
Orchestrating Data-centric Workflows
Adam Barker∗, Jon B. Weissman†∗, and Jano van Hemert∗

∗ National e-Science Centre (NeSC), University of Edinburgh, United Kingdom.
† Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.

Abstract—When orchestrating data-centric workflows as are
commonly found in the sciences, centralised servers can become a
bottleneck to the performance of a workflow; output from service
invocations are always transferred via a centralised orchestration
engine, when they should be passed directly to where they are
needed at the next service in the workflow. To address this
performance bottleneck, this paper presents a lightweight Web
services architecture and concrete API, based on a centralised
control flow, distributed data flow model. Our architecture main-
tains the robustness and simplicity of centralised orchestration,
but facilitates choreography by allowing services to exchange
data directly with one another, reducing data that needs to
be transferred through a centralised server. Furthermore, our
architecture is a flexible, non-intrusive solution, as existing service
definitions do not have to be altered prior to enactment.

Index Terms—Systems architecture, workflow optimisation,
Web services, decentralised orchestration.

I. INTRODUCTION

Service-oriented architectures are a popular architectural
paradigm for building software applications from a number of
loosely coupled distributed services. Although the concept of
service-oriented architectures is not a new one, this paradigm
has seen wide spread adoption through the Web services ap-
proach, which has a suite of simple standards (XML, WSDL,
SOAP etc.) to facilitate service interoperability.

Web services in their vanilla form provide a simple solution
to a simple problem, things become more complex when
a group of services need to coordinate together to achieve
a shared task or goal. This coordination is often achieved
through the use of workflow technologies. As defined by
the Workflow Management Coalition [4], a workflow is the
automation of a business process, in whole or part, during
which documents, information or tasks are passed from one
participant (a resource; human or machine) to another for
action, according to a set of procedural rules.

There are two common architectural approaches to imple-
menting workflow; service orchestration and service choreog-
raphy. Service orchestration refers to an executable business
process that may interact with both internal and external
services. Orchestration describes how services can interact at
the message level, with an explicit definition of the control
flow and data flow. By control flow we refer to typically
short messages that are used to trigger state changes at the
remote services, data flow on the other hand are mostly large
data that are given to the receiving services for processing.
Orchestrations can span multiple applications and/or organisa-
tions and result in long-lived, transactional processes, services
themselves have no knowledge of their involvement in a higher

level application. A central process always acts as a controller
to the involved services, both control and data flow messages
pass through this centralised server. The Business Process
Execution Language (BPEL) [10] is an executable business
process modelling language and currently the current de-facto
standard way of orchestrating Web services. It has broad
industrial support from companies such as IBM, Microsoft
and Oracle.

Service choreography on the other hand is more collabo-
rative in nature. A choreography model describes a collab-
oration between a collection of services in order to achieve
a common goal. Choreography describes interactions from
a global perspective, meaning that all participating services
are treated equally, in a peer-to-peer fashion. Each party
involved in the process describes the part they play in the
interaction. Choreography focuses on message exchange, all
involved services are aware of their partners and when to in-
voke operations. The Web Services Choreography Description
Language (WS-CDL) [6] is an XML-based language that can
be used to describe the common and collaborative observable
behavior of multiple services that need to interact in order to
achieve a shared goal. Currently this language is in the W3C
candidate recommendation stage and there are no concrete
implementations.

Orchestration differs from choreography in that it describes
a process flow between services from the perspective of one
participant (centralised control), choreography on the other
hand tracks the sequence of messages involving multiple
parties (decentralised control, no central server), where no one
party truly owns the conversation.

