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Abstract 
Advances in packaging and interface technologies 

have made it possible for software components to be 
shared across the network through encapsulation and 
offered as network services. They allow the end-users to 
focus on their applications and obtain remote services 
when needed simply by invoking the services across the 
network. Many groups have built significant 
infrastructure for providing domain-specific high 
performance services. However, Transforming high 
performance applications into network services is labor-
intensive and time consuming because there is little 
existing infrastructure to utilize. In this paper, we 
propose a software toolkit and run-time infrastructure 
for rapid deployment of network services. 

 
 

1. Introduction 
 
High performance applications are used in many 

areas to model and solve complex problems. Examples 
of such problems include modeling large DNA 
structures, global weather forecasting and predicting 
motion of the astronomical bodies in space, to name a 
few. A number of codes and libraries that support high 
performance applications have been developed and are 
actively being used by the community. Some popular 
examples include Netlib, a collection of numerical 
libraries and CHARMM, a code for dynamic macro-
molecular simulations. However, in order to develop 
new high performance applications using such 
supporting codes, it is necessary to acquire sources 
codes of the libraries, compile them on local machines, 
and tune the performance of the libraries. To make 
things worse, those supporting codes often require the 
need to install a code base such as MPI. 

Fortunately, advances in packaging and interface 
technologies ([1][2][3]) have made it possible for 
software components to be shared across the network 
through encapsulation and offered as network services. 

They allow the end-users to focus on their applications 
and obtain remote services when needed simply by 
invoking remote services across the network 

We believe the next dominant paradigm for high 
performance computing will be based on high 
performance network services. To support this vision, 
significant amount of high performance applications will 
be transformed into network services, which we  call 
Community Services. However, transforming high 
performance applications into network services is labor-
intensive and time consuming because there is little 
existing infrastructure to utilize.  

To address this difficulty, we propose a software 
toolkit and run-time infrastructure for rapid deployment 
of network services. However, in this paper, among the 
many issues to consider when building such 
infrastructures, we’ll focus on resource management 
because efficient resource management is indispensable 
to providing acceptable performance for a wide-
spectrum of users. 

 
2. Systems Architecture 

 
The community service infrastructure that we propose 

is an open architecture that consists of three software 
components designed to manage services (Figure 1.). 

The meta-service is responsible for the overall 
management of the service providers environment. It 

Figure 1. Community service architecture 
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provides facilities to add and remove services, and 
performs global management of the site resources by 
allocating and deallocating resource pool to separate 
services. The service manager handles client requests 
for a particular service. It tracks the current requests for 
the service, gathers incremental performance updates 
from the request manager, and makes resource allocation 
decision on behalf of user requests within its resource 
pool. It also maintains a performance history of the 
service. The service manager provides an initial resource 
allocation to the request manager. However, it is 
possible that the resources can be added or removed later 
as part of dynamic resource management. The request 
manager is a front-end linked in with the service code 
and is the place where adaptive actions such as resource 
addition and removal are actually implemented. 

 
4. Adaptive Resource Management 

 
Network services imply the potential of multiple 

concurrent users across the network and heterogeneous 
service requests (e.g. requests with different input 
parameters). Therefore, the run-time infrastructure must 
provide acceptable performance for a wide-spectrum of 
users. The novel aspect of our resource management 
system is resource harvesting, where the resource 
management system is able to add/remove resources 
dynamically to/from the active service requests to 
support high performance. Therefore, performance 
prediction is crucial to adaptive resource management 
because deciding how to best allocate resources 
dynamically depends on the estimation of service 
execution time.  

Resource harvesting raises two fundamental 
questions that must be addressed. 

• From which service requests should resources be 
harvested? 

• How many resources should be harvested? 

One way to address the first question is the service 
providers establish priority classes of its user base so 
that higher priority requests can harvest resources from 
lower priority requests. The second question is more 
complex because the performance gain achieved by 
resource harvesting must be able to amortize the 
performance loss experienced by requests from which 
resources are taken away. 

