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Introduction 
TCAS II (Traffic alert and Collision 

Avoidance System II) is an avionics system 
required on all commercial aircraft with more 
than 30 passengers.  In 1990, FAA deemed the 
Minimal Operational Performance Standard 
(MOPS) for TCAS II, expressed in plain 
English and low-level pseudocode, 
unacceptable as a basis for government 
certification.  To correct this problem, a high-
level software requirements specification (SRS) 
was developed by reverse engineering the 
pseudocode and capturing the required 
behavior using RSML (Requirements State 
Machine Language), a requirements language 
based on hierarchical communicating finite 
state machines [1]. The Irvine Safety Research 
Group, in cooperation with industrial and 
government representatives, specified the 
requirements between 1990 and 1992 [1].  

In this paper we provide an overview of 
this project and the specification technique we 
used. In the following section we discuss the 
TCAS II project. Next, we cover some 
desirable properties of a high-level 
specification language and provide an overview 
of RSML. Finally, we share lessons learned and 
outline current developments.  

The System—TCAS II 
In 1981, the FAA decided to develop 

and implement TCAS II.  TCAS II is an 
airborne device that functions independently of 
the ground-based air traffic control system to 
provide collision avoidance protection for a 
broad spectrum of aircraft types (commercial 

aircraft and larger commuter and business 
aircraft).  To avoid threatening aircraft, TCAS 
II alerts the pilot of nearby traffic (traffic 
advisories) and, if necessary, provides 
recommended escape maneuvers (resolution 
advisories) in a vertical direction. In 1989, the 
FAA required that TCAS II be installed on 
commercial aircraft with more than 30 seats by 
December 1993 and on commercial aircraft 
with 10 to 30 seats by 1995. 

At this time, the TCAS II requirements 
were defined by the Minimal Operational 
Performance Standard (MOPS) document.  The 
MOPS was expressed using a combination of 
English and approximately 7,000 lines of low-
level pseudocode.   

Because of perceived deficiencies in 
this document (discussed in the next section) 
and the difficulty of FAA certification without 
high-level system or software requirements, an 
effort was begun in 1990 to provide such a 
high-level requirements document for TCAS II.   

The Original Specification; The MOPS 
The MOPS was expressed using both 

English and pseudocode, the English is used to 
comment and explain the code.  The 
pseudocode is a low-level language (called E) 
containing only simple data types, arithmetic 
expressions, if statements, loop statements, and 
subroutines. All variables are global: There are 
no local variables and formal parameters but 
there are language constructs to indicate which 
variables are used and modified by a subroutine 
(few subroutines actually use this feature in the 
TCAS specification). An example of a routine 
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can be seen in Figure 1.  The only complex data 
structure allowed is a “group” that provides for 
grouping related variables into a “data 
structure”, that is, giving them a group name. In 
summary, the pseudocode lacks many desirable 
features of a modern programming language 
and, more importantly, most desirable features 
of a high-level specification language. 

PROCESS Ground_level_estimation;

IF (O.OOGROUND EQ $TRUE)
THEN G.ZGROUND = G.ZOWN;

ELSEIF (G.RADAROUT GT P.RADARLOST)
THEN G.ZGROUND = -P.ZLARGE;

ELSEIF (G.RADAROUT GT 0)
THEN <do not update ZGROUND>}

ELSEIF (G.RADAROUT EQ -P.ZLARGE)
THEN

IF (O.ZRADAR LT P.KNOWGROL)
THEN G.ZGROUND = G.ZOWN -

O.ZRADAR;
ELSE; <ground level unchanged>

OTHERWISE
IF (O.ZRADAR GT P.KNOWGROH)

THEN G.ZGROUND = -P.ZLARGE;
ELSE G.ZGROUND = G.ZOWN - O.ZRADAR;

END Ground_level_estimation;

Figure 1. A sample routine from the MOPS 

The Participants 
To provide a proper requirements 

specification, a committee of industry and 
government representatives (RTCA Special 
Committee 147, or SC-147) was formed and 
began to develop an English language 
specification.  Participants in this committee 
included airframe and avionics manufacturers, 
air traffic controllers, airline representatives, 
pilots, and FAA representatives. At this time, 
Dr. Nancy Leveson was looking for a real 
world system she could use as a testbed for her 
research in safety-critical systems.  Because of 
its size and complexity, TCAS provided a 
challenging experimental application of formal 
specification and analysis methods to a real 
system. 

