Testing Review

Npa*ULN23SWN* MMM//:dny

NPa*ULIN-2aSWN*MMM//:dny

Software Testing:
Review

Fall 2006

Verification vs. Validation

® Verification:

Verification vs. Validation:
Right Definition

® Verification:

« “are we building the product right?”

« The software should conform to its specification
® Validation:

« “are we building the right product?”

« The software should do what the user really

requires
Assuring that a software system

meets a user’s needs

CSci 8801 - Dr. Mats Heimdahl

Testing Review Fall 2006

Dynamic and Static Verification

® DynamicV &V

« Concerned with exercising and observing
product behavior

« Testing
® StaticV & V

« Concerned with analysis of the static system
representation to discover problems

« Proofs
« Inspections

NPa*uLIN-9aswN* MMM//:dny

Static and Dynamic V&V

Static
Verification

4

Ay

ey

equirements High-Level Formal Detailed
Specification Design Specification Design

Program

/Dy-namic

Evaluation

Prototype

NP8 uwin*daswn’ pMar

Definitions of Testing

® The process of executing a program (or part
of a program) with the intention of finding
errors (Myers, via Humphrey)

EQll ® The purpose of testing is to find errors

2 « Testing is the process of trying to discover

g every conceivable fault or weakness in a work

= product (Myers, via Kit)

E .

A ® The process of searching for errors (Kaner)

§

§ 6 { UMS c-.‘

CSci 8801 - Dr. Mats Heimdahl 2

Testing Review Fall 2006

What is a Test?

Test Data @
Correct
Software

under
Test Oracle

Test Data and Test Cases

® Test data
« Inputs which have been devised to test the
system
Ell © Test cases
2 « Inputs to test the system and the predicted
g outputs from these inputs if the system operates
b according to its specification
El
2 UMSEC
< 8 { sy o Minescs
Bugs? What is That?
® Failure
« An execution that yields an erroneous result
® Fault
E « The source of the failure
S ® Error
§ + The mistake that led to the fault being
5 introduced in the code
: / UMSEC

CSci 8801 - Dr. Mats Heimdahl 3

Testing Review Fall 2006

Axiom of Testing

“Program testing can be used to show
the presence of bugs, but never their
absence.”

Dijkstra, 1969

NPa*uLIN-9aswN* MMM//:dny

Black and White Box

® Black box testing:

« Designed without knowledge of the program’s
internal structure and design

« Based on functional requirements

Sl * White box testing:

g « Examines the internal design of the program

= « Requires detailed knowledge of its structure

] UMSEC
< 1 \., som "

Black-Box Testing

® Approach to testing where the program is
considered as a “black-box”

® The program test cases are based on the

Es system specification

EW * Test planning can begin early in the

g software process

B o UMS

CSci 8801 - Dr. Mats Heimdahl 4

Testing Review Fall 2006

Black-Box Testing

Input causing
anomalous behavior

Input test data a)

Output which reveal
Software the presence of defects

MMW/:dny

Jaswin

npa'uwn

Npa*ULN23SWN* MMM//:dny

Structural Coverage Testing

® (In)adequacy criteria
« If significant parts of program structure are not
tested, testing is surely inadequate
® Control flow coverage criteria
« Statement (node, basic block) coverage
« Branch (edge) coverage
« Condition coverage
« Path coverage
« Data flow (syntactic dependency) coverage
® Attempted compromise between the
impossible and the inadequate o UMSEC

=r
=

°
=
§
=
3
v
@
o
=
3
S
@
=3
S

15 Usaversity of Minnesata
Software Engineering Center

CSci 8801 - Dr. Mats Heimdahl 5

Testing Review Fall 2006

Statement Coverage
int select(int A, int N, int X)
{

True

inti=0;
while (i<N and A[i] <X)

if (A[i]<0) False
Alil =- AllT;
i++;

}
return();

}

True

False

Dne test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement
overage of function select
aults in handling positive values of A[i] would not be revealed n 4 & .c

p o\ unn.J :

NPa*uLIN-9aswN* MMM//:dny

Branch Coverage
int select(int A[], int N, int X)

{
inti=0;
while (i<N and A[i] <X)

if (A[i]<0)
Alil =- Ali];
i++;

|}’eturn(1);
}

e must add a test datum (N=1, A[0]=7, X=9) to cover branch False of
e if statement. Faults in handling positive values of A[i] would be
evealed. Faults in exiting the loop with condition A[i] <X w
evealed \e Otljim g [
7 M Soitware Eogin

=
=3
=4

i
g
=
3
w
@
o
=
3
=
@
(=%
=

Path Coverage

int select(int A[], int N, int X)

Cintio; l\
while (i<N and A[i] <X) =
{

if (A[i]<0)
Alil =- AllT;
i++;

}
return(l);
}

True

he loop must be iterated given number of times.
PROBLEM: uncontrolled growth of test sets. We need to.selecta = |
significant subset of test cases.) U M q E c

18

NPa*ULIN-2aSWN*MMM//:dny

CSci 8801 - Dr. Mats Heimdahl 6

Testing Review

inti=0;
while (i<N and A[i] <X)
if (A[i]<0)

Alil =- Ali];
i++;

}

int select(int A[], int N, int X)

Condition Coverage

Fall 2006

}
return(l);

i<N and A[i] <X

True

False

buld not be revealed.

