
Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 1

1

Software Testing:
Review

http://w
w

w
.um

sec.um
n.edu

2

Verification vs. Validation

• Verification:
?????

• Validation:
?????

http://w
w

w
.um

sec.um
n.edu

3

Assuring that a software system
meets a user’s needs

Verification vs. Validation:
Right Definition
• Verification:

“are we building the product right?”
The software should conform to its specification

• Validation:
“are we building the right product?”
The software should do what the user really
requires

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 2

http://w
w

w
.um

sec.um
n.edu

4

Dynamic and Static Verification

• Dynamic V & V
Concerned with exercising and observing
product behavior
Testing

• Static V & V
Concerned with analysis of the static system
representation to discover problems
Proofs
Inspections

http://w
w

w
.um

sec.um
n.edu

5

Static and Dynamic V&V

Requirements
Specification

High-Level
Design

Formal
Specification

Detailed
Design Program

Prototype

Static
Verification

Dynamic
Evaluation

http://w
w

w
.um

sec.um
n.edu

6

Definitions of Testing

• The process of executing a program (or part
of a program) with the intention of finding
errors (Myers, via Humphrey)

• The purpose of testing is to find errors
Testing is the process of trying to discover
every conceivable fault or weakness in a work
product (Myers, via Kit)

• The process of searching for errors (Kaner)

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 3

What is a Test?

Software
under
Test

Test Data Output

Test Cases

Correct
result?

Oracle

http://w
w

w
.um

sec.um
n.edu

8

Test Data and Test Cases

• Test data
Inputs which have been devised to test the
system

• Test cases
Inputs to test the system and the predicted
outputs from these inputs if the system operates
according to its specification

http://w
w

w
.um

sec.um
n.edu

9

Bugs? What is That?

• Failure
An execution that yields an erroneous result

• Fault
The source of the failure

• Error
The mistake that led to the fault being
introduced in the code

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 4

http://w
w

w
.um

sec.um
n.edu

10

Axiom of Testing

“Program testing can be used to show
the presence of bugs, but never their
absence.”

Dijkstra, 1969

http://w
w

w
.um

sec.um
n.edu

11

Black and White Box

• Black box testing:
Designed without knowledge of the program’s
internal structure and design
Based on functional requirements

• White box testing:
Examines the internal design of the program
Requires detailed knowledge of its structure

http://w
w

w
.um

sec.um
n.edu

12

Black-Box Testing

• Approach to testing where the program is
considered as a “black-box”

• The program test cases are based on the
system specification

• Test planning can begin early in the
software process

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 5

http://w
w

w
.um

sec.um
n.edu

13

Input test data

Output results

Software

Ie

Input causing
anomalous behavior

Oe

Output which reveal
the presence of defects

Black-Box Testing

http://w
w

w
.um

sec.um
n.edu

14

Ie Ie

Equivalence Partitioning

Oe

Software

http://w
w

w
.um

sec.um
n.edu

15

Structural Coverage Testing
• (In)adequacy criteria

If significant parts of program structure are not
tested, testing is surely inadequate

• Control flow coverage criteria
Statement (node, basic block) coverage
Branch (edge) coverage
Condition coverage
Path coverage
Data flow (syntactic dependency) coverage

• Attempted compromise between the
impossible and the inadequate

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 6

http://w
w

w
.um

sec.um
n.edu

16

Statement Coverage

One test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement
coverage of function select
Faults in handling positive values of A[i] would not be revealed

int select(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

i=0

http://w
w

w
.um

sec.um
n.edu

17

Branch Coverage
i=0

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

We must add a test datum (N=1, A[0]=7, X=9) to cover branch False of
the if statement. Faults in handling positive values of A[i] would be
revealed. Faults in exiting the loop with condition A[i] <X would not be
revealed

int select(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

http://w
w

w
.um

sec.um
n.edu

18

Path Coverage
i=0

i<N and A[i] <X

A[i]<0

return(1)

True
False

True
False

The loop must be iterated given number of times.
PROBLEM: uncontrolled growth of test sets. We need to select a
significant subset of test cases.

int select(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++;

A[i] = - A[i];

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 7

http://w
w

w
.um

sec.um
n.edu

19

Condition Coverage
i=0

i<N and A[i] <X

A[i]<0

A[i] = - A[i];
return(1)

