

Community Services: A Toolkit for Rapid Deployment of
Network Services

Byoung-Dai Lee and Jon B. Weissman
Department of Computer Science and Engineering, University of Minnesota,

Minneapolis, MN U.S.A
{blee, jon}@cs.umn.edu

Abstract
Advances in packaging and interface technologies

have made it possible for software components to be
shared across the network through encapsulation and
offered as network services. They allow the end-users to
focus on their applications and obtain remote services
when needed simply by invoking the services across the
network. Many groups have built significant
infrastructure for providing domain-specific high
performance services. However, Transforming high
performance applications into network services is labor-
intensive and time consuming because there is little
existing infrastructure to utilize. In this paper, we
propose a software toolkit and run-time infrastructure
for rapid deployment of network services.

1. Introduction

High performance applications are used in many

areas to model and solve complex problems. Examples
of such problems include modeling large DNA
structures, global weather forecasting and predicting
motion of the astronomical bodies in space, to name a
few. A number of codes and libraries that support high
performance applications have been developed and are
actively being used by the community. Some popular
examples include Netlib, a collection of numerical
libraries and CHARMM, a code for dynamic macro-
molecular simulations. However, in order to develop
new high performance applications using such
supporting codes, it is necessary to acquire sources
codes of the libraries, compile them on local machines,
and tune the performance of the libraries. To make
things worse, those supporting codes often require the
need to install a code base such as MPI.

Fortunately, advances in packaging and interface
technologies ([1][2][3]) have made it possible for
software components to be shared across the network
through encapsulation and offered as network services.

They allow the end-users to focus on their applications
and obtain remote services when needed simply by
invoking remote services across the network

We believe the next dominant paradigm for high
performance computing will be based on high
performance network services. To support this vision,
significant amount of high performance applications will
be transformed into network services, which we call
Community Services. However, transforming high
performance applications into network services is labor-
intensive and time consuming because there is little
existing infrastructure to utilize.

To address this difficulty, we propose a software
toolkit and run-time infrastructure for rapid deployment
of network services. However, in this paper, among the
many issues to consider when building such
infrastructures, we’ll focus on resource management
because efficient resource management is indispensable
to providing acceptable performance for a wide-
spectrum of users.

2. Systems Architecture

The community service infrastructure that we propose

is an open architecture that consists of three software
components designed to manage services (Figure 1.).

The meta-service is responsible for the overall
management of the service providers environment. It

Figure 1. Community service architecture

meta-service

Service provider
tools

S1

S2

R1

adaptive code

R2

alloc_pool
dealloc_poole
add
remove
….

Request service
(input params)

Result back

alloc_resource
dealloc_resource

….

launch perf.
updates

client

Request managers for S1
Service managers

provides facilities to add and remove services, and
performs global management of the site resources by
allocating and deallocating resource pool to separate
services. The service manager handles client requests
for a particular service. It tracks the current requests for
the service, gathers incremental performance updates
from the request manager, and makes resource allocation
decision on behalf of user requests within its resource
pool. It also maintains a performance history of the
service. The service manager provides an initial resource
allocation to the request manager. However, it is
possible that the resources can be added or removed later
as part of dynamic resource management. The request
manager is a front-end linked in with the service code
and is the place where adaptive actions such as resource
addition and removal are actually implemented.

4. Adaptive Resource Management

Network services imply the potential of multiple

concurrent users across the network and heterogeneous
service requests (e.g. requests with different input
parameters). Therefore, the run-time infrastructure must
provide acceptable performance for a wide-spectrum of
users. The novel aspect of our resource management
system is resource harvesting, where the resource
management system is able to add/remove resources
dynamically to/from the active service requests to
support high performance. Therefore, performance
prediction is crucial to adaptive resource management
because deciding how to best allocate resources
dynamically depends on the estimation of service
execution time.

Resource harvesting raises two fundamental
questions that must be addressed.

• From which service requests should resources be
harvested?

• How many resources should be harvested?

One way to address the first question is the service
providers establish priority classes of its user base so
that higher priority requests can harvest resources from
lower priority requests. The second question is more
complex because the performance gain achieved by
resource harvesting must be able to amortize the
performance loss experienced by requests from which
resources are taken away.

4.1. Performance Prediction

Performance prediction is needed by the service

manager to estimate the cost of executing a specific
instance of a service request on a given amount of
resources. The service execution time depends on not

only the number of resources but also the input
parameters to the service. We introduce local linear
regression and clustering technique to predict run-time,
where local linear regression is applied using a subset of
prior performance data that are clustered near the new
data point. Performance history is organized in a two
dimensional matrix, where each column represents the
resource set and each row represents performance of the
service given a set of input parameters on each resource
set. To fill in the matrix, a configurable parameter,
cluster range, is used. It determines whether or not two
different input parameters can be regarded as similar in
terms of performance when the same resource set is
used. When a triple <input parameters, resource set,
performance> is reported by a request manager, the
system locates the corresponding cell in the matrix and
test the following condition:

If the condition is satisfied, then the new performance
data is stored into the cell. Otherwise, a new row for the
input parameters is created. Note that each cell maintains
several performance data.