A. Problem Statement and Paper Contributions

To illustrate our problem statement, it is best to consider a
simple, artificial example. A scientist constructs a workflow
to collect, analyse and visualise a distributed set of data. In
this workflow three distributed databases are queried through
Web service interfaces, the results of these queries are then
forwarded to an analysis Web service, which computes some
function of these data and outputs the results to a visualisation
Web service, finally the output from the visualisation service
is used as input to a program running on a user’s terminal. As
illustrated by the top of Figure 1 the output of the database
queries (3Gb in total) are moved to the orchestration engine
and forwarded as input to the analysis Web service, whose
output (1GB) is again passed through the orchestration engine
and finally used as input to the visualisation service. The
visualisation service forwards the results of the workflow

(via the orchestration engine) directly to the user (500Mb).
When output from one service invocation is directly (with no
alteration) used as input to another, we label this intermediate
data.

Orchestration Engine

DB-2 DB-3

Analysis
WS

Visualisation
WS

Terminal

Analysis WS

Visualisation
WS

Terminal

1 GB 1 GB 1 GB

3 GB
1 GB

1 GB

1 GB

1 GB
1 GB

1 GB

500 MB

500 MB

500 MB

WS-1

DB-1

WS-2 WS-3

DB-2 DB-3

WS-1

DB-1

WS-2 WS-3

Orchestration Engine

DB-2 DB-3

Analysis
WS

Visualisation
WS

Terminal

500 MB

WS-1

DB-1

WS-2 WS-3

1 GB

1 GB

1 GB

1 GB

Fig. 1. Example scenario: Orchestration (top), Centralised control flow,
distributed data flow (middle) and Choreography (bottom). Web services are
represented by rounded rectangles, control flow messages by solid arrowed
lines and data flow messages by dashed arrowed lines

Currently most research has focused on designing languages
for and implementing service orchestrations, where both con-
trol and data flow pass through a centralised server. There are
a plethora of orchestration frameworks which will automate
these tasks for you, examples can be seen in the Business
Process Modelling community through BPEL, life sciences
through Taverna [13] and computational Grid community
through Pegasus [2].

Centralised control through an orchestration engine is a
valid solution for scenarios found in e-Commerce, where
relatively small quantities of intermediate data are moved
between services in a workflow. However, centralised servers
make less sense when dealing with data centric workflows
(Gbs/Tbs) as are commonly found in the sciences; for example
constructing workflows which analyse data from the Sloan
Digitial Sky Survey (SDSS) [9]. Passing large quantities of
intermediate data through a centralised orchestration engine
results in unnecessary data transfer, thereby decreasing the
performance of a workflow. Furthermore, it may be the case
that the groups of services interacting in the workflow are
deployed near to one another and the orchestration engine
controlling them is sitting on a user’s desk on the other side
of the world. If this is the case, the intermediate data has
to make a large hop back to the orchestration engine when
locality could be exploited by piping it directly to the next
service in the workflow which happens to be local. Referring
to our scenario again using orchestration a total data transfer
of 9Gb of data is required to enact the workflow.

In the scientific domain, where large quantities of interme-
diate data are passed between services, a choreography model
is a more efficient architecture. By adopting a choreography
model, the output of a service invocation can be passed
directly to where it is required as input to the next service,
thereby decreasing intermediate data and as a result decreasing
network traffic. This is illustrated by the bottom of Figure 1, by
using a choreography model data is not being passed through a
centralised server, the total data transfer to enact the workflow
has been reduced to 4.5Gb, a total saving of 4.5Gb.

In practise, the design process and execution infrastructure
for service choreography models are inherently more complex
than orcehstration. Decentralised control brings a new set of
problems which are the result of message passing between
distributed concurrent processes. This paper proposes a novel
hybrid architecture, based on centralised control flow, dis-
tributed data flow [7], illustrated by the middle section of
Figure 1. This architecture sits between pure orchestration
and pure choreography. A centralised orchestration engine
issues control flow messages to Web services taking part
in the workflow, however enrolled Web services can pass
data flow messages amongst themselves, like a peer to peer
model. This model maintains the robustness and simplicity
of centralised orchestration but facilities choreography by
avoiding the need to pass large quantities of intermediate data
through a centralised server.