Initially, the Irvine Safety Research 
group developed a requirements document 
purely for research purposes, but it was later 

adopted by RTCA Special Committee 147 for 
their specification of the TCAS system 
requirements. 

The requirements were expressed using 
RSML.  The group developed RSML 
concurrently with the TCAS II requirements, 
and the experiences and feedback gathered 
during this effort was continually used to refine 
and improve the language. A brief description 
of RSML can be found in the next section.  A 
detailed discussion about the reasons for 
developing RSML is included in [1]. In short, 
no other language satisfied our demands for 
readability and usability combined with 
formality. 

The Solution – RSML 
During the initial stages of the project, 

we reviewed many common specification 
methods. Unfortunately, we could not find any 
language and method that satisfied our needs. 

The first step in designing a 
specification language or modeling method is 
to determine goals and criteria for the language. 
This section describes general design criteria 
for such a requirements specification language 
as well as a short overview of the language 
used to specify TCAS—RSML. 

The Goals of RSML 
We identified several criteria that were 

important with respect to our goals and that we 
believe apply in general to this type of 
specification language (a partial list is shown in 
Figure 2). 
• Black-box 
• Minimal  
• Semantically simple 
• Coherent, consistent, and concise 
• Unambiguous and formal  
• Readable, reviewable, and usable by application 

experts and developers 
• Flexible notations  
• Readability given priority over writability 
• User needs given priority over personal preferences 

Figure 2. Design criteria for the language. 
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The first criterion is that the language 
specifies blackbox behavior of the software 
only and does not include internal design 
information in the specification.  

Two other criteria are minimality and 
simplicity.  Minimality implies that the 
specification should contain only the 
information needed by the developers and 
analysts. Otherwise, time is wasted in 
specifying things that are not used. Many of the 
popular real-time requirements specification 
languages include facilities that are not strictly 
necessary.  The problem with the “kitchen 
sink” approach is that the specification 
language becomes unnecessarily complex and 
the specification process becomes 
unnecessarily tedious and time-consuming.   

Related to the minimality and simplicity 
criteria are coherency, consistency, and 
conciseness.  Other specification languages for 
reactive systems, e.g., Statemate [2], 
Hatley/Pirbhai [3], and Ward/Mellor [4] 
include a variety of diverse models, some of 
which are not formally defined.  Our goal was 
to specify all the required information using 
one formally defined modeling language based 
on one underlying state-machine model.  We 
also wanted our language to represent 
information as economically as possible while 
still maintaining readability. 

Because of our goal to provide a safety 
analysis of the specification, the language must 
be unambiguous and the underlying model 
must have a mathematical foundation.  At the 
same time, the requirements specification must 
be readable, reviewable, and usable.  In some 
respects, these criteria may be conflicting but it 
is possible to satisfy both.  The specification 
must be unambiguous and translatable into a 
formal foundation, but it need not itself include 
arcane mathematical symbols that are 
unfamiliar to the application experts and 
software developers. We spent considerable 
time and energy developing a notation that was 
readable yet maintained the underlying formal 
state-machine model.  This notation has 

graphical, symbolic, and tabular aspects 
depending on which was best for specifying a 
particular type of information [5]. 

Because readability and writability are 
often conflicting goals, we chose readability in 
cases where a conflict existed: The added 
investment in constructing the requirements 
specification pays off in terms of discovering 
more requirements-level errors. 

As mentioned earlier, we received 
continual industry feedback on our 
specification effort. One of the advantages of 
the feedback was to help us overcome our 
individual preferences.  When devising the 
specification language, we usually had 
ourselves in mind as the user.  However, our 
familiarity with certain notations, especially 
mathematical notations such as predicate 
calculus, hid their weaknesses.  Our first 
attempts at devising our language, therefore, 
were failures: the notation was clear to us but 
not to others.  The feedback from a diverse 
group of users helped us to evaluate the 
evolving specification language more 
objectively. The resulting language as well as 
specification was by all measures very 
successful.  