 
4.1. Performance Prediction 

 
Performance prediction is needed by the service 

manager to estimate the cost of executing a specific 
instance of a service request on a given amount of 
resources. The service execution time depends on not 

only the number of resources but also the input 
parameters to the service. We introduce local linear 
regression and clustering technique to predict run-time, 
where local linear regression is applied using a subset of 
prior performance data that are clustered near the new 
data point. Performance history is organized in a two 
dimensional matrix, where each column represents the 
resource set and each row represents performance of the 
service given a set of input parameters on each resource 
set. To fill in the matrix, a configurable parameter, 
cluster range, is used. It determines whether or not two 
different input parameters can be regarded as similar in 
terms of performance when the same resource set is 
used. When a triple <input parameters, resource set, 
performance> is reported by a request manager, the 
system locates the corresponding cell in the matrix and 
test the following condition:   

If the condition is satisfied, then the new performance 
data is stored into the cell. Otherwise, a new row for the 
input parameters is created. Note that each cell maintains 
several performance data. 

To predict the performance of the service given (input 
parameters:a, resource set:b), the service manager first 
locates the corresponding  cell in the matrix indexed by 
(a, b). If it is populated, then it simply returns the 
average value of the performance data in the cell. 
Otherwise, it finds the nearest two cells on the same row 
as the cell and applies local linear regression using the 
performance data in the two cells (row-wise prediction). 
After that, it finds the nearest two cells on the same 
column as the cell and does the same operation (column-
wise prediction). Finally, the service manager returns the 
average value of the two estimated values. Row-wise 
prediction reflects the performance change depending on 
resource set given the input parameters, whereas 
column-wise prediction reflects the performance change 
depending on input parameters given the same resource 
set. 

 
4.2. Shortest-Remaining-Time Harvesting 

 
To address two fundamental questions mentioned 

above, we introduce a resource harvesting algorithm, 
which we call SRT_Harvest. The idea behind this 
algorithm is when a new service request, S, can finish 
earlier than other service requests that are currently 
running, then S can harvest resources from those service 
requests to enable it to run. The behavior of the 
algorithm is determined by two configurable parameters: 
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• HP(Harvesting Parameter): controls how 
aggressively the system can harvest resources from 
running request. 

• WP(Wait Time Parameter): defines the maximum 
wait time threshold for each request. It is 
proportional to the minimum run-time of the request. 

To prevent the starvation of longer requests, 
whenever resources are available, the system checks if 
there are any pending requests whose total wait time 
exceeds the maximum threshold, defined by 
(EstimatedMinimumRunTime * WP). If so, resources are 
allocated to those requests and the resources are marked 
as “Non-Harvestable” so that no requests can take 
resources away from them. 

Before harvesting resources, the service manager 
contacts the request managers of active requests to 
acquire the current status information as to progress. 
Using this information, the service manager computes 
the available time of the resources that are currently 
being used by active requests. Then, for each request in 
the wait queue, the algorithm computes the best 
performance achievable using resource harvesting. It can 
harvest resources from R for request S only when the 
following condition is satisfied: 

 ( )0.1, ≥< × HPR of Time maining Re HP S of Time Run  
This condition determines the candidate requests 

from which resources will be taken away and the 
number of resources from those requests. If only a subset 
of resources are harvested, there could be requests in the 
wait queue that can finish earlier than the request using 
the remaining resource set. Since the algorithm favors 
shorter requests, in such case, the active request should 
relinquish its resources to the one in the wait queue. 

 
5. Experiments 

 
We have built a Linux-based community service 

prototype and have deployed an N-body simulation 
service to test the performance of the approach. The 
objective of N-body simulation is to find the positions 
and movements of bodies in space that are subject to 
gravitational forces from other bodies using Newtonian 
laws of physics. In the prototype, the N-body simulation 
is implemented using Master/Slave paradigm, where the 

master maintain a bag of tasks and slaves repeatedly get 
tasks, update the bodies, then return the results to the 
master. We deployed the prototype service on a Linux 
Cluster consisting of 10 dual cpu PCs and the cluster is 
dedicated to the service. 

