
Adaptive Resource Scheduling for Network Services

Byoung-Dai Lee and Jon B. Weissman

Department of Computer Science and Engineering, University of Minnesota, Minneapolis
MN, U.S.A.

{blee, jon}@cs.umn.edu

Abstract. Recently, there has been considerable interest in providing high
performance codes as network services. In particular, high performance
network services provide improved performance by executing complex and
time-consuming applications (or part of an application) on remote high
performance resources. However, since service providers resources are limited,
without effective resource scheduling, end-users will not experience
performance improvement. In this paper, we propose adaptive resource
harvesting algorithms to schedule multiple concurrent service requests within
network services. The preliminary results show that our approach can achieve
service time improvement up to 40% for a prototypical parallel service.

1 Introduction

Recently, there has been considerable interest in providing high performance codes as
network services. High performance applications such as data mining [4], theorem
proving and logic [3], parallel numerical computation [2],[6] are example services
that are all going on-line. Network services allow the end-users to focus on their
applications and obtain remote services when needed simply by invoking remote
services across the network. The primary advantages of using network services, in
particular high performance network services, are:

• by executing complex and time-consuming applications (or part of an
application) on remote sites that provide high performance resources, the end-
users will experience significantly reduced service time.

• the end-users need not be involved with maintaining low-level infrastructure to
run service codes because such activities are taken care of by the service
providers.

Network services imply the potential of multiple concurrent users across the
network. Moreover, since service providers resources are limited, effective resource
management is essential to providing acceptable performance. To address this
problem, our approach for scheduling multiple concurrent service requests within
network services is based on Resource Harvesting, where resources are dynamically
added/removed to/from active service requests to support high performance.

2 Byoung-Dai Lee and Jon B. Weissman

The paper is organized as follow: Section 2 gives the related work and Section 3
describes the system model. Section 4 presents the resource harvesting algorithms and
Section 5 shows the experimental results. Finally, we conclude in Section 6.

2 Related Work

Much research has been conducted on efficient resource management for executing
high performance applications on multiple resources. However, most of them are
limited to scheduling a single application using shared resources whereas in our
model, the resource management system schedules multiple concurrent service
requests to meet the performance objective.

[1] provides convenient tools for parametric computation experiments. Users can
vary parameters related to the experiment by using a simple declarative parametric
modeling language and the parametric engine manages and maintains the whole
experiment. The scheduling scheme employed in the system is based on an economic
model, which selects resources that meet the deadline and minimize the cost of
computation. [2] and [6] are two representative network service infrastructures and
they bear strong similarities both in motivation and general design. For each user
request, a scheduler (or an agent in [2]) selects a set of servers that can handle the
computation and ranks them based on the minimum completion time. [5] proposed
local learning algorithms for the prediction of run-specific resource usage on the basis
of run-time input parameters. Our run-time prediction technique is similar to their
approach. However, they did not consider parallel applications. [7] proposed deadline
scheduling that uses a load correction mechanism and a fallback mechanism to
minimize the overall occurrence of deadline misses as well as their magnitudes.
Unlike other works mentioned above, its goal is to schedule multi-client requests on
multi-server environments.

In contrast to our work, none of these works support dynamic resource addition
and removal to user requests. For example, once a server is allocated to the user
request, it remains until the request completes or the server fails.

3 System Model for Network Services

We believe that some classes of high performance services are not appropriate for the
resource harvesting technique. For example, network services with complex
workflows may suffer from increased overhead for saving and redistributing their
states when new resources are added in the middle of their execution. Therefore, the
target classes of high performance network services that we are considering are data
parallel and distributed services, which are common to high performance computing.
Data parallel services are those that require communication between the constituent
processors and the communication patterns are symmetric. Examples include numeric
servers, N-body simulator, parallel CFD, etc. Distributed services are similar to data
parallel services, but do not require communication among the distributed processes.
Examples include stochastic simulation (e.g. monte carlo), parameter studies, etc.

Adaptive Resource Scheduling for Network Services 3

Fig. 1 shows the general run-time infrastructure for network services. It consists of
three primary components: scheduler, run-time predictor and service instances. The
scheduler contacts the run-time predictor to acquire the estimated run-time of the
service requests for resource scheduling. If it is needed to add/remove resources
to/from active service instances, the scheduler contacts corresponding service
instances, where adaptive actions are actually implemented. In addition, the service
instances are responsible for reporting performance information to the run-time
predictor so that the run-time predictor can maintain up-to-date performance
information.