II. SYSTEM OVERVIEW OF HYBRID ARCHITECTURE

This Section discusses why current standards alone are
sufficient to support service orchestration but need to be
adapted to support more complex models of interaction, like
choreography. Our hybrid architecture is introduced which
facilitates a centralised control flow, distributed data flow
model. A concrete API is presented and applied to the simple
example discussed in Section I-A.

A. Achieving Choreography

The Web Services Definition Language (WSDL) provides a
standardised wrapper to expose application code to a network.
This wrapper was deliberately designed to be simple and
lightweight and is a contributing factor to the success of
the Web services approach to service-oriented architectures.
However, WSDL definitions alone cannot support the function-
ality required of choreography, where the output of a method
invocation is sent directly to where it is required next in the
workflow; instead the output is send back to the orchestration
engine, application etc. which invoked it.

To enable Web services to pass data directly amongst
themselves an extra layer of functionality needs to be added
to the stack, this can be achieved in a number of ways:
• Choreography interface: To facilitate choreography an

extra interface could be wrapped around existing service
definitions. The current proposed standard, WS-CDL is de-
signed to sit on top of WSDL; WSDL focuses on capturing
message types while WS-CDL is about capturing behaviour.
A user models a choreography from a global perspective, each
individual service will have to be programmed by a developer
in such a way that they talk to one another, and in doing
so, enforce the constraints of the choreography. This model
allows services to exchange data with one another with no
centralised server, however vanilla Web services can not take
part in the choreography without the added WS-CDL layer
and choreography specific programming.
• Installation of proxies: An alternative approach to

achieving choreography is the installation of a proxy which sits
infront of a service or groups of services. A proxy provides an
extra set of functionality (e.g. passing output directly to where
it is needed) and invokes a service on an application’s behalf.
Communication between the proxy and services can be local
if they are installed on the same Web server or domain.

Although a choreography interface is the optimal solution
in terms of performance, this extra interface is intrusive to the
services themselves and means that each individual service
definition must be wrapped with a choreography interface
prior to workflow enactment. Web services are owned and
maintained by different organisations and may not agree to
installing specialist interfaces in order to facilitate choreog-
raphy, unless they have something to gain. Proxies are less
intrusive and offer an advantage as they are entirely external to
the Web services themselves and services require no alteration
or knowledge that they are taking part in an interaction.

B. Proxy Architecture

In order to provide Web services with the required function-
ality to realise a centralised control flow, distributed data flow
model, this paper presents a proxy architecture. A proxy is a
lightweight, non intrusive piece of middleware which provides
a gateway and standard API to Web service invocation. A
proxy allows Web services to exchange data flow messages
directly with one another (avoiding transferring them through
a centralised server). Proxies are installed as ‘closely’ as
possible to enrolled Web services, by close we mean preferably

Orch.
Engine

WS-1 WS-2 WS-3

Orch.
Engine

WS-1 WS-2 WS-3

Orch.
Engine

WS-1 WS-2 WS-3

Proxy

Proxy Proxy Proxy

Proxy Proxy

Fig. 2. One proxy, multiple services, 1:N (top), One proxy, one service, 1:1
(middle), mixed components (bottom). Proxies are represented by circles

on the same Web server or domain so that communication
between a proxy and a Web service goes over a local, not
Wide Area network. Depending on the preference of an
administrator, a proxy can be responsible for one Web service,
1:1 or many Web services, 1:N; this is represented by the top
and middle of Figure 2.

Proxies themselves are exposed through a WSDL interface,
allowing them to be built into workflows or higher level
applications like any other Web service. As everything is
exposed through a WSDL interface, this means that workflows
can be made up with a combination of proxies and vanilla Web
services, represented by the bottom of Figure 2.

As discussed earlier, our hybrid architecture sits between

a purely centralised solution (orchestration) and a purely
decentralised solution (choreography). To realise a centralised
control flow, distributed data flow model, proxies are con-
trolled by a centralised orchestration engine which is executing
an arbitrary workflow language. However, only control flow
messages are passed through the orchestration engine, larger
data flow messages are exchanged between proxies in a peer to
peer fashion, unless a proxy is explicitly told to do otherwise.
Proxies exchange references to the data with the orchestration
engine and pass the real data directly to where it is needed for
the next service invocation; this allows the orchestration engine
to monitor the progress and make changes to the execution of
a workflow.

