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Abstract. Recently, there has been considerable interest in providing high 
performance codes as network services. In particular, high performance 
network services provide improved performance by executing complex and 
time-consuming applications (or part of an application) on remote high 
performance resources. However, since service providers resources are limited, 
without effective resource scheduling, end-users will not experience 
performance improvement. In this paper, we propose adaptive resource 
harvesting algorithms to schedule multiple concurrent service requests within 
network services. The preliminary results show that our approach can achieve 
service time improvement up to 40% for a prototypical parallel service.  

1  Introduction 

Recently, there has been considerable interest in providing high performance codes as 
network services. High performance applications such as data mining [4], theorem 
proving and logic [3], parallel numerical computation [2],[6] are example services 
that are all going on-line. Network services allow the end-users to focus on their 
applications and obtain remote services when needed simply by invoking remote 
services across the network. The primary advantages of using network services, in 
particular high performance network services, are: 

• by executing complex and time-consuming applications (or part of an 
application) on remote sites that provide high performance resources, the end-
users will experience significantly reduced service time. 

• the end-users need not be involved with maintaining low-level infrastructure to 
run service codes because such activities are taken care of by the service 
providers. 

Network services imply the potential of multiple concurrent users across the 
network. Moreover, since service providers resources are limited, effective resource 
management is essential to providing acceptable performance. To address this 
problem, our approach for scheduling multiple concurrent service requests within 
network services is based on Resource Harvesting, where resources are dynamically 
added/removed to/from active service requests to support high performance. 
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The paper is organized as follow: Section 2 gives the related work and Section 3 
describes the system model. Section 4 presents the resource harvesting algorithms and 
Section 5 shows the experimental results. Finally, we conclude in Section 6. 

2  Related Work 

Much research has been conducted on efficient resource management for executing 
high performance applications on multiple resources. However, most of them are 
limited to scheduling a single application using shared resources whereas in our 
model, the resource management system schedules multiple concurrent service 
requests to meet the performance objective. 

[1] provides convenient tools for parametric computation experiments. Users can 
vary parameters related to the experiment by using a simple declarative parametric 
modeling language and the parametric engine manages and maintains the whole 
experiment. The scheduling scheme employed in the system is based on an economic 
model, which selects resources that meet the deadline and minimize the cost of 
computation. [2] and [6] are two representative network service infrastructures and 
they bear strong similarities both in motivation and general design. For each user 
request, a scheduler (or an agent in [2]) selects a set of servers that can handle the 
computation and ranks them based on the minimum completion time. [5] proposed 
local learning algorithms for the prediction of run-specific resource usage on the basis 
of run-time input parameters. Our run-time prediction technique is similar to their 
approach. However, they did not consider parallel applications. [7] proposed deadline 
scheduling that uses a load correction mechanism and a fallback mechanism to 
minimize the overall occurrence of deadline misses as well as their magnitudes. 
Unlike other works mentioned above, its goal is to schedule multi-client requests on 
multi-server environments. 

In contrast to our work, none of these works support dynamic resource addition 
and removal to user requests. For example, once a server is allocated to the user 
request, it remains until the request completes or the server fails. 

3  System Model for Network Services 

We believe that some classes of high performance services are not appropriate for the   
resource harvesting technique. For example, network services with complex 
workflows may suffer from increased overhead for saving and redistributing their 
states when new resources are added in the middle of their execution. Therefore, the 
target classes of high performance network services that we are considering are data 
parallel and distributed services, which are common to high performance computing. 
Data parallel services are those that require communication between the constituent 
processors and the communication patterns are symmetric. Examples include numeric 
servers, N-body simulator, parallel CFD, etc. Distributed services are similar to data 
parallel services, but do not require communication among the distributed processes. 
Examples include stochastic simulation (e.g. monte carlo), parameter studies, etc. 
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Fig. 1 shows the general run-time infrastructure for network services. It consists of 
three primary components: scheduler, run-time predictor and service instances. The 
scheduler contacts the run-time predictor to acquire the estimated run-time of the 
service requests for resource scheduling. If it is needed to add/remove resources 
to/from active service instances, the scheduler contacts corresponding service 
instances, where adaptive actions are actually implemented. In addition, the service 
instances are responsible for reporting performance information to the run-time 
predictor so that the run-time predictor can maintain up-to-date performance 
information.  