4 Adaptive Resource Management

Network services imply the potential of multiple concurrent users across the network
and heterogeneous service requests (e.g. requests with different input parameters).
Therefore, the run-time infrastructure must provide acceptable performance for a
wide-spectrum of users. Our approach for scheduling multiple concurrent service
requests is based on resource harvesting, where resources are dynamically
added/removed to/from the active service requests to support high performance. For
example, a scheduler may initially allocate a large number of resources to a request
because there are no other requests pending. But when competing requests start to
arrive and insufficient resources are available to run them, the scheduler may choose
to harvest resources from running service requests. Therefore, performance prediction
is crucial to adaptive resource management because deciding how to best allocate
resources dynamically depends on the estimation of service execution time. The
overhead of harvesting must be measured within the service and made available as
part of the decision process. Resource harvesting raises two fundamental questions
that should be addressed.

• From which service requests should resources be harvested?
• How many resources should be harvested?

Fig. 1. General run-time infrastructure for network services: service instance 1 is using four
resources and service instance 2 is using three resources.

Service Instance 1 Service Instance 2

Scheduler Run-Time
Predictor

4 Byoung-Dai Lee and Jon B. Weissman

One way to address the first question is the service provider establishes priority
classes of its user base so that higher priority requests can harvest resources from
lower priority requests. The second question is more complex because performance
gain achieved by resource harvesting must be able to amortize the performance loss
experienced by requests from which resources are taken away.

4.1 Performance Prediction

Performance prediction is needed by the scheduler to estimate the cost of executing a
specific instance of a service request on a given amount of resources. The service
execution time depends on not only the number of resources but also the input
parameters to the service. For example, the time to solve NxN system of equations on
K resources may be different from the time required to solve the system on L
resources or to solve MxM system of equations on N resources. For simple services
such as matrix multiplication, it is possible to predict run-time accurately using static
cost functions. However, for complex services, we believe that static specification of
detailed cost functions is not always possible. For the latter case, we use local linear
regression and clustering technique to predict run-time, where local linear regression
is applied using a subset of prior performance data that are clustered near the new data
point. Performance history is organized in a two dimensional matrix, where each
column represents the resource set and each row represents performance of the
service given a set of input parameters on each resource set. To fill in the matrix, a
configurable parameter, cluster range, is used. It determines whether or not two
different input parameters can be regarded as similar in terms of the performance
when the same resource set is used. For example, we might say that the run-time for
10000x10000 matrix multiplication is the same as the time for 10001x10001 matrix
multiplication if the same resource set is used. When a triple < input parameter,
resource set, performance> is known after finishing a service request, the
corresponding cell in the matrix is located and the following condition is tested:

()
celltheineperformanctheofvalueaveragethedataeperformancnew

rangecluster
:,: βα

ββα ×±≤

If the condition is satisfied, then the new performance data is stored into the cell.
Otherwise, a new row for the input parameters is created. Note that each cell can
maintain several performance data with different input parameters values.

To predict the performance of the service given (input parameters: i, resource set:
j), the scheduler first locates the corresponding cell in the performance history matrix
indexed by (i, j). If it is populated, then it simply returns the average value of the
performance data in the cell. Otherwise, it finds the nearest two cells on the same row
as the cell and applies local linear regression using the performance data in the two
cells (row-wise prediction). After that, it finds the nearest two cells on the same
column as the cell and does the same operation (column-wise prediction). Finally, the
average value of the two estimated values are returned as estimated run-time. Row-
wise prediction reflects the performance change depending on resource set given the
input parameters, whereas column-wise prediction reflects the performance change
depending on input parameters given the same resource set.

Adaptive Resource Scheduling for Network Services 5

4.2 Shortest-Remaining-Time Harvesting

The idea behind shortest-remaining-time harvesting (SRT_Harvest) is only when a
new service request, S, can finish earlier than other service requests that are currently
running, then S can harvest resources from those service requests to enable it to run.
The behavior of the algorithm is determined by two configurable parameters:

• HP (Harvesting Parameter): controls how aggressively the system can harvest
resources from running requests.