C. Proxy API
Proxies are designed to be installed on the same Web server

or domain as a number of data centric Web services. The proxy
architecture is available as an open-source toolkit implemented
using a combination of Java and the Apache Axis Web services
toolkit [11]. They are extremely simple to install and configure
and can be dropped into a AXIS container running on a Tomcat
server and configured remotely, no specialised programming
needs to take place in order to exploit the functionality. The
architecture is multi-threaded and allows several applications
to invoke methods concurrently. A proxy has a thread pool
and when that thread pool is full the request is placed on
an input queue and dealt with in First In First Out (FIFO)
order. Results from Web service invocations are stored at a
proxy in a Hashtable which maps a UID reference to a data
element. Proxies are made available through a standard WSDL
interface, the Java representation of that interface is displayed
in Figure 3, all methods are invoked by an orchestration engine
except stage. The proxy has the following methods:

• invoke is the main proxy method and provides a gateway
to Web service invocation. This method takes as input details
of the Web service to be invoked, including the location of a
WSDL, portType and operation name. The final parameter is
an array of Objects that contain either actual data to be used
as input, references to data stored at the proxy which are to be
used input, or a combination of both. The array is transferred
via SOAP and is mapped to an ArrayOf_xsd_anyType.
Parameters must be in order and any input included in the
array must be standard JAX-RPC supported types; the proxy
will check this at runtime and exceptions will be thrown
accordingly. References to data are represented as a time-
stamped UID of type String. If the proxy receives any String
elements in the input array it first checks to see if it represents
a UID, if it does, the proxy considers it to be a reference to data
stored locally, retrieves it and uses the actual data the reference
points to as input to the Web service invocation. When this
method is called the results from the Web service invocation
are tagged with a UID and stored in the proxy’s Hashtable,
this UID is returned to the application as a reference to the
actual data.
• deliver sets up data movement between proxies, moving

it closer to the source of a Web service invocation. The first

input parameter is a String containing the location of the
recipient proxy. Each element in the second input parameter,
String[] represents one reference to a blob of data stored
at the proxy. Once invoked by an application the proxy will
retrieve all the data the references point to, insert it into a
hashtable and invoke the stage method on the recipient
proxy; currently data is moved using SOAP, however we are
exploring the use of protocols such as GridFTP for large data
transfer. An acknowledgement is returned represented as a
boolean.
• stage is used to actually transfer a set of data from

one proxy to another. This method is called from within
the deliver method on the recipient proxy and moves the
data (packaged as a Hashtable) to the recipient proxy. An
acknowledgement is returned, represented as a boolean.
• returnData can be used to retrieve stored data from a

proxy when it is needed on a user’s desktop, e.g. to obtain
the final results at the end of a workflow. Once invoked, the
proxy iterates the input array (String[]), which contains
references to data, storing them in an array of type Object.
This array is then returned to the invoking application.
• flushTempData is a house keeping method and is called to

remove data from a proxy which is no longer required for any
workflow components. This method takes a list of references
to data, String[] and returns a boolean if successful.
• addService/removeService is used to instruct a proxy

to maintain a new Web service, adding the WSDL to its
repository or remove it from a proxy’s control. The input
String represents the WSDL of that new service.
• listOperations given a WSDL and a port type this method

returns a String[] where each element is the name of an
operation.
• listOpParameters given a string containing a WSDL

which the proxy maintains, the port type and the name of
an operation this method returns a String[] containing the
types expected as input to an operation.
• listOpReturnType returns the return type information

(represented as a String) of an operation given a WSDL, port
type and operation name.
• listServices is used to query a proxy about which Web ser-

vices it is currently maintaining. This information is returned
in a String[]; each element represents one WSDL.