4  Adaptive Resource Management 

Network services imply the potential of multiple concurrent users across the network 
and heterogeneous service requests (e.g. requests with different input parameters). 
Therefore, the run-time infrastructure must provide acceptable performance for a 
wide-spectrum of users. Our approach for scheduling multiple concurrent service 
requests is based on resource harvesting, where resources are dynamically 
added/removed to/from the active service requests to support high performance. For 
example, a scheduler may initially allocate a large number of resources to a request 
because there are no other requests pending. But when competing requests start to 
arrive and insufficient resources are available to run them, the scheduler may choose 
to harvest resources from running service requests. Therefore, performance prediction 
is crucial to adaptive resource management because deciding how to best allocate 
resources dynamically depends on the estimation of service execution time. The 
overhead of harvesting must be measured within the service and made available as 
part of the decision process. Resource harvesting raises two fundamental questions 
that should be addressed. 

• From which service requests should resources be harvested? 
• How many resources should be harvested? 

Fig. 1. General run-time infrastructure for network services: service instance 1 is using four
resources and service instance 2 is using three resources. 

Service Instance 1 Service Instance 2

Scheduler Run-Time 
Predictor
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One way to address the first question is the service provider establishes priority 
classes of its user base so that higher priority requests can harvest resources from 
lower priority requests. The second question is more complex because performance 
gain achieved by resource harvesting must be able to amortize the performance loss 
experienced by requests from which resources are taken away. 

4.1  Performance Prediction 

Performance prediction is needed by the scheduler to estimate the cost of executing a 
specific instance of a service request on a given amount of resources. The service 
execution time depends on not only the number of resources but also the input 
parameters to the service. For example, the time to solve NxN system of equations on 
K resources may be different from the time required to solve the system on L 
resources or to solve MxM system of equations on N resources. For simple services 
such as matrix multiplication, it is possible to predict run-time accurately using static 
cost functions. However, for complex services, we believe that static specification of 
detailed cost functions is not always possible. For the latter case, we use local linear 
regression and clustering technique to predict run-time, where local linear regression 
is applied using a subset of prior performance data that are clustered near the new data 
point. Performance history is organized in a two dimensional matrix, where each 
column represents the resource set and each row represents performance of the 
service given a set of input parameters on each resource set. To fill in the matrix, a 
configurable parameter, cluster range, is used. It determines whether or not two 
different input parameters can be regarded as similar in terms of the performance 
when the same resource set is used. For example, we might say that the run-time for 
10000x10000 matrix multiplication is the same as the time for 10001x10001 matrix 
multiplication if the same resource set is used. When a triple < input parameter, 
resource set, performance> is known after finishing a service request, the 
corresponding cell in the matrix is located and the following condition is tested: 

( )
celltheineperformanctheofvalueaveragethedataeperformancnew

rangecluster
:,: βα

ββα ×±≤  

If the condition is satisfied, then the new performance data is stored into the cell. 
Otherwise, a new row for the input parameters is created. Note that each cell can 
maintain several performance data with different input parameters values.  

To predict the performance of the service given (input parameters: i, resource set:  
j), the scheduler first locates the corresponding cell in the performance history matrix 
indexed by (i, j). If it is populated, then it simply returns the average value of the 
performance data in the cell. Otherwise, it finds the nearest two cells on the same row 
as the cell and applies local linear regression using the performance data in the two 
cells (row-wise prediction). After that, it finds the nearest two cells on the same 
column as the cell and does the same operation (column-wise prediction). Finally, the 
average value of the two estimated values are returned as estimated run-time. Row-
wise prediction reflects the performance change depending on resource set given the 
input parameters, whereas column-wise prediction reflects the performance change 
depending on input parameters given the same resource set. 
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4.2  Shortest-Remaining-Time Harvesting 

The idea behind shortest-remaining-time harvesting (SRT_Harvest) is only when a 
new service request, S, can finish earlier than other service requests that are currently 
running, then S can harvest resources from those service requests to enable it to run. 
The behavior of the algorithm is determined by two configurable parameters: 

• HP (Harvesting Parameter): controls how aggressively the system can harvest 
resources from running requests. 