• WP (Wait Time Parameter): defines the maximum wait time threshold for each
request. It is proportional to the minimum run-time of the request.

Fig. 2 describes the algorithm. If the run-time of a service request is long, its
resources are frequently taken away for shorter requests, which sometimes results in
the request not making any progress. To prevent the starvation of longer requests,
whenever resources are available, the scheduler checks if there are any pending
requests whose total wait time exceeds the maximum threshold, defined by
(EstimatedMimimumRunTime * WP). If so, resources are allocated to those requests
and the resources are marked as “Non-Harvestable” so that no requests can take
resources away from them (line 1).

Before harvesting resources, the scheduler contacts each of the active requests to
acquire the current status information as to progress. For example, iterative services
will return information on how many iterations has been done and the average
iteration time. Using this information, the scheduler computes the available time of
the resources that are currently being used by the active requests. Then, for each
request in the wait queue, the scheduler computes the best performance achievable

Fig. 2. Pseudo-code for shortest-remaining-time harvesting algorithm.

SRT_Harvest () {
1. Find pending requests of which wait time exceeds the maximum wait time
 threshold. Assign resources to those requests and mark the resources as “Non-
 Harvestable”.
2. Contact active service instances and compute the available time of resources that
 they are using.
3. while (!done) {
4. Find a pending request whose run-time is smallest through resource
 harvesting.
5. Start the request using selected resources; if the resources are being used by
 other requests, then send “resource removal” messages to them;
6. If there is change in the wait queue due to resource harvesting, then go to 3.
7. }
8. for (each active request r that only a subset of resources are harvested) {
9. Check if there is any pending request that can finish earlier than r using the
 remaining resources of r.
10. If s is such request, assign the remaining resources of r to s and put r into the
 wait queue.
11. }
}

6 Byoung-Dai Lee and Jon B. Weissman

using resource harvesting (line 3-7). It can harvest resources from request R for
request S, only when the following condition is satisfied:

()1.0HPR,ofTimeRemainingHPSofTimeRun ≥<×−

This condition determines the candidate requests from which resources will be
taken away and the number of resources from those requests. Thus, as long as a
request S can finish earlier than R, S can harvest resources from R. If not, it can
harvest none of the resources of R. If only a subset of resources of a request are
harvested, then there could be requests in the wait queue that can finish earlier than
the request using the remaining resource set. Since the algorithm favors shorter
requests, in such case, the active request should relinquish its resources to the one in
the wait queue. If there are multiple requests in the wait queue that satisfy the
requirement, the one that can finish the earliest is selected (line 8-11).

4.3 Impact-Based Harvesting

In contrast to shortest-remaining-time harvesting, impact-based harvesting
(IB_Harvest) focuses on resource lenders rather than resource borrowers (Fig. 3). For
example, resources of an active service request, R, can be harvested for a new service
request, S, only when the impact of resource harvesting that R will experience is
below a threshold. The impact is defined in terms of service time. In order to compute
the service time threshold for each request, we use a configurable parameter, IP
(Impact Parameter) and the optimal run-time of the request. The optimal run-time is
defined as the minimum run-time achievable.

If there are not enough resources available for a new request, for each active
service request, the scheduler computes the number of resources that can be harvested
from each of them (line 2-4). The number of harvestable resources of each active
request is defined as follow:

Fig. 3. Pseudo-code for impact-based harvesting algorithm.

IB_Harvest () {
1. Contact active service instances and compute the available time of resources that
 they are using.
2. for (each active service instance) {
3. compute the number of harvestable resources. If it is greater than zero, then
 mark the instance as “Harvestable”
4. }
5. m = the number of resources to harvest.
6. while (m > 0) {
7. for (i = 0; i < the number of harvestable instances; ++i) {
8. collect k resources from instance(i), where k is randomly generated.
9. send “resource removal” message to instance(i).
10. m = m – k;
11. }
12. }
}

Adaptive Resource Scheduling for Network Services 7

{ }

usedareresourcesnwhentimerunremainingestimatednemainingTimRe
TimeStartServiceTimeCurrenteElaspedTim

ThresholdTimeServiceime(n)RemainingTeElapsedTim:n

−
−

<+

:)(
:

max

The number of resources that will be allocated to the new request is the minimum
number of resources with which it can finish earlier than the service time threshold.
Once the harvestable service requests and the number of resources to harvest for the
new request are determined, the scheduler collects resources randomly from each of
the selected service requests until the desired number of resources is collected (line5-
12).