RSML Overview 
RSML is a state-based requirements 

specification language suitable for the 
specification of reactive systems. RSML 
includes several features developed by Harel 
for Statecharts [2, 6], for example, superstates, 
AND decomposition, broadcast 
communication, and conditional connectives. 
In addition, RSML has some unique syntactic 
and semantic features that were developed to 
enhance readability, reviewability, 
analyzability, and the ability to handle complex 
systems. A complete description of RSML is 
provided in [1]. This section contains only a 
brief overview of the language. 

A simple finite-state machine is 
composed of states connected by transitions 
(see Figure 3). Default or start states are 
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signified by states where a connecting 
transition has no source.  In Figure 3, state 
Within-Limits is the start state. Transitions 
define how to get from one state to another.  

Altitude

Out-of-BoundsLow

HighWithin-Limits

 

Figure 3. A Basic State Machine Example. 

Superstates 
In RSML (and Statecharts), states may 

be grouped into superstates (see Figure 4).  
Such groupings reduce the number of 
transitions by allowing transitions to and from 
the superstate rather than requiring explicit 
transitions to and from all of the grouped states 
(substates).  Superstates can be entered in two 
ways.  First, the transition to the superstate may 
end at the superstate's border (transition T1 in 
Figure 4). In this case, a default state must be 
specified within the superstate.  In the example, 
state Climb is entered upon taking transition T1. 
Alternatively, the transition may be made to a 
particular state inside the superstate (transition 
T2 in Figure 4).  The same superstate may have 
transitions ending at the border and at any 
number of the inner states.  The superstate may 
be exited in two ways (transitions T3 and T4 in 
Figure 4). Analogous to transitions into the 
superstate, transitions out of the superstate may 
originate from the border or from an inner state.  

Resolution-Advisory

Descend

Climb

T1

T2

T3

T4
 

Figure 4. A Superstate Example. 

AND Decomposition 
One of the most important innovations 

in Statecharts is what Harel calls the parallel 

state1, which contains two or more state 
machines separated by dashed borders (Figure 
5).  When the parallel state S is entered, each of 
the state machines A, B, C, and D within it is 
entered.  All state machines are exited when 
any transition is taken out of the parallel state.  
The use of parallel states greatly reduces the 
size of the specification.  

S

A B

C D

 

Figure 5. The Parallel State. 

Naturally, the TCAS II specification is 
significantly more complex than the small 
examples above. To illustrate, we have 
included a part of the TCAS II specification.  

Power_On

Fully_Operational

Own_Aircraft

Other_Aircraft, i:[1...30]

Mode_S_Ground_Station, i:[0...15]

Standby

C

Power_Off

TCAS_Controller

 

Figure 6. The Highest Level of TCAS. 

The highest level TCAS state machine 
is shown in Figure 6. At this level, TCAS is 
either on or off; if it is on, it may be either fully 
operational or in standby mode. In the case of 
the TCAS logic, the states of three types of 
process components are modeled: our own 
aircraft, other aircraft, and mode-S ground 
radar stations. Each of the three subcomponents 
of TCAS is elaborated in more detailed RSML 
models. 

                                                           
1 Parallel states are also known as “orthogonal products'”, 
“product states'”, and “AND states'”. 
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Own_Aircraft

Own_Tracker_
SoftnessBroadcast_Cycle

Increase_Climb_
Inhibit

Increase_Descend_
InhibitDescend_Inhibit

Alerter_Value: Real {Range Unspecified} Alerter_Data_Available: {True, False}
Own_Alt_Radio: {-20 ... 2,720} Traffic_Display_Permitted: {True, False}
Ground_Level: Real {Range Unspecified} Aircraft_Altitude_Limit: Real (Range Unspecified)
Own_Alt_Barometric: {-1200 to limit of Altimeter} Mode_Selector: {TA/RA, Standby, TA_Only, 3, 4, 5,  6,  7}
Config_Climb_Inhibit: {True, False} Own_Corrected_Altitude: Real {Range Unspecified}
Altitude_Climb_Inhib_Active: {True, False} Radio_Altimeter_Status: {Valid, Not_Valid}
Increase_Climb_Inhibit_Discrete: {True, False} Own_Mode_S_Address: {1 ... (224 - 2)}
TCAS_Operational_Status: {Operational, Not_Operational} Own_Mode_A_Address: {0 ... (213 - 1)}
 Barometric_Altimeter_Status: {Fine, Coarse}
Mode_S_Version: {Pre_Version_7, Version_7, Future_Version_1, Future_Version_2}