• WP (Wait Time Parameter): defines the maximum wait time threshold for each 
request. It is proportional to the minimum run-time of the request. 

Fig. 2 describes the algorithm. If the run-time of a service request is long, its 
resources are frequently taken away for shorter requests, which sometimes results in 
the request not making any progress. To prevent the starvation of longer requests, 
whenever resources are available, the scheduler checks if there are any pending 
requests whose total wait time exceeds the maximum threshold, defined by 
(EstimatedMimimumRunTime * WP). If so, resources are allocated to those requests 
and the resources are marked as “Non-Harvestable” so that no requests can take 
resources away from them (line 1). 

Before harvesting resources, the scheduler contacts each of the active requests to 
acquire the current status information as to progress. For example, iterative services 
will return information on how many iterations has been done and the average 
iteration time. Using this information, the scheduler computes the available time of 
the resources that are currently being used by the active requests. Then, for each 
request in the wait queue, the scheduler computes the best performance achievable 

Fig. 2. Pseudo-code for shortest-remaining-time harvesting algorithm. 

SRT_Harvest () { 
1.    Find pending requests of which wait time exceeds the maximum wait time      
       threshold. Assign resources to those requests and mark the resources as “Non-  
       Harvestable”. 
2.    Contact active service instances and compute the available time of resources that 
       they are using. 
3.    while (!done)   { 
4.      Find a pending request whose run-time is smallest through resource  
         harvesting. 
5.      Start the request using selected resources; if the resources are being used by   
         other requests, then send “resource removal” messages to them; 
6.      If there is change in the wait queue due to resource harvesting, then go to 3. 
7.    } 
8.    for (each active request r that only a subset of resources are harvested) { 
9.       Check if there is any pending request that can finish earlier than r using the   
           remaining resources of r. 
10.      If s is such request, assign the remaining resources of r to s and put r into the 
           wait queue.  
11.   } 
} 
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using resource harvesting (line 3-7). It can harvest resources from request R for 
request S, only when the following condition is satisfied: 

( )1.0HPR,ofTimeRemainingHPSofTimeRun ≥<×−  

This condition determines the candidate requests from which resources will be 
taken away and the number of resources from those requests. Thus, as long as a 
request S can finish earlier than R, S can harvest resources from R. If not, it can 
harvest none of the resources of R. If only a subset of resources of a request are 
harvested, then there could be requests in the wait queue that can finish earlier than 
the request using the remaining resource set. Since the algorithm favors shorter 
requests, in such case, the active request should relinquish its resources to the one in 
the wait queue. If there are multiple requests in the wait queue that satisfy the 
requirement, the one that can finish the earliest is selected (line 8-11). 

4.3  Impact-Based Harvesting 

In contrast to shortest-remaining-time harvesting, impact-based harvesting 
(IB_Harvest) focuses on resource lenders rather than resource borrowers (Fig. 3). For 
example, resources of an active service request, R, can be harvested for a new service 
request, S, only when the impact of resource harvesting that R will experience is 
below a threshold. The impact is defined in terms of service time. In order to compute 
the service time threshold for each request, we use a configurable parameter, IP 
(Impact Parameter) and the optimal run-time of the request. The optimal run-time is 
defined as the minimum run-time achievable. 

If there are not enough resources available for a new request, for each active 
service request, the scheduler computes the number of resources that can be harvested 
from each of them (line 2-4). The number of harvestable resources of each active 
request is defined as follow: 

Fig. 3. Pseudo-code for impact-based harvesting algorithm. 

