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Abstract

This paper provides a Safety Checklist for use dur-

ing the analysis of software requirements for space-

craft and other safety-critical, embedded systems. The

checklist specifically targets the two most common

causes of safety-related software errors: (1) inade-

quate interface requirements and (2) discrepancies be-

tween the documented requirements and the require-

ments actually needed for correct functioning of the

system. The analysis criteria represented in the check-

list are evaluated by application to two spacecraft

projects. Use of the checklist to enhance the software-

requirements analysis is shown to reduce the number

of safety-related software errors.

I. Introduction

An earlier study of the causes of safety-related software

errors found that those errors identified as potentially

hazardous to a system tend to be produced by different

error mechanisms than non-safety-related software er-

rors [15]. Safety-related software errors found during

the integration and system testing of two spacecraft

arose most commonly from: (1) misunderstandings of

the software’s interfaces with the rest of the system,

and (2) discrepancies between the documented require-

ments specifications and the requirements needed for

correct functioning of the system.
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A software error is defined to be a software-related

discrepancy between a computed, observed, or mea-

sured value or condition and the true, specified, or

theoretically correct value or condition [1]. A software

error is classified as safety-related if, during the stan-

dard error-correction process, the systems safety an-

alyst determines that the error represents potentially

significant or catastrophic failure effects.

This paper is part of an ongoing effort to improve

system safety by directly targeting the known causes of

safety-related software errors during the requirements

phase. The main result of the paper is to provide a

Safety Checklist for the analysis of software require-

ments that focuses specifically on interface require-

ments and robustness requirements.

Since system interface issues such as timing de-

pendencies, storage capacities, noise characteristics,

communication links, and expected operating environ-

ments are frequent sources of safety-related software

interface errors, they need to be reflected in the soft-

ware requirements specification. However, it is difficult

to specify correctly the software/ system interfaces in

complex, embedded systems with software distributed

among various hardware components, some of which

may be as-yet undetermined.

Similarly, many safety-related software errors in-

volve inadequate software responses to extreme con-

ditions or extreme values. Anomalous hardware be-

havior, unanticipated states, invalid data, signal sat-

uration, and incorrect triggering of error-recovery re-

sponses are robustness issues which cause errors. By

including requirements for robustness or what Neu-

mann calls “defensive design” in the specifications,

many safety-related errors can be avoided [18].

Jaffe, Leveson, Heimdahl, and Melhart present a set

of criteria, defined in terms of an abstract state ma-

chine, to help find errors in the software requirements

specifications of process-control systems [111. They
pay particular attention to the behavioral and robust-

ness properties of control systems, making their work
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an appropriate candidate for error reduction in safety-

critical spacecraft systems.

Spacecraft involve embedded software distributed

on several different flight computers. The spacecraft’s

software is safety-critical in that it monitors and con-

trols components that can be involved in hazardous

system behavior [14]. The possibility y of hazardous in-

teractions among the processes executing on different

processors as well as the complexity of the timing is-

sues across the system interfaces demand a rigorous

analysis of the requirements.

This paper adapts and extends the criteria in [11] to

the spacecraft domain. The work in [11] models only

the controller in a process-control system. The adap-

tation of the criteria to spacecraft involves the consid-

eration of additional features. Specifically, the preva-

lence of concurrent processes (often on distributed con-

trollers), of redundant resources, of external command

signals as inputs to the controller, and of state changes

not visible in the feedback information are all features

that complicate the spacecraft’s requirements. The

resulting Safety Checklist is shown to be useful in re-

ducing safety-related soft ware errors on spacecraft. It

appears to be applicable to a variety of application

domains involving safety-critical, embedded software.

The Safety Checklist developed here, unlike the cri-

teria presented in [11], is appropriate for a software-

development process that may not include formal spec-

ification languages or finite-state-machine modeling.

The Safety Checklist described below thus is readily

integrated into a wide range of software development

environments.

Section IV of the paper applies the criteria repre-

sented in the checklist experimentally to two space-

craft projects. The results demonstrate a reduction

in the number of safety-related errors due to inade-

quate software requirements regarding interfaces and

robustness.

The overall goal of this work is to reduce safety-

related software errors in future systems. The method

is to focus, during requirements analysis, on those ar-

eas (software/system interfaces, failure modes, timing,

boundary conditions and values) which in the past

have caused errors that persisted until integration and

system testing. The Safety Checklist has been devel-

oped as a tool to aid in this requirements analysis.

