

Verification vs. Validation:
Right Definition
 Verification: "are we building the product right?" The software should conform to its specification Validation: "are we building the right product?" The software should do what the user really requires Assuring that a software system meets a user's needs UNISE

Definitions of Testing

- The process of executing a program (or part of a program) with the intention of finding errors (Myers, via Humphrey)
- The purpose of testing is to find errors
 Testing is the process of trying to discover every conceivable fault or weakness in a work product (Myers, via Kit)
- The process of searching for errors (Kaner)

UMSEC

http://www.umsec.umn.edu

Test Data and Test Cases

- Test data
 - Inputs which have been devised to test the system

8

Test cases

http://www.umsec.umn.edu

• Inputs to test the system and the predicted outputs from these inputs if the system operates according to its specification

UMSEC University of Minnesota Software Engineering Center

Black and White Box

- Black box testing:
 - Designed without knowledge of the program's internal structure and design
 - Based on functional requirements
- White box testing:

http://www.umsec.umn.edu

http://www.umsec.umn.edu

- Examines the internal design of the program
- Requires detailed knowledge of its structure

11

UMSEC

Black-Box Testing

- Approach to testing where the program is considered as a "black-box"
- The program test cases are based on the system specification

12

• Test planning can begin early in the software process

	Compound Coverage (cont.)							
	• N	lay le	ad to a	lot of te	est cases	5		
		Test Case	Cond 1	Cond 2	Cond 3	Cond 4		
		1	True	False	False	False		
		2	True	True	False	False		
		3	True	True	True	False		
5		4	True	True	True	True		
Ē		5	False	True	False	False		
D:/		6	False	True	True	False		
2		7	False	True	True	True		
8		8	False	False	True	False		
4		9	False	False	True	True		
2		10	False	False	False	True		
III III		11	True	False	True	False		
		12	True	False	True	True		
ก้		13	True	False	False	True		
		14	False	True	True	False		
3		15	False	True	False	False		
n.		16	False	False	True	False	MACEO	
edu				22		VU	University of Minnesota vare Engineering Center	

The Infeasibility Problem

- Syntactically indicated behaviors (paths, data flows, etc.) are often impossible
- Infeasible control flow, data flow, and data states
 Adequacy criteria are typically impossible to satisfy
- Unsatisfactory approaches:

http://www.umsec.umn.edu

- Manual justification for omitting each impossible test case (esp. for more demanding criteria)
- Adequacy "scores" based on coverage

23

• example: 95% statement coverage, 80% def-use coverage

CSci 8801 - Dr. Mats Heimdahl

http:/

//www.umsec.umn.edu

http://www.umsec.umn

Axioms of Testing

- As the number of detected defects in a piece of software increases, the probability of the existence of more undetected defects also increases
- Assign your best programmers to testing
- Exhaustive testing is impossible

31

UMSEC University of Minnesota Software Engineering Center

Axioms of Testing

- You cannot test a program completely
- Even if you do find the last bug, you'll never know it
- It takes more time than you have to test less than you'd like
- You will run out of time before you run out of test cases

32