IB_Harvest ()  { 
1.    Contact active service instances and compute the available time of resources that 
       they are using. 
2.    for (each active service instance)   { 
3.      compute the number of harvestable resources. If it is greater than zero, then  
         mark the instance as “Harvestable” 
4.    }          
5.    m = the number of resources to harvest.         
6.    while (m  > 0)  { 
7.       for (i = 0; i < the number of harvestable instances; ++i)   { 
8.           collect k resources from instance(i), where k is randomly generated. 
9.           send “resource removal” message to instance(i). 
10.          m = m – k; 
11.      } 
12.   }     
}   
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The number of resources that will be allocated to the new request is the minimum 
number of resources with which it can finish earlier than the service time threshold. 
Once the harvestable service requests and the number of resources to harvest for the 
new request are determined, the scheduler collects resources randomly from each of 
the selected service requests until the desired number of resources is collected (line5-
12). 

When a service request finishes, it returns the harvested resources to service 
requests where the resources are collected. If the requests have already finished, 
instead of assigning the resources to active requests whose remaining time are small 
as in shortest-remaining-time harvesting, those resources are allocated to requests in 
the wait queue to reduce wait time of the requests.  

5  Experimental Results 

We have deployed an N-body simulation service to test the performance of the 
proposed scheduling policies. The objective of N-body simulation is to find the 
positions and movements of the bodies in space that are subject to gravitational forces 
from other bodies using Newtonian laws of physics [8]. 

In the prototype, the N-body simulation is implemented using Master/Slave 
paradigm, where the master maintain a bag of tasks and slaves repeatedly get tasks, 
update the bodies, then return the result to the master. Given n bodies and p slaves, 
the master divides the bodies into m blocks of size n/p and the slaves compute the 
forces between bodies in block i and those in block j. However, the computed forces 
do not reflect the effects of bodies in block k (k != i, j), once the slaves finish 
computing forces of bodies in every pair of blocks, the master computes the total 
forces of each body. To use the N-body simulation service, the users submit four 
parameters: start time, end time, delta time (the length of the time interval), and input 
bodies. The first three parameters control the number of iterations. We deployed the 
prototype service on a Linux cluster consisting of 10 dual CPU PCs and the cluster is 
dedicated to the service. 

Fig. 4. Accuracy of Run-Time Prediction. 
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Table 1. Configurable parameters for resource harvesting algorithms. 

 Light workload Uniform Workload Heavy Workload 
Cluster Range 0.05 0.05 0.05 
HP 1.5 1.8 1.2 
WP 12.0 8.0 12.0 
IP 1.7 1.1 1.3 

5.1  Performance Prediction 

Accurate prediction of run-time is important in the resource harvesting algorithms we 
presented. For this experiment, we generated input parameters to the service randomly 
and cluster range is set to 0.05. The experimental results show that our prediction 
system can achieve estimation accuracy to within 4% (Fig. 4). Since initially there are 
not enough data in the performance history matrix, the error rates of the first few 
predictions are high. However, as clients requests are served, the prediction system 
learns the relationship among input parameters, resource set and the run-time. 
Therefore, after the learning phase, it can predict the run-time accurately. 

5.2  Performance Comparison 

To assess the performance of our scheduling policies, we generated three synthetic 
workloads: light workload, uniform workload and heavy workload (Fig. 5). The X-
axis in the graph represents the number of bodies submitted to the service to compute 
movement. Note that since we fixed the three time-related parameters (start time, end 
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Fig. 5. Synthetic workloads. 
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time, delta time), which determine the number of iterations, the number of bodies 
controls the run-time. For example, the more bodies requested, the longer it takes to 
compute the result.  

We compare performance against two simple scheduling policies: MOLDABLE 
and IDEAL (Fig. 6). MOLDABLE assigns idle resources up to the optimal number of 
resources for each request. If there are no available resources, the request is queued. 
Otherwise, the request is “molded” to the available number of resources. In IDEAL, 
only the optimal number of resources are assigned to the request. Therefore, if the 
number of available resources is less than the optimal number of resources, the 
request waits until the optimal number of resources are available. Both scheduling do 
not use resource harvesting. Table 1 shows configurable parameters of SRT_Harvest 
and IB_Harves used in the experiments. 