When a service request finishes, it returns the harvested resources to service
requests where the resources are collected. If the requests have already finished,
instead of assigning the resources to active requests whose remaining time are small
as in shortest-remaining-time harvesting, those resources are allocated to requests in
the wait queue to reduce wait time of the requests.

5 Experimental Results

We have deployed an N-body simulation service to test the performance of the
proposed scheduling policies. The objective of N-body simulation is to find the
positions and movements of the bodies in space that are subject to gravitational forces
from other bodies using Newtonian laws of physics [8].

In the prototype, the N-body simulation is implemented using Master/Slave
paradigm, where the master maintain a bag of tasks and slaves repeatedly get tasks,
update the bodies, then return the result to the master. Given n bodies and p slaves,
the master divides the bodies into m blocks of size n/p and the slaves compute the
forces between bodies in block i and those in block j. However, the computed forces
do not reflect the effects of bodies in block k (k != i, j), once the slaves finish
computing forces of bodies in every pair of blocks, the master computes the total
forces of each body. To use the N-body simulation service, the users submit four
parameters: start time, end time, delta time (the length of the time interval), and input
bodies. The first three parameters control the number of iterations. We deployed the
prototype service on a Linux cluster consisting of 10 dual CPU PCs and the cluster is
dedicated to the service.

Fig. 4. Accuracy of Run-Time Prediction.

Run-Time Prediction Accuracy

-1000

-800

-600

-400

-200

0

200

0 50 100 150 200 250 300 350

Request Number

Er
ro

r R
at

e(
%

)

8 Byoung-Dai Lee and Jon B. Weissman

Table 1. Configurable parameters for resource harvesting algorithms.

 Light workload Uniform Workload Heavy Workload
Cluster Range 0.05 0.05 0.05
HP 1.5 1.8 1.2
WP 12.0 8.0 12.0
IP 1.7 1.1 1.3

5.1 Performance Prediction

Accurate prediction of run-time is important in the resource harvesting algorithms we
presented. For this experiment, we generated input parameters to the service randomly
and cluster range is set to 0.05. The experimental results show that our prediction
system can achieve estimation accuracy to within 4% (Fig. 4). Since initially there are
not enough data in the performance history matrix, the error rates of the first few
predictions are high. However, as clients requests are served, the prediction system
learns the relationship among input parameters, resource set and the run-time.
Therefore, after the learning phase, it can predict the run-time accurately.

5.2 Performance Comparison

To assess the performance of our scheduling policies, we generated three synthetic
workloads: light workload, uniform workload and heavy workload (Fig. 5). The X-
axis in the graph represents the number of bodies submitted to the service to compute
movement. Note that since we fixed the three time-related parameters (start time, end

Light Workload

0

5

10

15

20

25

30

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

Number of Bodies (x 1,000)

%

Fig. 5. Synthetic workloads.

Heavy Workload

0

5

10

15

20

25

30

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

Number of Bodies (x 1,000)

%

Uniform Workload

0

2

4

6

8

10

12

14

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

Number of Bodies (x 1,000)

%

Adaptive Resource Scheduling for Network Services 9

time, delta time), which determine the number of iterations, the number of bodies
controls the run-time. For example, the more bodies requested, the longer it takes to
compute the result.

We compare performance against two simple scheduling policies: MOLDABLE
and IDEAL (Fig. 6). MOLDABLE assigns idle resources up to the optimal number of
resources for each request. If there are no available resources, the request is queued.
Otherwise, the request is “molded” to the available number of resources. In IDEAL,
only the optimal number of resources are assigned to the request. Therefore, if the
number of available resources is less than the optimal number of resources, the
request waits until the optimal number of resources are available. Both scheduling do
not use resource harvesting. Table 1 shows configurable parameters of SRT_Harvest
and IB_Harves used in the experiments.