Figure 2. shows run-time prediction accuracy. For 
this experiment, we generated input parameters to the 
service randomly and the cluster range is set to 0.05. The 
experimental results show that our prediction system can 
achieve prediction accuracy to within 4% error rate. 
Since initially there are not enough data in the 
performance history matrix, the error rates of the first 
few predictions are high. However, as clients requests 
are served, the prediction system learns the relationship 
between input parameters, resource set, and the run-time. 
Therefore, after the learning phase, it can predict the 
run-time accurately. 

To assess the performance of our resource 
management system, we generated two synthetic 
workloads: light workload and heavy workload (Figure 
3.). The X-axis in the graph represents the number of 
bodies submitted to the service to compute movement. 
Note that since we fixed other parameters to the service, 
the number of bodies controls the run-time. 

We compared performance against two simple 
scheduling policies: MOLDABLE and IDEAL (Figure 
4.). MOLDABLE assigns idle resources up to the 
optimal number of resources for each request. The 
optimal number of resources is the number of resources 
that makes the run-time of the request minimum. If there 
are no available resources, the request is queued. 

Figure 2. Accuracy of run-time prediction 
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Figure 3. Synthetic workloads 

Figure 4. Comparative performance 
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Otherwise, the request is “molded” to the available 
resources. In IDEAL, only the optimal number of 
resources are assigned to the request. Therefore, if the 
number of available resources less than the optimal 
number of resources, the request waits until the optimal 
number of resources are available. Both scheduling 
policies do not use resource harvesting. Table 1. shows 
configurable parameters of SRT_Harvest algorithm used 
in the experiment. 

Table 1. Configurable parameters of SRT_Harvest 
algorithm 

 Light Workload Heavy Workload 
Cluster Range 0.05 0.05 
HP 1.5 1.2 
WP 12.0 12.0 

For each workload, we measured average values of 
wait time, run-time, and service time of requests under 
different resource management policies. Wait time 
denotes a period of time in the wait queue, whereas run-
time represents the time consumed to process the 
request. The service time is the sum of wait time and 
run-time. As IDEAL always waits until the optimal 
number of resources are available, its wait time is the 
highest but the average run-time is the smallest for the 
same reason. In SRT_Harvest, by executing shorter 
requests earlier than longer requests, the wait time is 
decreased significantly. In addition, because request may 
not always run using the optimal number of resources, 
its average run-time is higher than that of IDEAL. In this 
experiment, SRT_Harvest achieved service time 
improvement up to 50% and 30% for light workload and 
heavy workload respectively. 

Figure 5-6 show the behavior of SRT_Harvest 
algorithm as varying configurable parameters. In theory, 
running shortest requests first always reduces the 
average wait time. Therefore, HP=1.0 should provide 
best performance. However, due to WP, shorter requests 
may wait until non-harvestable requests finish. 
Furthermore, smaller HP makes the wait time of longer 
requests reach the maximum wait time threshold faster 
because longer requests either may not be selected for 
execution or may relinquish all of their resources 

frequently to shorter requests. These two behaviors make 
the wait time of shorter requests longer if they arrive 
when non-harvestable requests are using all of the 
system resources (Figure 5.). However, as HP increases, 
the total wait time also increases because shorter 
requests may not be executed even though harvestable 
longer requests are using resources. Figure 6. shows that 
as WP increases, the average performance improves in 
both workloads. This is quite straightforward because 
with a very large WP, whenever shorter requests arrive, 
they acquire resources from longer requests. On the 
other hand, if a small WP is used, as the maximum wait 
time threshold of each request becomes small, they 
become non-harvestable quickly. 

 
6. Conclusions 

 
Network services make it easy to share software 

components across the network. However, deploying 
network services is not an easy task since there is no 
existing infrastructure to utilize. In this paper, we 
proposed adaptive resource management system that 
such infrastructure should possess. Our preliminary 
results show that resource harvesting can achieve up to 
50% performance improvement. 
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