RA_Mode
 (expanded in

 section 2.1.12)

Advisory_Status
 (expanded in

 section 2.1.11)

Alt_Layer Effective_SLAuto_SL

Altitude_AlerterClimb_Inhibit Own_Air_Status

Input:

Sound_Aural_Alarm: {True, False} Descend_RA: {No_Descend_RA, VSL2000, VSL1000,
Aural_Alarm_Inhibit: {True, False} VSL500, Negative, Positive}
Combined_Control_Out: {No Advisory, Corrective_Climb, Own_Goal_Alt_Rate: {-4,400 ... 4,400}
Corrective_Descend, Preventive, Clear_of_Conflict} Vertical_RAC: {None, Dont_Climb, Dont_Descend,
Vertical_Control_Out: {Other, Increase, Crossing, Dont_Climb_Dont_Descend}
Maintain, Reversal} Horizontal_RAC: {None, Dont_Turn_Left,
Climb_RA: {No_Climb_RA, VSL2000,VSL1000, Dont_Turn_Right, Dont_Turn_Left_Dont_Turn_Right}
VSL500, Negative, Positive} Crossing_Out: {True, False}

Output:

Inhibited

Not_Inhibited

Inhibited

Not_Inhibited

Inhibited

Not_Inhibited

C Not_Available

Available

Airborne

On_Ground

Inhibited

Not_Inhibited

Own_Tracker

Switch_Own_Tracker
No_Switch

One_Report Two_Reports

Fine_Data_Tracker

100ft_Tracker

C

Layer_1
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Layer_6
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Figure 7. The Model of Own Aircraft 

Figure 7 shows the expanded Own-
Aircraft portion of the TCAS model.  The top 
portion of the diagram lists variables that 
represent inputs to TCAS from the sensors that 
provide information about the state of Own-
Aircraft.  The bottom portion of the diagram 
lists variables that represent outputs to TCAS 
actuators. The middle portion of the diagram 
represents the parts of the derived Own-
Aircraft state necessary for the evaluation of 
the TCAS control function. Again, for a 
detailed discussion the reader is referred to [1].  
Transition Definitions 

Transition definitions in RSML contain 
five parts: (1) the identification (the source and 
destination of the transition), (2) the location, 
(3) the triggering event, (4) the guarding 
condition, and (5) the output action. The 
identification, location, and triggering event are 
the only required parts.  

Transitions are taken upon the 
occurrence of the trigger event, provided that 
the guarding condition is true.  The guarding 
condition defines preconditions on the 
transition and is specified using AND/OR tables, 

described below. Output actions identify events 
that are generated when the transition is taken. 
These newly generated events may now trigger 
transitions elsewhere in the state machine. This 
event propagation mechanism is used to 
sequence and synchronize the execution of the 
parallel state machines in the model.  
AND/OR Tables 

Many state-based languages use 
standard logic notation to describe the guarding 
conditions on the transitions [6,8].  Our TCAS 
external reviewers, however, did not find this 
notation natural or reviewable.  Instead, we 
decided to use a tabular representation of 
disjunctive normal form that we call AND/OR 
tables (see Figure 8 for a transition from the 
TCAS II requirements). 

The far-left column (the wide column) 
of the AND/OR table lists the logical phrases in 
the condition.  Each of the other columns 
represents a conjunction of those phrases and 
contains the logical values of the expressions (a 
column denotes the logical AND of the phrases 
in the wide column).  A column evaluates to 
true if all of its elements are true.  A dot 
denotes “don’t care”. The collection of columns 
represents a disjunction (indicated by the OR 
above the columns). Thus, if one of the 
columns is true, then the guarding condition 
(the table) evaluates to true. 