Proxies throw the following set of exceptions:
• InvocationParameterError is thrown if the service de-

tails (used an input) are not maintained by a proxy or if the
types and/or number of parameters used in an input array do
not match the actual Web service interface that the proxy is
to invoke.
• VariableNotFoundError is thrown if there are any ref-

erences to a WSDL or data which cannot be found at a proxy.
• ServiceInvocationError will be thrown if there are any

faults with the actual Web service invocation, e.g. network
failure, time-out etc.
• ProxyAdminError is thrown if an application is trying to

add a Web service which is already maintained by the proxy,
or if the WSDL location is invalid.

public interface proxy {
//Proxy CORE methods
public String invoke(String wsdl, String port, String op_name, Object[] params)

throws InvocationParameterError, VariableNotFoundError, ServiceInvocationError;
public boolean deliver(String proxy_wsdl, String[] dataToMove)

throws VariableNotFoundError, ServiceInvocationError;
public boolean stage(Hashtable dataToMove)

throws ServiceInvocationError;
public Object[] returnData(String[] dataToReturn)

throws VariableNotFoundError;
public boolean flushTempData(String [] dataToRemove)

throws VariableNotFoundError;

//Proxy ADMIN methods
public void addService(String wsdl)

throws ProxyAdminError;
public void removeService(String wsdl)

throws VariableNotFoundError;
public String[] listOperations(String wsdl, String port)

throws VariableNotFoundError;
public String[] listOpParameters(String wsdl, String port, String op_name)

throws VariableNotFoundError;
public String[] listOpReturnType(String wsdl, String port, String op_name)

throws VariableNotFoundError;
public String[] listServices();

}

Fig. 3. Proxy API

D. Application to the Example Scenario

Referring back to our earlier scenario, Figure 4 represents
a solution using our hybrid architecture. Active components
in the scenario are coloured grey. The workflow has been
described using a standard workflow language (e.g. BPEL)
and is enacted by a centralised orchestration engine. It is
important to note that the choice of workflow language is
entirely based on the user’s preference and doesn’t affect the
proxy architecture. The workflow explicitly interacts with the
proxy when necessary. In order to orchestrate the workflow
the following process takes place:
• Phases 1-2: The first step in the workflow execution

involves making an invocation to WS-1, however instead of
contacting the service directly, a call is made to a proxy
(P-1) which has been installed on the same server as the
Web service. A call to the invoke operation is made passing
the name of the Web service, port type and operation to
be invoked, along with any required input parameters. Once
received, the proxy spawns a new thread of control and
invokes the required operation, passing in the necessary input
parameters. The output from the service invocation, in this
case R-WS1 is passed back to the proxy, tagged with a unique
identifier (for reference later, e.g. retrieval, deletion etc.) and
stored within the proxy; there is a requirement that the proxy
has enough memory to store the results. Instead of the proxy
directly passing the data back to the orchestration engine,
a reference to the data, $R-WS1 is returned. In a standard
orchestration scenario the results of the Web service invocation

would have first been moved to the orchestration engine and
then moved to where they are needed at the analysis Web
service. However, as the proxy has been installed on the
same server as WS-1, the data can be transferred locally
between the proxy and the Web service and did not have
to move over a Wide Area network. The only thing returned
to the orchestration engine was a reference to the output of
the service invocation, $R-WS1. This process is repeated for
WS-2 and WS-3.
• Phases 3-4: The output from the Web service invocations

are needed as input to the next service in the workflow, the
analysis Web service. The orchestration engine contacts the
peer storing the data, instructing it where to send the output
from the last three Web service invocations. This is achieved
by using the deliver command and passing as input the
three references $R-WS1, $R-WS2, $R-WS3 along with
the WSDL address of the peer which is sitting in-front of
the analysis Web service. Once this invocation is received
by P-1, the proxy retrieves the stored data and transfers
it across the network by invoking the stage operation on
P-A. The data is then stored at P-A and if successful an
acknowledgement message is sent back to P-1 which is
returned to the orchestration engine.
• Phases 5-6: The next stage in the workflow requires

using the output from the first three services as input to the
analysis Web service. In order to achieve this the orchestration
engine passes the name of the service, port type, operation to
invoke and the references to the output, which is required as