II. Related Work

Gray and Thayer [9] identify two key components of

any soft ware requirements methodology: (1) to aid in

determining the software requirements and (2) to rep-

resent the software requirements specifications. The

work described here is focused solely on the first of

these two functions.

The paper describes a checklist by which developers

can better identify and understand the requirements

needed for embedded software to interact correctly

with the system in all circumstances. Use of the check-

list is consistent with a variety of representations of the

software requirements. Regardless of the specification

language or model chosen, all requirement method-

ologies suitable for safety-critical embedded software

must include some way of confronting the issues iden-

tified in the Safety Checklist during the requirements

phase. This work is thus integral to any effort to iden-

tify and eliminate software errors in safety-critical sys-

tems.

The Safety Checklist can be integrated into the

requirements-analysis process as currently practiced

for many application domains [4]. The checklist for-

mat is one that is widely used and with which devel-

opers are familiar. Formal inspections of requirement

specifications, for example, commonly use checklists.

The utility of the formal inspection of requirements

documents is widely documented. A study by Kelly

et al., of 203 formal inspections, 23 of them inspec-

tions of software requirements documents, reports that

a significantly higher density of defects was found dur-

ing requirements inspections than in later development

phases. [13]. Work by Doolan describes the savings

and quality benefits resulting from the formal inspec-

tions of the requirement specifications of a large (2 mil-

lion lines of code) package of seismic-processing soft-

ware [5].

The Safety Checklist presented below is compati-

ble with the software-requirements checklist used dur-

ing formal inspections at Jet Propulsion Laboratory

[6]. Overlap with the formal-inspection checklists

has been eliminated to increase the usefulness of the

Safety Checklist. The focus of the Safety Checklist is

narrower than the formal-inspection checklists, since

it concentrates on working backwards from common

safety-related software errors discovered during system

testing to their prevention in the requirements phase.

The Safety Checklist is intended to extend the require-

ments analysis in directions that may enhance system

safety, not to replace the current checklists, which are

broader and more comprehensive in scope.

A wide variety of powerful formalisms exists to

model and represent the specifications and behavior

of systems [21]. In addition, much work has been done

in recent years on formal specification languages. Tim-

ing constraints, which are a major source of software

interface errors, often can be accurately modeled and

interactively checked [2, 8, 10, 17, 19].

The capability to verify that the software require-
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ments for a system satisfy the safety constraints on

that system is a focus of much recent work [7, 12, 14].

Similarly, the capability to analyze specifications by

proving theorems regarding them allows verification

of thesafety-critical functions ofa system [3, 20].

The Safety Checklist provides a possible bridge

mechanism from manual or CASE analysis of require-

ments to the formal specification and verification of

safety-related software requirements. As formulated

here, the checklist can provide a first step towards

specifying safety constraints formally. The checklist’s

formal basis, as defined by Jaffe et al., allows the check-

list to be written in terms of mathematical predicates

in a variety of formal specification languages. It can

then be tested against a formal specification of the re-

quirements. The Safety Checklist thus can serve as a

link between current informal practices and future, for-

mal requirements analyses for safety-critical domains.

III. The Safety Checklist

The approach in [11] is to build a formal, finite-state

model of the requirement specifications and then to an-

alyze this model to ensure that its properties match the

desired behavior (e.g., determinism). The authors ac-

complish this by stating criteria (usually formal pred-

icates) that must hold in the model.

The Safety Checklist was developed as a transla-

tion of the criteria into an informal, natural-language

format. Sometimes the translation is extracted from

the text that accompanies the formal description in

[11]. Other times the checklist item is a rewording of a

mathematical predicate in a less-technical vocabulary.

Though this rewording inevitably involves some loss of

rigor and information, these are readily recaptured if

the need arises by reference to the original article.

Formatting the requirements-analysis concerns as a

checklist avoids the need previously to have built a

model of the requirements. The checklist thus makes

the interface and robustness issues (shown in Sect. IV

to be powerful identifiers of future safety-related soft-

ware errors) available to a wider range of software-

development environments. In some applications the

checklist may complement more formal approaches to

the requirements analysis.

The Safety Checklist adapts the criteria in [11] to

the spacecraft by taking into account the possibility

of multiple processors, of concurrently executing pro-

cesses, of redundant resources (including backup com-

ponents) that must be managed, of externally com-

manded state changes, and of state changes not visible

to the controllers. These features appear to be typi-

cal of many complex, embedded systems with timing

constraints and safety-critical functions. The wording

of the items in the Safety Checklist takes into account

the associated interface and robustness issues for such

systems.