Experience using RSML 
We used this language to develop an 

experimental specification of TCAS II. This 
initial specification was well-liked by the 
RTCA TCAS II Committee. The members felt 
that adopting a formal approach would help to 
accurately capture the requirements and enable 
a shorter time to certification. The RSML 
language has been subsequently formally 
adopted for the official requirements 
specification. 
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Location:  Own_Aircrafts-40 � Auto_SLs-89
Trigger Event:  Descend_Inhibit_Evaluated_Evente-682
Condition:

OR
Effective_SLs-97 in one of {1, 2} . . . T
Effective_SLs-97 in state 3 . . T .
Own_Alt_Radiov-43 ≤ 900 ft(ZSL3TO2) . . T .

AND Climb_Descend_Inhibitm-370 . T F .
Own_Air_Statuss-141 in state Airborne F T T T
Traffic_Display_Permittedv-50 T . . .
Radio_Altimeter_Statusv-46 = Valid . . T T
Own_Alt_Radiov-43 < 1,100 ft(ZSL2TO3) . . . T

Output Action: Auto_SL_Evaluated_Evente-682
 

Figure 8. A transition definition from TCAS II. 

After SC-147 decided to adopt the 
RSML specification, we received continual 
feedback on our effort from the full SC-147 and 
from a smaller ad-hoc Requirements Working 
Group chartered with the development of the 
requirements.  

In March 1992, the document was 
delivered to SC-147 for verification. The RSML 
specification contained approximately 47 input 
and output variables, 140 states, and 170 
transitions. The specification has since then 
undergone an extensive verification and 
validation effort, and is currently being 
maintained and extended by the Rannoch 
Corporation.  

Lessons Learned 
During the course of the project we 

learned several lessons, some of which are 
summarized in this section. The lessons 
generally fell into two categories (1) general 
lessons regarding requirements specification and 
(2) lessons related to the use of formal 
specification languages.  

General Lessons Learned 
Keeping the design out is hard: Initially, we 
had difficulty abstracting away from the design.  
Even when we did not look at the pseudocode, 
we found it difficult in the beginning to 

eliminate functional decomposition and 
flowchart-like logic, i.e., to specify the problem 
without trying to solve it.  With practice we 
became better at omitting design information, 
but the struggle never entirely abated. The very 
low level of the pseudocode also made the 
process of abstraction more difficult as many 
purely implementation features, such as flags, 
were used extensively in the pseudocode.  After 
the specification of the CAS logic was 
completed, an independent verification and 
validation was performed to compare the 
pseudocode specification and the RSML 
specification.  The verifiers experienced the 
same problems that we did, and a large number 
of identified discrepancies between the 
pseudocode and the RSML specification 
resulted in no change to the RSML specification 
because they merely represented design 
peculiarities of the pseudocode and not 
requirements. 

Understanding intent is difficult: Although it 
may be a function of the particular system we 
were working on, we found it impossible to 
derive the requirements specification strictly 
from the pseudocode and an accompanying 
English language description. Although the 
basic information was all there, the intent was 
missing. The rationale for the various system 
design tradeoffs was never recorded. Therefore, 
distinguishing between requirements and 
artifacts of the implementation was not possible 
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in all cases.   An audit trail of decisions and the 
reasons why decisions were made is absolutely 
essential. This was not done for TCAS over the 
15 years of its development. 

We should have started from scratch: The 
final requirements specification model would 
have been different and much simpler if we had 
been starting from scratch.  Because the TCAS 
pseudocode specification had evolved over a 
period of more than 15 years, the current version 
contains more complexity than is necessary. 
This is a common maintenance dilemma, and 
TCAS was no exception.  When changes are 
made to design or code without backing up all 
the way to requirements, such problems arise 
and increase as time passes.   For TCAS, the 
highest-level specification was the pseudocode. 

Because of the necessity of building a 
requirements specification that matched the 
TCAS systems actually in use (which were 
certified against the pseudocode specification), 
our resulting model was more complicated than 
necessary, included more than the minimum 
required behavior, and was harder to understand 
than was strictly necessary.  This was frustrating 
as we first built a nice, simple model and found 
that we had to complicate it for no better reason 
than that it had to match some errors or poor 
design decisions in the pseudocode. We believe 
that if a blackbox behavioral model of our type 
had been built originally, not only would the 
final specification be simpler and more 
understandable, but making changes without 
introducing errors or unnecessarily complicating 
the resulting requirements also would have been 
simplified.   