For each workload, we measured average values of wait time, run-time, and
service time of requests under different resource scheduling policies. Wait time of a
request denotes a period of time in the wait queue, whereas run-time represents the
time consumed to process the request. The service time is the sum of wait time and
run-time. As IDEAL always waits until the optimal number of resources are available,
its wait time is the highest but the average run-time of IDEAL is the smallest for the
same reason. In SRT_Harvest, by executing shorter requests earlier than longer ones,
the wait time is decreased significantly. In addition, because requests may not always
run using the optimal number of resources, its average run-time is higher than that of
IDEAL. However, if there is no shorter requests pending in the wait queue, instead of
assigning idle resources to requests in the wait queue, it assigns as many resources as
the optimal number of resources to the active requests. Therefore, the average run-
time can be reduced. In this experiment, SRT_Harvest achieved service time
improvement up to 40%, 27% and 20% for light workload, heavy workload and
uniform workload, respectively. As in SRT_Harvest, IB_Harvest also dynamically

Fig. 6. Comparative performance for different resource scheduling policies.

Light Workload

0

50000

100000

150000

200000

250000

WAIT _T IM E RUN_T IM E SERVICE_T IM E

Ti
m

e
(m

s)
MOLDABLE

IDEAL

SJF_HARVEST

IB_HARVEST

Heavy Workload

0

200000

400000

600000

800000

1000000

1200000

WAIT _T IM E RUN_T IM E SERVICE_T IM E

Ti
m

e
(m

s)

MOLDABLE

IDEAL

SJF_HARVEST

IB_HARVEST

Uniform Workload

0

50000

100000

150000

200000

250000

300000

WAIT _T IM E RUN_T IM E SERVICE_T IM E

Ti
m

e
(m

s)

MOLDABLE
IDEAL
SJF_HARVEST
IB_HARVEST

10 Byoung-Dai Lee and Jon B. Weissman

collects resources for new requests whenever there are not enough resources for them.
Therefore, its average wait time is also smaller than those of simple policies.
Moreover, unlike SRT_Harvest, since IB_Harvest favors requests in the wait queue,
the average wait time is even smaller than that of SRT_Harvest. However, due to
resource harvesting, each request can use only the minimum number of resources,
which leads to increased run-time.

5.3 Sensitivity to Configurable Parameters

In theory, running shortest requests first always reduces the average wait time.
Therefore, in shortest-remaining-time harvesting, HP=1.0 should provide the best
performance. However, due to WP, shorter requests may wait until non-harvestable
requests finish. Furthermore, smaller HP makes the wait time of longer requests reach
the maximum wait time threshold faster because longer requests either may not be
selected for execution or may relinquish all of their resources frequently to shorter
requests. These two behaviors make the wait time of shorter requests longer if they
arrive when non-harvestable requests are using all of the system resources (Fig. 7).
However, as HP increases, the total wait time also increases because shorter requests
may not be executed even though longer requests are using resources. The reason for
choosing a larger value as WP for a heavy workload is as the run-time of each request
is relatively high in the heavy workload, small WP makes the total wait time of each
request exceed the maximum wait time threshold quickly. Therefore, it may not take
advantage of resource harvesting. This behavior is explained in Fig. 8.

Fig. 8 shows that as WP increases, the average performance improves in both
workloads. This is quite straightforward because with a very large WP, whenever
shorter requests arrive, they acquire resources from longer requests. On the other

Fig. 7. Sensitivity to harvesting parameter.

Light Workload

0

50000

100000

150000

200000

250000

HP=1.0,
WP=4.0

HP=1.2,
WP=4.0

HP=1.5,
WP=4.0

HP=1.8,
WP=4.0

HP=2.0,
WP=4.0

Ti
m

e
(m

s)
WA IT _T IM E
RUN_T IM E
SERVICE_T IM E

Heavy Workload

0

200000

400000

600000

800000

1000000

1200000

HP=1.0,
WP=12.0

HP=1.2,
WP=12.0

HP=1.5,
WP=12.0

HP=1.8,
WP=12.0

HP=2.0,
WP=12.0

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERVICE_T IM E

Uniform Workload

0

50000

100000

150000

200000

250000

300000

HP=1.0,
WP=8.0

HP=1.2,
WP=8.0

HP=1.5,
WP=8.0

HP=1.8,
WP=8.0

HP=2.0,
WP=8.0

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERV ICE_T IM E

Adaptive Resource Scheduling for Network Services 11

hand, if a small WP is used, as the maximum wait time threshold of each request
becomes small, they become non-harvestable quickly. Therefore, even if shorter
requests arrive, they may not acquire resources, which results in increased wait time.