Interfaces

1. Is the soft ware’s response to out-of-range values

specified for every input?

2. Is the software’s response to not receiving an ex-

pected input specified? (That is, are timeouts pro-

vided?) Does the software specify the length of the

timeout, when to start counting the timeout, and

the latency of the timeout (the point past which

the receipt of new inputs cannot change the out-

put result, even if they arrive before the actual

output)?

3. If input arrives when it shouldn’t, is a response

specified?

4. On a given input, will the software always follow

the same path through the code (that is, is the

software’s behavior deterministic)?

5. Is each input bounded in time? That is, does the

specification include the earliest time at which the

input will be accepted and the latest time at which

the data will be considered valid (to avoid making

control decisions based on obsolete data)?

6. Is a minimum and maximum arrival rate speci-

fied for each input (for example, a capacity limit

on interrupts signaling an input)? For each com-

munication path? Are checks performed in the

software to avoid signal saturation?

7. If interrupts are masked or disabled, can events

be lost?

8. Can any output be produced faster than it can

be used (absorbed) by the interfacing module? Is

overload behavior specified?

9. Is all data output to the buses from the sensors

used by the software? If not, it is likely that some

required function has been omitted from the spec-

ification.

10. Can input that is received before startup, while

of line, or after shutdown influence the software’s

startup behavior? For example, are the values of

any counters, timers, or signals retained in soft-

ware or hardware during shutdown? If so, is the

earliest or most-recent value retained?
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11.

12.

13.

14.

15.

16.

Robustness

In cases where performance degradation is the

chosen error response, is the degradation pre-

dictable (for example, lower accuracy, longer re-

sponse time)?

Are there suflcient delays incorporated into the

error-recovery responses, e.g., to avoid returning
to the normal state too quickly?

Are feedback /oops (including echoes) specified,

where appropriate, to compare the actual effects

of outputs on the system with the predicted ef-

fects?

Are all modes and modules of the specified soft-

ware reachable (used in some path through the

code)? If not, the specification may include su-

perfluous items.

If a hazards analysis has been done, does every

path from a hazardous state (a failure-mode) lead

to a low-risk state?

Are the inputs identified which, tf not received (for

example, due to sensor failure), can lead to a haz-

ardous state or can prevent recovery (single-point

failures)?

IV. Results

Two applications of the Safety Checklist are described

below. The first application looks at the safety-related

software errors that were actually found on two space-

craft and evaluates whether use of the checklist during

requirements analysis could have forestalled those er-

rors. The second application uses the Safety Checklist

to analyze part of a requirements document for safety-

critical software.

A. Targeting Safety-Related Errors

The efficacy of the Safety Checklist is first analyzed

by examining 192 safety-related software errors docu-

mented during integration and system testing of two

spacecraft, Voyager and Galileo. Each of the 192 er-

rors is classified according to which item, if any, in the

Safety Checklist addresses the issue causing the error.

Table 1 reports the results (see Appendix for tables).

Of the 192 errors, 149 have causes addressed by the

checklist. This indicates that the checklist does, in

fact, “ask the right questions.” The usefulness of the

Safety Checklist lies in its use as a prompter for better

recognition of requirements. Asking the right ques-

tions during the requirements-analysis phase clearly

is not sufficient to preclude the introduction of safety-

related software errors into the system. However, since

misunderstanding of the interface requirements and

lack of detailed requirements for robustness are the

primary causes of errors, asking the right questions

seems to be a necessary condition for avoiding safety-

related software errors in complex systems.

Table 1 shows that the issue most frequently in-

volved in safety-related software errors is item 15,

“Does every path from a hazardous state (a failure

mode) lead to a low-risk state?” The prevalence of this

issue reflects the fact that many of the safety-related

software errors (20% on Galileo) involved the onboard

autonomous error-recovery software. Some of the re-

quired error-recovery responses incorrectly included

or omitted actions that allowed hazardous states to

be entered or recentered. Examples of such actions

are turning off gyros, switching to backup memory,

or disabling certain software processes in a particular

mode. The additional analysis needed during the re-

quirements phase to answer “Yes” to item 15 of the

checklist might have precluded some of these errors.