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-1

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-A

stage

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-A

invoke

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-A
invoke VWS,p1,m1,

[$R-AWS];

1

3

5

7

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

$R-WS1

R-WS1

P-1

2

invoke
WS1,p1,m1,

[user-in];

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-1
P-Aack:true

ack:true

4

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-A

R-AWS

invoke AWS1,p1,m1,
[$R-WS1
 $R-WS2

 $R-WS3];

$R-AWS

6

Orch.
Engine

Analysis WS

Visualisation
WS

WS-3

DB-3

WS-2

DB-2

WS-1

DB-1

P-A

R-VWS$R-VWS

8

deliver,
AWS,

[$R-WS1,
$R-WS2,
$R-WS3];

P-1

Orch.
Engine

Repeat until
WS-3

invoke

invoke

Fig. 4. Proxy architecture applied to the example scenario

input, in this case $R-WS1, $R-WS2, $R-WS3. The proxy
then moves the data across the local network and invokes
the operation which has been specified as input. The output,
R-AWS is again stored locally on the proxy and a reference
$R-AWS is passed back to the orchestration engine.
• Phases 7-8: Finally, the output from the analysis Web

service is required as input to the visualisation Web service.
In this case both services are maintained by the same proxy.
The orchestration engine contacts the proxy, passing the name
of the service, port type, operation to be invoked and the
reference to the data, $R-AWS. The proxy invokes the required
operation on the visualisation Web service and the results are
transferred over the local network and stored at the proxy. A
reference to the data, $V-AWS is returned to the orchestration
engine; the actual data can be retrieved at any time from the
proxy using the returnData operation.

E. Fault Handling

Fault handling is more complex when applications are built
from a number of distributed components. Unlike a pure
choreography model, our architecture maintains centralised
control making it easier to detect and handle failures. Faults
occur on four levels: workflow specification faults, when the
workflow used as input to the orchestration engine is incorrect,
proxy faults, when a proxy is down or overloaded, Web service
faults, when a proxy is working but the Web service it is
invoking on a user’s behalf fails and network faults.

As an example consider the following Web service failure
from Phase 1 of our scenario. The orchestration engine wants
to invoke WS-1 through the proxy, so a request is made to
P-1 which forwards the request. However when P-1 makes
an invocation to WS-1 a network fault occurs telling the
proxy that the Web service cannot be reached. As centralised
control is maintained this fault can be relayed directly to
the orchestration engine. If this scenario has been anticipated
in advance and failure concerns have been built into the
workflow specification then the orchestration can execute those
alternatives, e.g. try the same request at a different Web service
containing the same data. With a pure choreography model this
is more difficult as failure would have to be modelled using
time-outs between the sending and receiving processes.

A similar process would unfold for a proxy failure. Con-
sider another example referring to Phase 3 of our scenario.
Proxy P-1 wants to deliver the data set $R-WS1, $R-WS2,
$R-WS3 to proxy P-A, however when P-1 invokes P-A it
discovers the proxy is unreachable and the data cannot be
delivered. This failure gets relayed back to the orchestration
engine which can take compensation action, e.g. try another
proxy which is near the analysis Web service, or make a
standard invocation to the Web service directly.

III. RELATED WORK

There are a limited number of research papers which have
identified the problem of a centralised approach to Web ser-
vices orchestration when dealing with data-centric workflows.

This Section will outline the main approaches which sit
between standard orchestration and choreography techniques.