Larger IP allows more frequent resource harvesting. Therefore, as IP increases, the
average wait time decreases. However, at certain point, since most of the active
requests are using the minimum number of resources, the decrements of average wait-
times cannot compromise the increments of average run-times (Fig. 9). In addition,
due to increased run-times, the available time of resources also increases, which

Fig. 9. Sensitivity to impact parameter.

Light Workload

0

50000

100000

150000

200000

250000

300000

IP=1.1 IP=1.3 IP=1.5 IP=1.7 IP=1.9

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SE RVICE_T IM E

Heavy Workload

0

200000

400000

600000

800000

1000000

IP=1.1 IP=1.3 IP=1.5 IP=1.7 IP=1.9

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERV ICE_T IM E

Uniform Workload

0

50000

100000

150000

200000

250000

300000

350000

400000

IP=1.1 IP=1.3 IP=1.5 IP=1.7 IP=1.9

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERVICE_T IM E

Fig. 8. Sensitivity to wait time parameter.

Light Workload

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

HP=1.5,
WP=4.0

HP=1.5,
WP=6.0

HP=1.5,
WP=8.0

HP=1.5,
WP=10.0

HP=1.5,
WP=12.0

Ti
m

e
(m

s)
WA IT _T IM E
RUN_T IM E
SE RVICE_T IM E

Heavy Workload

0

200000

400000

600000

800000

1000000

1200000

1400000

HP=1.5,
WP=4.0

HP=1.5,
WP=6.0

HP=1.5,
WP=8.0

HP=1.5,
WP=10.0

HP=1.5,
WP=12.0

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERVICE_T IM E

Uniform Workload

0

100000

200000

300000

400000

500000

HP=1.5,
WP=4.0

HP=1.5,
WP=6.0

HP=1.5,
WP=8.0

HP=1.5,
WP=10.0

HP=1.5,
WP=12.0

Ti
m

e
(m

s)

WA IT _T IM E
RUN_T IM E
SERV ICE_T IM E

12 Byoung-Dai Lee and Jon B. Weissman

results in increased average wait-times.

Acknowledgements
This work was sponsored in part by the Army High Performance Computing
Research Center under the auspices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAD19-01-20014

6 Conclusions

In this paper, we presented the adaptive resource scheduling technique to handle
multiple concurrent service requests within network services. Novel aspect of our
approach is resource harvesting, where resources are dynamically added/removed
to/from active service requests. The preliminary results using N-body simulation
service show that adaptive scheduling policies using resource harvesting can achieve
significantly improved service time.

References

1. R. Buyya, D. Abramson, J. Giddy: Nimrod/G: An Architecture for a Resource Management
and Scheduling System in a Global Computational Grid, Proceedings of 4th High
Performance Computing in Asia-Pacific Region (2000)

2. H. Casanova, J. Dongarra: Netsolve: A Network Server for Solving Computational Science
Problems, International Journal of Supercomputing Applications and High Performance
Computing. Vol. 11(3). (1997)

3. D. Dill: SVC: The Standard Validity Checker, http://www.sprout.standford.edu/SVC
4. R.L. Grossman, S. Kasif, D. Mon, A. Ramu, B. Malhi: The Preliminary Desgin of Papyrus:

A System for High Performance, Distributed Data Mining over Clusters, Meta-Clusters and
Super-Clusters, Proceedings of KDD-98 Workshop on Distributed Data Mining (1998)

5. N. H. Kapadia, J. Fortes, C. Brodley: Predictive Application-Performance Modeling in a
Computational Grid Environment, Proceedings of 8th International Symposium on High
Performance Distributed Computing (1999)

6. H. Nakada, M. Sato, S. Sekiguchi: Design and Implementation of Ninf: Towards a Global
Computing Infrastructure, Journal of Future Generation Systems, Metacomputing Issue
(1999)

7. A. Takefusa, H. Casanova, S. Matsouka, F. Berman: A Study of Deadline Scheduling for
Client-Server Systems on Computational Grid, Proceedings of 10th International Symposium
on High Performance Distributed Computing (2001)

8. B. Wilkinson, M. Allen: Parallel Programming, Prentice Hall (1999)