The second most common issue producing safety-

related software errors is item 12, “Are there suffi-

cient delays incorporated into the the error-recovery

responses, e.g., to avoid returning to the normal state

too quickly?” Failure to recognize timing constraints

such as the time required to complete recovery activ-

it y (e.g., to point the sensor at the sun), the delay

required to avoid transient values (e.g., power tran-

sients or warm-up delays), or the correct persistence

limit at which to trigger a response are common re-

quirements inadequacies that cause subsequent inter-

face errors [16].

Both the third and fourth most common errors

queried by the checklist involve the arrival of input.

The third most common error-producing issue is item

3 “If input arrives when it shouldn’t, is a response

s~ecified?” This issue causes safety- related software

errors when essential input is ignored. Often this in-

volves subtle timing issues across the software/system

interfaces (e.g., commands arriving before a process is

in the correct mode to receive them, unexpected du-

plicate commands that are mishandled, or unforeseen

race conditions).

The fourth most common issue is item 1, “1s the

software’s response to out-of-range values specified for

every input?” This becomes a safety issue when er-

ror responses are erroneously triggered by incorrectly

defined ranges or thresholds. Additionally, the lack of

software requirements to handle large errors (e.g., large

pitch disturbances, unexpected spin rates) caused sev-

eral soft ware errors on each spacecraft.

A related robustness issue is the fifth most common

102



error, item 8, “Can any output be produced faster than

it can be used by the interfacing module?” This item,

together with item 6 (arrival rates), checks for erro-

neous assumptions regarding the possibility of, and ap-

propriate response to, data overflow, signal saturation,

and duplicate commands. By including requirements

for overflow protection and out-of-range checks in the

specifications, the subsequent design is more likely to

be robust with regard to boundary conditions and val-

ues.

In all, eleven of the sixteen items on the Safety

Checklist produced safety-related software errors.

Those items not cited are either adequately handled

during the development process with other methods

(e.g., “Is all data used?” is checked by various means)

or have not been documented as a problem with these

particular systems (e.g., “Is the software’s behavior

deterministic?” ). Of the safety-related software errors

on the two spacecraft, 7770 have their causes addressed

by the Safety Checklist. The Safety Checklist thus ap-

pears to be useful for targeting the causes of safety-

related software errors.

B. Analyzing Software Requirements

The Safety Checklist also was used to analyze part of

a draft version of a Software Requirements Document

for a spacecraft currently being developed. The por-

tion chosen for analysis was the requirements specifi-

cations for data collection by the remote (distributed)

engineering subsystems (e.g., power, propulsion, sci-

ence and radio instruments).

This portion of the software specifications was cho-

sen because each remote subsystem has many inter-

faces (both periodic and aperiodic) with other sub-

systems and because the safety-critical, error-recovery

processes depend on the results of the data collection.

The purpose of applying the Safety Checklist to these

specifications was to evaluate the usefulness and ease-

of-use of the checklist, not the correctness or complete-

ness of what was provided as only a preliminary re-

quirements document.

The data collection functions as follows. Each re-

mote engineering subsystem receives various inputs

over a shared bus from the central control computer

as well as from other subsystems, performs certain ac-

tions in response to these inputs, and places various

outputs (primarily engineering data) on a bus. Engi-

neering data are gathered by each remote engineering

subsystem and stored in its Bus Interface Unit’s mem-

ory until the data are packaged and output on the bus

to the central control processor. Some of the data also

are extracted and sent to other subsystems. In addi-

tion, data required by the error-recovery processes are

extracted and output separately.

Table 2 (see Appendix) shows the results of apply-

ing the Safety Checklist to the software requirements

specifications for the remote engineering data collec-

tion. Six of the sixteen items in the checklist are

thoroughly addressed in the preliminary software re-

quirements document. Three of the sixteen items are

explicitly deferred (since error-recovery responses and

interrupt behavior are still being defined). The re-

maining seven of the sixteen items prompt additional

questions involving the analysis of the requirements.

The seven items prompting additional requirements

analysis do not necessarily need further specification

in the document. Instead, they raise questions about

possibly vulnerable areas (“what if ‘s”) and possibly

hazardous circumstances. The questions raised by

the checklist are useful in focusing the requirements-

analysis process on the interface and robustness issues

that have been shown to cause safety-related software

errors in other complex, embedded systems.