To predict the performance of the service given (input
parameters:a, resource set:b), the service manager first
locates the corresponding cell in the matrix indexed by
(a, b). If it is populated, then it simply returns the
average value of the performance data in the cell.
Otherwise, it finds the nearest two cells on the same row
as the cell and applies local linear regression using the
performance data in the two cells (row-wise prediction).
After that, it finds the nearest two cells on the same
column as the cell and does the same operation (column-
wise prediction). Finally, the service manager returns the
average value of the two estimated values. Row-wise
prediction reflects the performance change depending on
resource set given the input parameters, whereas
column-wise prediction reflects the performance change
depending on input parameters given the same resource
set.

4.2. Shortest-Remaining-Time Harvesting

To address two fundamental questions mentioned

above, we introduce a resource harvesting algorithm,
which we call SRT_Harvest. The idea behind this
algorithm is when a new service request, S, can finish
earlier than other service requests that are currently
running, then S can harvest resources from those service
requests to enable it to run. The behavior of the
algorithm is determined by two configurable parameters:

()

celltheineperformanctheofvalueaveragethe
dataeperformancnew
RangeCluster

:
:

β
α

ββα ×±≤

• HP(Harvesting Parameter): controls how
aggressively the system can harvest resources from
running request.

• WP(Wait Time Parameter): defines the maximum
wait time threshold for each request. It is
proportional to the minimum run-time of the request.

To prevent the starvation of longer requests,
whenever resources are available, the system checks if
there are any pending requests whose total wait time
exceeds the maximum threshold, defined by
(EstimatedMinimumRunTime * WP). If so, resources are
allocated to those requests and the resources are marked
as “Non-Harvestable” so that no requests can take
resources away from them.

Before harvesting resources, the service manager
contacts the request managers of active requests to
acquire the current status information as to progress.
Using this information, the service manager computes
the available time of the resources that are currently
being used by active requests. Then, for each request in
the wait queue, the algorithm computes the best
performance achievable using resource harvesting. It can
harvest resources from R for request S only when the
following condition is satisfied:

 ()0.1, ≥< × HPR of Time maining Re HP S of Time Run
This condition determines the candidate requests

from which resources will be taken away and the
number of resources from those requests. If only a subset
of resources are harvested, there could be requests in the
wait queue that can finish earlier than the request using
the remaining resource set. Since the algorithm favors
shorter requests, in such case, the active request should
relinquish its resources to the one in the wait queue.

5. Experiments

We have built a Linux-based community service

prototype and have deployed an N-body simulation
service to test the performance of the approach. The
objective of N-body simulation is to find the positions
and movements of bodies in space that are subject to
gravitational forces from other bodies using Newtonian
laws of physics. In the prototype, the N-body simulation
is implemented using Master/Slave paradigm, where the

master maintain a bag of tasks and slaves repeatedly get
tasks, update the bodies, then return the results to the
master. We deployed the prototype service on a Linux
Cluster consisting of 10 dual cpu PCs and the cluster is
dedicated to the service.

Figure 2. shows run-time prediction accuracy. For
this experiment, we generated input parameters to the
service randomly and the cluster range is set to 0.05. The
experimental results show that our prediction system can
achieve prediction accuracy to within 4% error rate.
Since initially there are not enough data in the
performance history matrix, the error rates of the first
few predictions are high. However, as clients requests
are served, the prediction system learns the relationship
between input parameters, resource set, and the run-time.
Therefore, after the learning phase, it can predict the
run-time accurately.

To assess the performance of our resource
management system, we generated two synthetic
workloads: light workload and heavy workload (Figure
3.). The X-axis in the graph represents the number of
bodies submitted to the service to compute movement.
Note that since we fixed other parameters to the service,
the number of bodies controls the run-time.

We compared performance against two simple
scheduling policies: MOLDABLE and IDEAL (Figure
4.). MOLDABLE assigns idle resources up to the
optimal number of resources for each request. The
optimal number of resources is the number of resources
that makes the run-time of the request minimum. If there
are no available resources, the request is queued.

