
1

EXPERIENCES FROM SPECIFYING THE TCAS II
REQUIREMENTS USING RSML

Mats P.E. Heimdahl, University of Minnesota, Minneapolis, MN
Nancy G. Leveson, Massachusetts Institute of Technology, Cambridge, MA

Jon Damon Reese, Safeware Engineering Corporation, Seattle, WA

Introduction
TCAS II (Traffic alert and Collision

Avoidance System II) is an avionics system
required on all commercial aircraft with more
than 30 passengers. In 1990, FAA deemed the
Minimal Operational Performance Standard
(MOPS) for TCAS II, expressed in plain
English and low-level pseudocode,
unacceptable as a basis for government
certification. To correct this problem, a high-
level software requirements specification (SRS)
was developed by reverse engineering the
pseudocode and capturing the required
behavior using RSML (Requirements State
Machine Language), a requirements language
based on hierarchical communicating finite
state machines [1]. The Irvine Safety Research
Group, in cooperation with industrial and
government representatives, specified the
requirements between 1990 and 1992 [1].

In this paper we provide an overview of
this project and the specification technique we
used. In the following section we discuss the
TCAS II project. Next, we cover some
desirable properties of a high-level
specification language and provide an overview
of RSML. Finally, we share lessons learned and
outline current developments.

The System—TCAS II
In 1981, the FAA decided to develop

and implement TCAS II. TCAS II is an
airborne device that functions independently of
the ground-based air traffic control system to
provide collision avoidance protection for a
broad spectrum of aircraft types (commercial

aircraft and larger commuter and business
aircraft). To avoid threatening aircraft, TCAS
II alerts the pilot of nearby traffic (traffic
advisories) and, if necessary, provides
recommended escape maneuvers (resolution
advisories) in a vertical direction. In 1989, the
FAA required that TCAS II be installed on
commercial aircraft with more than 30 seats by
December 1993 and on commercial aircraft
with 10 to 30 seats by 1995.

At this time, the TCAS II requirements
were defined by the Minimal Operational
Performance Standard (MOPS) document. The
MOPS was expressed using a combination of
English and approximately 7,000 lines of low-
level pseudocode.

Because of perceived deficiencies in
this document (discussed in the next section)
and the difficulty of FAA certification without
high-level system or software requirements, an
effort was begun in 1990 to provide such a
high-level requirements document for TCAS II.

The Original Specification; The MOPS
The MOPS was expressed using both

English and pseudocode, the English is used to
comment and explain the code. The
pseudocode is a low-level language (called E)
containing only simple data types, arithmetic
expressions, if statements, loop statements, and
subroutines. All variables are global: There are
no local variables and formal parameters but
there are language constructs to indicate which
variables are used and modified by a subroutine
(few subroutines actually use this feature in the
TCAS specification). An example of a routine

2

can be seen in Figure 1. The only complex data
structure allowed is a “group” that provides for
grouping related variables into a “data
structure”, that is, giving them a group name. In
summary, the pseudocode lacks many desirable
features of a modern programming language
and, more importantly, most desirable features
of a high-level specification language.

PROCESS Ground_level_estimation;

IF (O.OOGROUND EQ $TRUE)
THEN G.ZGROUND = G.ZOWN;

ELSEIF (G.RADAROUT GT P.RADARLOST)
THEN G.ZGROUND = -P.ZLARGE;

ELSEIF (G.RADAROUT GT 0)
THEN <do not update ZGROUND>}

ELSEIF (G.RADAROUT EQ -P.ZLARGE)
THEN

IF (O.ZRADAR LT P.KNOWGROL)
THEN G.ZGROUND = G.ZOWN -

O.ZRADAR;
ELSE; <ground level unchanged>

OTHERWISE
IF (O.ZRADAR GT P.KNOWGROH)

THEN G.ZGROUND = -P.ZLARGE;
ELSE G.ZGROUND = G.ZOWN - O.ZRADAR;

END Ground_level_estimation;

Figure 1. A sample routine from the MOPS

The Participants
To provide a proper requirements

specification, a committee of industry and
government representatives (RTCA Special
Committee 147, or SC-147) was formed and
began to develop an English language
specification. Participants in this committee
included airframe and avionics manufacturers,
air traffic controllers, airline representatives,
pilots, and FAA representatives. At this time,
Dr. Nancy Leveson was looking for a real
world system she could use as a testbed for her
research in safety-critical systems. Because of
its size and complexity, TCAS provided a
challenging experimental application of formal
specification and analysis methods to a real
system.

Initially, the Irvine Safety Research
group developed a requirements document
purely for research purposes, but it was later

adopted by RTCA Special Committee 147 for
their specification of the TCAS system
requirements.