For example, in accordance with the checklist, there

is a requirement specified for data freshness. How-

ever, the timestamp in the header of the relevant data

item records only the current time, making it uncertain

whether obsolete data could be identified. The concern

is not at this point with how the obsolete data could be

identified, but with whether a requirement to identify

obsolete data is in conflict with other requirements re-

garding header information. The checklist also allowed

identification of possible race conditions, of possible

starvation of low-priority data transfers, and of inputs

which if not received might result in hazardous states

(e.g., notification that error-recovery is underway).

Two extensions to the checklist were suggested by

the application of the Safety Checklist to the software

requirements specification.

1. Data consistency. When multiple copies of the

same data items are kept, the possibility exists that the

copies may have different values at any point in time.

This inconsistency can occur through asynchronous

update or through data corruption (e.g., as data is

transferred across the bus or during a power-on re-

set response). This issue has significant safety conse-

quences since error recovery often involves the man-

agement of redundant resources. This leads to the

following extension to the Safety Checklist:

“Are checks for consistent data performed before con-

trol deczszons are made based on that data ?“

2. Generic structures. An important aspect of de-

fensive design is that, as much as possible, modules

and data objects should be generic, similar in format

and in use. Special cases

number of states and the

and exceptions increase the

opportunities for design er-
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rors, especially during changes. In particular, restrict-

ing the number of possible hazardous states makes the

validation of safety constraints more feasible. This

leads to the following additional item for the check-

list:

“Are generic structures used whenever appropriate to

restrtct the number of possible hazardous modes and

states?’)

V. Conclusion

The Safety Checklist has been shown to be useful in

analyzing software requirements, particularly with re-

gard to interfaces and robustness. By targeting those

features which have proven to be the most common

causes of safety-related software errors, the checklist

contributes to a safer system. The criteria in [11] have

been adapted to spacecraft software by taking into ac-

count the interface and robustness issues associated

with the spacecraft’s concurrent processes, interacting

controllers, redundant resources, and externally com-

mendable states. The resulting Safety Checklist aids

in analyzing failure modes, in uncovering hidden as-

sumptions and misunderstandings, and in identifying

potential areas of vulnerability.

The Safety Checklist focuses extra attention on his-

torically troublesome aspects of safety-critical, embed-

ded software (timing dependencies, triggers for error-

recovery responses, the handling of overload and sat-

uration, the use of obsolete data for control decisions)

without causing overspecification of well-understood

or low-risk requirements. The checklist thus allows

the depth of the requirements analysis to be tailored

to the level of risk (technical or historical) associated

with a component.

Because the checklist emphasizes requirements for

software/system interfaces and robust responses to

anomalous circumstances, many of the items it iden-

tifies are system hazards. It thus can be used as a

first step towards specifying and checking safety con-

straints, either informally or formally. As developed

here, the checklist can be readily incorporated into the

requirements analysis, e.g., as a supplement to the for-

mal inspection of requirements specifications.

Future work in this area will be directed at identify-

ing how the use of the Safety Checklist during the re-

quirements phase can be used to predict which factors

in a particular system are likely to cause subsequent

safety-related software errors.
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Appendix

Table 1. Targeting Safety-Related Software Errors With the Safety Checklist

Checklist Item Voyager Galileo Total

1. Out-of-range values 5 11 16

2. Timeout 2 5 7

3. Input arrives when it shouldn’t 10 7 17

4. Deterministic o 0 0
5. Data age 1 7 8

6. Arrival rate 5 3 8

7. Lost events 5 5 10
8. Overload response 9 4 13

9. All data used o 0 0
10. Startup/Offline/Shutdown 6 0 6

11. Degradation predictable 1 0 1
12. Delays in error responses 6 17 23

13. Feedback loops o 0 0
14. All modes reachable o 0 0
15. Paths lead to low-risk state 5 29 34

16. Inputs Received before start o 6 6

Total Addressed by Safety checklist: 55 94 149

Table 2. Applying the Safety Checklist to a Requirements Specification

checklist Item Resolved Questions Remain F’uture Specification

1. Out-of-range values x
2. Timeout x
3. Input arrives when it shouldn’t x
4. Deterministic x
5. Data age x
6. Arrival rate x
7. Lost events x
8. Overload response x
9. All data used x
10.
11.
12.

13.

14.

15.

16.

Startup/Offline/Shutdown x
Degradation predictable x
Delays in error responses x
Feedback loops x
All modes reachable x
Paths lead to low-risk state x
Inputs Received before start x

IITotals: 6 7 3