Figure 2. Accuracy of run-time prediction

Heavy Workload

0

5

10

15

20

25

30

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-
10

10-
11

Number of Bodies
(x 1000)

%

Light Workload

0

5

10

15

20

25

30

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-
10

10-
11

Number of Bodies
(x 1000)

%

Figure 3. Synthetic workloads

Figure 4. Comparative performance

Light Workload

0

50000

100000

150000

200000

250000

WAIT_T
IM

E

RUN_T
IM

E

SERVIC
E_T

IM
E

Ti
m

e(
m

s)

MOLDABLE
IDEAL
SRT_HARVEST

Heavy Workload

0

200000

400000

600000

800000

1000000

1200000

WAIT_T
IM

E

RUN_T
IM

E

SERVIC
E_T

IM
E

Ti
m

e(
m

s)

Run-Time Prediction Accuracy

-1000

-800

-600

-400

-200

0

200

0 50 100 150 200 250 300 350

Request Number

Er
ro

r R
at

e(
%

)

Otherwise, the request is “molded” to the available
resources. In IDEAL, only the optimal number of
resources are assigned to the request. Therefore, if the
number of available resources less than the optimal
number of resources, the request waits until the optimal
number of resources are available. Both scheduling
policies do not use resource harvesting. Table 1. shows
configurable parameters of SRT_Harvest algorithm used
in the experiment.

Table 1. Configurable parameters of SRT_Harvest
algorithm

 Light Workload Heavy Workload
Cluster Range 0.05 0.05
HP 1.5 1.2
WP 12.0 12.0

For each workload, we measured average values of
wait time, run-time, and service time of requests under
different resource management policies. Wait time
denotes a period of time in the wait queue, whereas run-
time represents the time consumed to process the
request. The service time is the sum of wait time and
run-time. As IDEAL always waits until the optimal
number of resources are available, its wait time is the
highest but the average run-time is the smallest for the
same reason. In SRT_Harvest, by executing shorter
requests earlier than longer requests, the wait time is
decreased significantly. In addition, because request may
not always run using the optimal number of resources,
its average run-time is higher than that of IDEAL. In this
experiment, SRT_Harvest achieved service time
improvement up to 50% and 30% for light workload and
heavy workload respectively.

Figure 5-6 show the behavior of SRT_Harvest
algorithm as varying configurable parameters. In theory,
running shortest requests first always reduces the
average wait time. Therefore, HP=1.0 should provide
best performance. However, due to WP, shorter requests
may wait until non-harvestable requests finish.
Furthermore, smaller HP makes the wait time of longer
requests reach the maximum wait time threshold faster
because longer requests either may not be selected for
execution or may relinquish all of their resources

frequently to shorter requests. These two behaviors make
the wait time of shorter requests longer if they arrive
when non-harvestable requests are using all of the
system resources (Figure 5.). However, as HP increases,
the total wait time also increases because shorter
requests may not be executed even though harvestable
longer requests are using resources. Figure 6. shows that
as WP increases, the average performance improves in
both workloads. This is quite straightforward because
with a very large WP, whenever shorter requests arrive,
they acquire resources from longer requests. On the
other hand, if a small WP is used, as the maximum wait
time threshold of each request becomes small, they
become non-harvestable quickly.

6. Conclusions

Network services make it easy to share software

components across the network. However, deploying
network services is not an easy task since there is no
existing infrastructure to utilize. In this paper, we
proposed adaptive resource management system that
such infrastructure should possess. Our preliminary
results show that resource harvesting can achieve up to
50% performance improvement.

Acknowledgements

This work was sponsored in part by the Army High
Performance Computing Research Center under the
auspices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAD19-01-
2-0014.

7. References

[1] R. Armstrong et al., “Towards a Common Components
Architecture for High-Performance Scientific Computing”,
Proceedings of the 8th International Symposiums on High
Performance Distributed Computing, 1999.
[2] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments”, IEEE
Communication Magazine, 14(2), 1997.
[3] Web Service Description Languages(WSDL) 1.1 W3C
Note, http://www.w3.org/TR/wsdl.

Light Workload

0

50000

100000

150000

200000

250000
H

P=
1.

0,
W

T=
4.

0

H
P=

1.
5,

W
T=

4.
0

H
P=

2.
0,

W
T=

4.
0

Ti
m

e
(m

s)

Heavy Workload

0

200000

400000

600000

800000

1000000

1200000

H
P=

1.
0,

W
T=

4.
0

H
P=

1.
5,

W
T=

4.
0

H
P=

2.
0,

W
T=

4.
0

Ti
m

e
(m

s)

WAIT_TIME

RUN_TIME

SERVICE_TIME

Figure 5. Sensitivity to HP

Heavy Workload

0
200000
400000
600000
800000

1000000
1200000
1400000

H
P=

1.
5,

W
T=

4.
0

H
P=

1.
5,

W
T=

8.
0

H
P=

1.
5,

W
T=

12
.0

Ti
m

e
(m

s)

WAIT_TIME

RUN_TIME

SERVICE_TIME

Light Workload

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

H
P=

1.
5,

W
T=

4.
0

H
P=

1.
5,

W
T=

8.
0

H
P=

1.
5,

W
T=

12
.0

Ti
m

e
(m

s)

Figure 6. Sensitivity to WP