Language Lessons Learned 
Formal requirements are feasible: One result 
of this effort was a demonstration that formal 
specifications can be applied to complex, 
reactive systems and that such specifications can 
be readable and reviewable by application 
experts with a minimal knowledge of 
mathematics and computer science. Formal 
specifications are clearly usable if their design 

takes into consideration the training and 
backgrounds of those who are to read and 
review the specification.  Some engineers 
working with us on the TCAS specification 
reported that they liked the AND/OR table 
description of the transition condition because it 
resembles the logic tables that they are used to 
using and that the state machines and logic 
tables fit the way they think about systems.   

Readability, simplicity, and usability are 
extremely important: Reviews of our 
document for correctness by users during 
development made clear that specifications 
should include graphical, symbolic, tabular and 
textual notation, depending on the type of 
information being conveyed.  For example, the 
graphical state machines were a great help 
during reviews for finding certain types of errors 
as were the tables for finding other errors. A 
language that contains only graphics or only 
tables or only symbolic strings is probably less 
useful than one in which different notational 
techniques are used to communicate different 
types of information. 

Easy to be blind to the users needs: Although 
formal specification languages obviously have 
to be defined in an unambiguous and 
mathematical way, the syntax itself does not 
have to contain obscure mathematical symbols 
that are familiar and comfortable to neither the 
application expert nor the implementor of the 
system. Currently, formal specification 
languages are designed primarily by 
mathematicians who use a notation with which 
they are comfortable, but which is foreign to 
those who must use the language.  One solution 
is to train hardware and software engineers to 
think like mathematicians while our alternative 
solution is to provide languages that allow the 
user to think about the system in the way that 
they have been trained in their discipline.  We 
hypothesize that providing a model of a system 
that is closer to the mental model that the 
reviewer and implementor have of the system 
will aid in finding errors in the specification 
itself and reduce the numbers of errors that are 
introduced when implementing the 
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specification.  This hypothesis, of course, still 
needs to be experimentally validated, although 
our experience provides some convincing 
anecdotal support. 

Summary and Recent Developments 
This paper has discussed an approach to 

specifying system requirements for real-time, 
reactive systems, some criteria that should be 
used in designing a language for such 
requirements, and some lessons learned while 
writing a system requirements specification for 
an aircraft collision avoidance system. 

 Since the completion of the project we 
have made advances in many areas, two of 
which are of particular interest to the practicing 
engineer: (1) Specification and traceability of 
intent and design rationale and (2) an improved 
specification language and modeling 
methodology.  

Intent Specifications 
Leveson has developed a new way of 

structuring specifications called Intent 
Specifications [8]. Instead of the usual 
hierarchical abstraction based on what and how, 
Intent Specifications abstract on intent or why.  
Because each level of the specification is 
mapped to the appropriate parts of the intent 
levels above and below it, traceability of design 
rationale and design decisions is provided from 
system-level requirements and constraints down 
to code (or physical form if the function is 
implemented in hardware) and vice versa. 

Intent specifications integrate formal and 
informal aspects of system and software 
development.  The structure is designed to 
facilitate the tracing of system level 
requirements and constraints into the design and 
assist in the assurance of various system 
properties—such as safety, security, and 
survivability—in the initial design as well as 
reduce the costs of implementing changes and 
reanalysis when the system is changed, as it 
inevitably will be. Leveson has applied these 

ideas to specifying control systems with shared 
human and computer control and to assuring 
safety in these systems. Leveson and Reese then 
demonstrated the approach’s feasibility by 
creating a complete (800-page) intent 
specification (from high-level system goals 
down through code) for TCAS II. 

SpecTRM 
After the completion of the TCAS II 

project our method and language have evolved. 
A commercial version of the approach is named 
SpecTRM (pronounced “spectrum”) [8]. The 
name stands for Specification Tools and 
Requirements Methodology. The specification 
language in the SpecTRM approach is called 
SpecTRM-RL (RL for Requirement Language).  

SpecTRM-RL is our new language based 
on the lessons learned from the experiences 
specifying TCAS as well as subsequent large 
case studies. SpecTRM-RL improves on 
usability, readability, and analyzability over 
RSML. It supports a complete system 
engineering methodology, is integrated with 
intent specifications, and extensive tool support 
will be commercially available shortly. 
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