normal operating conditions. The exam- [11] S. Jin and A. Bestavros. Gismo: a generator of internet

ples demonstrate the utility of our methodology. Character

izing and measuring the robustness of a system in this way
is intuitive and easy to apply. The results can then be used!2]

as one measure of the overall usefulness of a system.

6. Acknowledgements

The authors would like to acknowledge the support of the
National Science Foundation under grants CNS-0305641
and ITR-0325949, the Department of Energy’s Office of
Science under grant DE-FG02-03ER25554, and the Min-
nesota Supercomputing Institute for Digital Simulatior an
Advanced Computation and the Digital Technology Center
at the University of Minnesota.

References

[1] S. Ali et al. Measuring the robustness of a resource allo-
cation. IEEE Transactions on Parallel and Distributed Sys-
tems 15(5), May 2004.

[2] T.W. Anderson and D. A. Darling. Asymptotic theory of eer
tain “goodness of fit” criteria based on stochastic processe
The Annals of Mathematical Statistj@&3(2):193-212, June
1952.

[3] J. M. Carlson and J. Doyle. Highly optimized tolerance-R
bustness and design in complex systerRfysical Review
Letters 84:2529-2532, 2000.

[4] H. Chen, C. Gomes, and B. Selman. Formal models of
heavy-tailed behavior in combinatorial search.Pioceed-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

namic routing problem.|EEE Transactions on Automatic
Control, AC-25(4):690-693, Aug. 1980.

D. G. Feitelson. Packing schemes for gang scheduling. In
D. G. Feitelson and L. Rudolph, editordob Scheduling
Strategies for Parallel Processingolume 1162, pages 89—
110. Springer-Verlag, 1996. Lecture Notes in Computer Sci-
ence.

S. D. Gribble. Robustness in complex systemsPioceed-
ings IEEE Eighth Workshop on Hot Topics in Operating Sys-
tems pages 21-26, May 2001.

M. Harchol-Balter. The effect of heavy-tailed job siziesd
tributions on computer system design. IinProceedings of
ASA-IMS Conference on Applications of Heavy Tailed Dis-
tributions in Economics, Engineering and Statistidsine
1999. Washington, DC.

M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On
choosing a task assignment policy for a distributed server
system. InProceedings of Performance Tools 19%&ges
231-242,1998. Springer-Verlag Lecture Notes in Computer
Science.

M. Harchol-Balter and A. Downey. Exploiting procesteli
time distributions for dynamic load balancingCM Trans-
actions on Computer Systemi$(3), 1997.

streaming media objects and workloa@8GMETRICS Per-
form. Eval. Rev.29(3):2-10, 2001.

C. B. Lee et al. Are user runtime estimates inherently in
accurate? In D. G. Feitelson and L. Rudolph, editdoh
Scheduling Strategies for Parallel Processigpringer Ver-
lag, 2004. Lecture Notes in Computer Science.

W. Leland and T. J. Ott. Load-balancing heuristics ara p
cess behavior. IACM SIGMETRICS Joint Conference Com-
puter Performance Modelling, Measurement and Evaluation
pages 54-69, 1986. Raleigh, NC.

J. F. Meyer. On evaluating the performability of degrbld
computing systemsIEEE Transactions on Computers-
29(8):720-731, Aug. 1980.

A. Mu'alem and D. Feitelson. Utilization, predictaiy
workloads, and user run time estimates in scheduling the ibm
sp2 with backfilling IEEE Transactions on Parallel and Dis-
tributed Systemd.2(6), June 2001.

Parallel Workload Archive. The hebrew university of
jerusalem, school of computer science and engineering.
www. cs. huji.ac.il/labs/parallel/workload,
2005.

J. M. Schopf and F. Berman. Stochastic schedulind?rbr
ceedings of the 1999 ACM/IEEE Conference on Supercom-
puting, 1999.

R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performabil
ity analysis: Measures, an algorithm, and a case stlBE
Transactions on Computer€-37(4):406—-417, Apr. 1988.

M. Welsh, D. Culler, and E. Brewer. Seda: An architec-
ture for well-conditioned, scalable internet services. In
18th ACM Symposium on Operating Systems Principles,
SOSP’012001.