For each workload, we measured average values of wait time, run-time, and 
service time of requests under different resource scheduling policies. Wait time of a 
request denotes a period of time in the wait queue, whereas run-time represents the 
time consumed to process the request. The service time is the sum of wait time and 
run-time. As IDEAL always waits until the optimal number of resources are available, 
its wait time is the highest but the average run-time of IDEAL is the smallest for the 
same reason. In SRT_Harvest, by executing shorter requests earlier than longer ones, 
the wait time is decreased significantly. In addition, because requests may not always 
run using the optimal number of resources, its average run-time is higher than that of 
IDEAL. However, if there is no shorter requests pending in the wait queue, instead of 
assigning idle resources to requests in the wait queue, it assigns as many resources as 
the optimal number of resources to the active requests. Therefore, the average run-
time can be reduced. In this experiment, SRT_Harvest achieved service time 
improvement up to 40%, 27% and 20% for light workload, heavy workload and 
uniform workload, respectively. As in SRT_Harvest, IB_Harvest also dynamically 

Fig. 6. Comparative performance for different resource scheduling policies. 
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collects resources for new requests whenever there are not enough resources for them. 
Therefore, its average wait time is also smaller than those of simple policies. 
Moreover, unlike SRT_Harvest, since IB_Harvest favors requests in the wait queue, 
the average wait time is even smaller than that of SRT_Harvest. However, due to 
resource harvesting, each request can use only the minimum number of resources, 
which leads to increased run-time. 

5.3  Sensitivity to Configurable Parameters 

In theory, running shortest requests first always reduces the average wait time. 
Therefore, in shortest-remaining-time harvesting, HP=1.0 should provide the best 
performance. However, due to WP, shorter requests may wait until non-harvestable 
requests finish. Furthermore, smaller HP makes the wait time of longer requests reach 
the maximum wait time threshold faster because longer requests either may not be 
selected for execution or may relinquish all of their resources frequently to shorter 
requests. These two behaviors make the wait time of shorter requests longer if they 
arrive when non-harvestable requests are using all of the system resources (Fig. 7). 
However, as HP increases, the total wait time also increases because shorter requests 
may not be executed even though longer requests are using resources. The reason for 
choosing a larger value as WP for a heavy workload is as the run-time of each request 
is relatively high in the heavy workload, small WP makes the total wait time of each 
request exceed the maximum wait time threshold quickly. Therefore, it may not take 
advantage of resource harvesting. This behavior is explained in Fig. 8. 

Fig. 8 shows that as WP increases, the average performance improves in both 
workloads. This is quite straightforward because with a very large WP, whenever 
shorter requests arrive, they acquire resources from longer requests. On the other 

Fig. 7. Sensitivity to harvesting parameter. 
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hand, if a small WP is used, as the maximum wait time threshold of each request 
becomes small, they become non-harvestable quickly. Therefore, even if shorter 
requests arrive, they may not acquire resources, which results in increased wait time. 

Larger IP allows more frequent resource harvesting. Therefore, as IP increases, the 
average wait time decreases. However, at certain point, since most of the active 
requests are using the minimum number of resources, the decrements of average wait-
times cannot compromise the increments of average run-times (Fig. 9). In addition, 
due to increased run-times, the available time of resources also increases, which 

Fig. 9. Sensitivity to impact parameter. 
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Fig. 8. Sensitivity to wait time parameter. 
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results in increased average wait-times.  
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6  Conclusions 

In this paper, we presented the adaptive resource scheduling technique to handle 
multiple concurrent service requests within network services. Novel aspect of our 
approach is resource harvesting, where resources are dynamically added/removed 
to/from active service requests.  The preliminary results using N-body simulation 
service show that adaptive scheduling policies using resource harvesting can achieve 
significantly improved service time. 
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