A. Flow-based Infrastructure for Composing Autonomous Ser-
vices (FICAS)

The Flow-based Infrastructure for Composing Autonomous
Services or FICAS [8] is a distributed data-flow architecture
for composing software services into what the authors label
mega-structures or workflow as it’s more commonly known.
Composition of the services in the FICAS architecture is
specified using the Compositional Language for Autonomous
Services (CLAS), which is essentially a sequential specification
of the relationships among collaborating services. This CLAS
program is then translated by the build-time environment into a
a control sequence that can be executed by the FICAS runtime
environment. A centralised coordinator is in charge of sending
and receiving all of the control messages which are the result
of the workflow execution. Software applications are wrapped
by an autonomous service mediator which facilitates data flow
messages to pass directly between services without having to
be transferred through a centralised server. FICAS has defined
the autonomous service access protocol (ASAP), a protocol for
accessing the services which uses asynchronous non-blocking
communication.

Although FICAS is an architecture for decentralised orches-
tration it does not deal directly with modern standards and is
a prototype and proof of concept. The issue of Web services
integration is not addressed, nor does it discuss how this archi-
tecture could be incorporated into an orchestration language
such as the de-facto standard, BPEL. More importantly FICAS
is intrusive to the application code as each application that is
to be deployed needs to be wrapped with a FICAS interface.
In contrast, our proxy approach is more flexible as the services
themselves require no alteration and do not even need to know
that they are interacting with a proxy. Furthermore our proxy
approach introduces the concept of passing references to data
around and deals directly with modern workflow standards.

B. Service Invocation Triggers

Service Invocation Triggers [1], or simply triggers are also
a response to the problem of centralised orchestration engines
when dealing with large-scale data sets. The concept is based
on the installation of a proxy which sits between the service
which needs to be invoked and a client application. Triggers
collect the required input data before they invoke a service,
forwarding the results directly to where the data is required,
this avoids the problem of passing it through a centralised
orchestration engine. For this decentralised execution to take
place, a workflow (expressed in a standard language, e.g.
BPEL) must be deconstructed into sequential fragments which
contain neither loops nor conditionals and the data depen-
dancies must be encoded within the triggers themselves. For
triggers to be effective they must be installed to the service as
close as possible on a 1:1 basis.

The approach outlined by our paper and Service Invoca-
tion Triggers both rely on proxies to solve the problem of

decentralised orchestration when dealing with large data-sets.
While Triggers address the issue of decentralised control,
to realise these benefits their architecture is based around a
pure choreography model, which as discussed throughout this
paper has many extra problems associated with it. Further-
more, before execution can begin the input workflow must
be deconstructed into sequential fragments, these fragments
cannot contain loops and must be installed at a trigger; this is
a rigid and limiting solution and is a barrier to entry for the
use of proxy technology. In contrast with our proxy approach,
because data references are passed around, nothing in the
workflow has to be deconstructed or altered, which means
standard orchestration languages such as BPEL can be used
to coordinate the proxies. Finally, Triggers does not deal with
modern Web service standards.

C. Other Relevant Techniques in Data Flow Optimisation

• OGSA-DAI [5] is a middleware product which supports
the exposure of data resources, such as relational or XML
databases, on to Grids. This middleware facilitates data stream-
ing between local OGSA-DAI instances.
• Graph-forwarding is a technique [3] applied to distributed

Objects, allowing the results of an RPC to be forwarded to
the next object to invoke instead of the invoking object. This
technique is similar in nature but doesn’t address the issues
concerning service composition through workflow technology.

IV. CONCLUSIONS AND FUTURE WORK

This paper has introduced a hybrid approach to workflow
enactment in the context of Web services, based on centralised
control flow, distributed data flow. Our approach involves
deploying proxies in the vicinity of Web services, which then
allow for a more efficient data flow between workflow steps
than possible in an orchestration model. As control flow is still
centralised, this model has an advantage over the choreography
model in fault detection and error handling. We summarise the
main advantages of our hybrid model as:
• Reduction in data transfer: Unlike the standard or-

chestration model, proxies can exchange data flow messages
directly with one another avoiding the need to pass large
quantities of intermediate data through a centralised server.
This reduces the amount of data that is transferred, just how
much is currently being evaluated on the Planet Lab [12]
framework.
• Transition is non-disruptive: The architecture can be

deployed without disrupting current services and with minimal
changes in the workflows that make use of them.
• Flexible model: The hybrid model and the architecture

we have introduced allows mixing vanilla Web services with
Web services served through a proxy. This flexibility allows a
gradual change of infrastructures, where one could concentrate
first on improving data transfers between services that handle
large amounts data.
• Simplicity of deployment: The proxy services can be

installed without the need for writing any additional code.