NPa*uLIN-9aswWN* MMM//:dny

th conditions (i<N), (A[i]<X) must be false and true for different tests.
this case, we must add tests that cause the while loop to exit for a

lue greater than X. Faults that arise after several iterations ithhe Iing c
Ussversity of
Saftware Engineer

I]
N

Basic Condition Coverage

® Make each condition both True and False

Test Case |Cond 1 Cond 2
1 True False
2 False True

Npa*ULN23SWN* MMM//:dny

Compound Condition Coverage

® Evaluate every combination of the conditions

Test Case [Cond 1 Cond 2
g 1 |Tree True
§ 2 True False
§ 3 False True
g 4 False False
3 < UMSE

CSci 8801 - Dr. Mats Heimdahl

Testing Review

NPa*uLIN-9aswN* MMM//:dny

=
=L
=4

i
g
=
3
w
@
o
=
3
=
@
(=%
=

NPa*ULIN-2aSWN*MMM//:dny

Compound Coverage (cont.)

® May lead to a lot of test cases

Test Case | Cond 1 Cond2 Cond3 Cond 4
1 True False False False
True True False False
True True True False

True True True True

False True False False

False True True False

False True True True

False False True False

9 False False True True

10 False False False Troe

1 Tue False True False

12 Tue False Tre Tre

13 True False False True

14 False True True False

15 False True False False

16 False False True False L1 M S E c
ersity of a

The Infeasibility Problem

® Syntactically indicated behaviors (paths, data
flows, etc.) are often impossible
« Infeasible control flow, data flow, and data states

® Adequacy criteria are typically impossible to
satisfy

® Unsatisfactory approaches:

« Manual justification for omitting each impossible test
case (esp. for more demanding criteria)

« Adequacy “scores” based on coverage
= example: 95% statement coverage, 80% def-use coverage

. Q UMSEC

The Budget Coverage Criterion

® Industry’s answer to “when is testing done
+ When the money is used up
+ When the deadline is reached

® This is sometimes a rational approach!

« Implication 1:

= Adequacy criteria answer the wrong question.
Selection is more important.

« Implication 2:
= Practical comparison of approaches must consider

the cost of test case selection
Q4 UMSEC
2% .] ;

CSci 8801 - Dr. Mats Heimdahl

Fall 2006

Testing Review Fall 2006

Top-down testing

Testmg SEEUEHC@

-2 Stubs

Level-3 Stubs

=r
=3

S
.g.
=
3
w
@
o
c
3
2
@
=%
<

s &

Testing
Sequence

Level N-1 Level N-1 Level N-1

Level N

Level N Level N

Level N

Level N

Npa*ULN23SWN* MMM//:dny

Create Scaffolding
Goal

To setup the environment for executing the test

E initialization of non-local variables
{/ initialization of parameters ORACLE
E activation of the unit check the
T correspondence
(CPROGRAMUNIT 1)) between the
- produced and
g “templates” of modules used by the the expected
T | unit (functions called by the unit) result
g ‘templates” of any other entity used
by the unit

CSci 8801 - Dr. Mats Heimdahl 9

Testing Review

Generate Drivers and Stubs
PR

[generic (for all tests)] [specific (for subsets of tests)]

[interactive: ask user for values]

> <
=L DR T ~a. {automatic: (approximately)]

compute required values

- parsing the unit to partially

From driver/stub specs | generate the framework
- add scripts to fill in the
framework

Fall 2006

Problems and Tradeoffs

effort in test execution and regression testing

poorly designed
drivers/stubs

high effort in
development

low effortin
development

low effort in test

& high effort in test execution and
execution and regression testing

regression testing

well designed
drivers/stubs

Y

effort in developing drivers/stubs

Who Should Test?

Q. \
=
i<l
_g ® Developer ® Independent tester
§ « Understands the system ¢ Must learn system
S « But, will test gently «+ But, will attempt to break it
5 « And, is driven by « And, is driven by “quality”
= ;
@ deadlines - UMSEC
< 30 \

CSci 8801 - Dr. Mats Heimdahl

10

Testing Review

NPa*uLIN-9aswN* MMM//:dny

Npa*ULN23SWN* MMM//:dny

Axioms of Testing

Fall 2006

® As the number of detected defects in a
piece of software increases, the
probability of the existence of more
undetected defects also increases

® Assign your best programmers to
testing

® Exhaustive testing is impossible

.\
Usiversity of Minnes o
2 S0ttt ERErtete Dot

Axioms of Testing

® You cannot test a program completely

® Even if you do find the last bug, you’ll
never know it

® |t takes more time than you have to test
less than you’d like

® You will run out of time before you run
out of test cases

32 {

u

UMSE

CSci 8801 - Dr. Mats Heimdahl

11