True
False

True
False

Both conditions (i<N), (A[i]<X) must be false and true for different tests.
In this case, we must add tests that cause the while loop to exit for a
value greater than X. Faults that arise after several iterations of the loop
would not be revealed.

int select(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

} i++

http://w
w

w
.um

sec.um
n.edu

20

Basic Condition Coverage

• Make each condition both True and False

TrueFalse2
FalseTrue1
Cond 2Cond 1Test Case

http://w
w

w
.um

sec.um
n.edu

21

Compound Condition Coverage

• Evaluate every combination of the conditions

FalseFalse4

TrueFalse3

FalseTrue2

TrueTrue1

Cond 2Cond 1Test Case

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 8

http://w
w

w
.um

sec.um
n.edu

22

Compound Coverage (cont.)

• May lead to a lot of test cases

FalseTrueFalseFalse16

FalseFalseTrueFalse15

FalseTrueTrueFalse14

TrueFalseFalseTrue13

TrueTrueFalseTrue12

FalseTrueFalseTrue11

TrueFalseFalseFalse10

TrueTrueFalseFalse9

FalseTrueFalseFalse8

TrueTrueTrueFalse7

FalseTrueTrueFalse6

FalseFalseTrueFalse5

TrueTrueTrueTrue4

FalseTrueTrueTrue3

FalseFalseTrueTrue2

FalseFalseFalseTrue1

Cond 4Cond 3Cond 2Cond 1Test Case

http://w
w

w
.um

sec.um
n.edu

23

The Infeasibility Problem
• Syntactically indicated behaviors (paths, data

flows, etc.) are often impossible
Infeasible control flow, data flow, and data states

• Adequacy criteria are typically impossible to
satisfy

• Unsatisfactory approaches:
Manual justification for omitting each impossible test
case (esp. for more demanding criteria)
Adequacy “scores” based on coverage

example: 95% statement coverage, 80% def-use coverage

http://w
w

w
.um

sec.um
n.edu

24

The Budget Coverage Criterion

• Industry’s answer to “when is testing done”
When the money is used up
When the deadline is reached

• This is sometimes a rational approach!
Implication 1:

Adequacy criteria answer the wrong question.
Selection is more important.

Implication 2:
Practical comparison of approaches must consider
the cost of test case selection

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 9

http://w
w

w
.um

sec.um
n.edu

25

Level 1

Level-2 Stubs

Level 1

Level 2 Level 2 Level 2 Level 2

Level-3 Stubs

Testing Sequence

Top-down testing

http://w
w

w
.um

sec.um
n.edu

26

Level N Level N Level N Level N Level N

Testing
Sequence

Level N-1 Level N-1 Level N-1

Test Drivers

Test Drivers

Bottom-Up Testing

Create Scaffolding
Goal

To setup the environment for executing the test

initialization of non-local variables
initialization of parameters

activation of the unit

D
R
I
V
E
R

“templates” of modules used by the
unit (functions called by the unit)

“templates” of any other entity used
by the unit

S
T
U
B

PROGRAM UNIT

ORACLE

check the
correspondence
between the
produced and
the expected
result

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 10

Generate Drivers and Stubs

Brute force coding

generic (for all tests) specific (for subsets of tests)

From driver/stub specs

interactive: ask user for values

automatic: (approximately)
compute required values

- parsing the unit to partially
generate the framework

- add scripts to fill in the
framework

Problems and Tradeoffs

effort in developing drivers/stubs

effort in test execution and regression testing

poorly designed
drivers/stubs

well designed
drivers/stubs

high effort in test
execution and
regression testing

high effort in
development

low effort in test
execution and
regression testing

low effort in
development

http://w
w

w
.um

sec.um
n.edu

30

Who Should Test?

• Developer
Understands the system
But, will test gently
And, is driven by
deadlines

• Independent tester
Must learn system
But, will attempt to break it
And, is driven by “quality”

Testing Review Fall 2006

CSci 8801 - Dr. Mats Heimdahl 11

http://w
w

w
.um

sec.um
n.edu

31

Axioms of Testing

• As the number of detected defects in a
piece of software increases, the
probability of the existence of more
undetected defects also increases

• Assign your best programmers to
testing

• Exhaustive testing is impossible

http://w
w

w
.um

sec.um
n.edu

32

Axioms of Testing

• You cannot test a program completely
• Even if you do find the last bug, you’ll

never know it
• It takes more time than you have to test

less than you’d like
• You will run out of time before you run

out of test cases