Configuration can be done remotely and dynamically. It sim-
ply requires the whereabouts of WSDL descriptions for any
services that will be enabled through the proxy.
• Non-intrusive deployment: A proxy need not be installed

on the same server as the Web service, and does not interfere
with the current vanilla Web service as is the case with pure
choreography models. e.g. WS-CDL. However, to gain more
performance, the proxy should be as close as possible to the
Web services it is enabling.

The main limitations of the current architecture are:
• Security: Scenarios can be envisaged where malicious

users overload a proxy or add and remove Web services from
a proxy’s control. Although our system is only a prototype,
to allow live deployment, security issues will have to be
addressed.
• Time-out of cached data: Proxies keep a cached copy of

results from the vanilla Web service until data is successfully
transferred to all the next steps in the workflow. When large
amounts of data are concerned this may introduce problems
as the data will have to be properly maintained by deleting
redundant data.

We intend to create a mechanism which automatically trans-
forms workflows that adhere to an orchestration model (e.g.
BPEL) to our hybrid model, removing the need to manually
call proxy functions. To increase the efficiency of data transfer,
we are integrating several data transportation mechanisms into
the proxies, e.g. GridFTP. Performance analysis is currently
being conducted on Planet Lab and our architecture is being
applied to live workflows in the e-Science community.

REFERENCES

[1] Walter Binder, Ion Constantinescu, and Boi Faltings. Decentralized
Ochestration of Composite Web Services. In Proccedings of the
International Conference on Web Services, ICWS’06, pages 869–876.
IEEE Computer Society, 2006.

[2] E. Deelman and et al. Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems. Scientific Programming
Journal, 13(3):219–237, 2005.

[3] Andrew. S. Grimshaw, Jon. B. Weissman, and W.T. Strayer. Portable
Run-time Support for Dynamic Object-Oriented Parallel Processing,
volume 14(2) of Transactions on Computer Systems. ACM, May 1996.

[4] David Hollingsworth. The Workflow Reference Model. Workflow
Management Coalition, January 1995.

[5] K. Karasavvas and et al. Introduction to OGSA-DAI Services. In Lecture
Notes in Computer Science, volume 3458, pages 1–12, May 2005.

[6] N. Kavantzas and et al. Web Services Choreography Description
Language (WS-CDL) Version 1.0, November 2005.

[7] David Liu, Kincho H. Law, and Gio Wiederhold. Analysis of Integration
Models of Service Composition. In Proceedings of Third International
Workshop on Software and Performance, pages 158–165. ACM Press,
2002.

[8] David Liu, Kincho H. Law, and Gio Wiederhold. Data-flow Distribution
in FICAS Service Composition Infrastructure. In Proceedings of the
15th International Conference on Parallel and Distributed Computing
Systems, 2002.

[9] A.R. Thakar, A.S. Szalay, and J. Gray. From FITS to SQL - Loading
and Publishing the SDSS Data. In Astronomical Data Analysis Software
and Systems XIII, volume 314, 2003.

[10] The OASIS Committee. Web Services Business Process Execution
Language (WS-BPEL) Version 2.0, April 2007.

[11] Apache Web Services Project (AXIS): http://ws.apache.org/axis.
[12] Planet Lab: http://www.planet-lab.org/.
[13] Jun Zhao and et al. The Origin and History of in-silico Experiments. In

Proceedings of the UK e-Science all hands meeting, September 2004.