The requirements were expressed using
RSML. The group developed RSML
concurrently with the TCAS II requirements,
and the experiences and feedback gathered
during this effort was continually used to refine
and improve the language. A brief description
of RSML can be found in the next section. A
detailed discussion about the reasons for
developing RSML is included in [1]. In short,
no other language satisfied our demands for
readability and usability combined with
formality.

The Solution – RSML
During the initial stages of the project,

we reviewed many common specification
methods. Unfortunately, we could not find any
language and method that satisfied our needs.

The first step in designing a
specification language or modeling method is
to determine goals and criteria for the language.
This section describes general design criteria
for such a requirements specification language
as well as a short overview of the language
used to specify TCAS—RSML.

The Goals of RSML
We identified several criteria that were

important with respect to our goals and that we
believe apply in general to this type of
specification language (a partial list is shown in
Figure 2).
• Black-box
• Minimal
• Semantically simple
• Coherent, consistent, and concise
• Unambiguous and formal
• Readable, reviewable, and usable by application

experts and developers
• Flexible notations
• Readability given priority over writability
• User needs given priority over personal preferences

Figure 2. Design criteria for the language.

3

The first criterion is that the language
specifies blackbox behavior of the software
only and does not include internal design
information in the specification.

Two other criteria are minimality and
simplicity. Minimality implies that the
specification should contain only the
information needed by the developers and
analysts. Otherwise, time is wasted in
specifying things that are not used. Many of the
popular real-time requirements specification
languages include facilities that are not strictly
necessary. The problem with the “kitchen
sink” approach is that the specification
language becomes unnecessarily complex and
the specification process becomes
unnecessarily tedious and time-consuming.

Related to the minimality and simplicity
criteria are coherency, consistency, and
conciseness. Other specification languages for
reactive systems, e.g., Statemate [2],
Hatley/Pirbhai [3], and Ward/Mellor [4]
include a variety of diverse models, some of
which are not formally defined. Our goal was
to specify all the required information using
one formally defined modeling language based
on one underlying state-machine model. We
also wanted our language to represent
information as economically as possible while
still maintaining readability.

Because of our goal to provide a safety
analysis of the specification, the language must
be unambiguous and the underlying model
must have a mathematical foundation. At the
same time, the requirements specification must
be readable, reviewable, and usable. In some
respects, these criteria may be conflicting but it
is possible to satisfy both. The specification
must be unambiguous and translatable into a
formal foundation, but it need not itself include
arcane mathematical symbols that are
unfamiliar to the application experts and
software developers. We spent considerable
time and energy developing a notation that was
readable yet maintained the underlying formal
state-machine model. This notation has

graphical, symbolic, and tabular aspects
depending on which was best for specifying a
particular type of information [5].

Because readability and writability are
often conflicting goals, we chose readability in
cases where a conflict existed: The added
investment in constructing the requirements
specification pays off in terms of discovering
more requirements-level errors.

As mentioned earlier, we received
continual industry feedback on our
specification effort. One of the advantages of
the feedback was to help us overcome our
individual preferences. When devising the
specification language, we usually had
ourselves in mind as the user. However, our
familiarity with certain notations, especially
mathematical notations such as predicate
calculus, hid their weaknesses. Our first
attempts at devising our language, therefore,
were failures: the notation was clear to us but
not to others. The feedback from a diverse
group of users helped us to evaluate the
evolving specification language more
objectively. The resulting language as well as
specification was by all measures very
successful.

RSML Overview
RSML is a state-based requirements

specification language suitable for the
specification of reactive systems. RSML
includes several features developed by Harel
for Statecharts [2, 6], for example, superstates,
AND decomposition, broadcast
communication, and conditional connectives.
In addition, RSML has some unique syntactic
and semantic features that were developed to
enhance readability, reviewability,
analyzability, and the ability to handle complex
systems. A complete description of RSML is
provided in [1]. This section contains only a
brief overview of the language.

A simple finite-state machine is
composed of states connected by transitions
(see Figure 3). Default or start states are

4

signified by states where a connecting
transition has no source. In Figure 3, state
Within-Limits is the start state. Transitions
define how to get from one state to another.

Altitude

Out-of-BoundsLow

HighWithin-Limits

Figure 3. A Basic State Machine Example.

Superstates
In RSML (and Statecharts), states may

be grouped into superstates (see Figure 4).
Such groupings reduce the number of
transitions by allowing transitions to and from
the superstate rather than requiring explicit
transitions to and from all of the grouped states
(substates). Superstates can be entered in two
ways. First, the transition to the superstate may
end at the superstate's border (transition T1 in
Figure 4). In this case, a default state must be
specified within the superstate. In the example,
state Climb is entered upon taking transition T1.
Alternatively, the transition may be made to a
particular state inside the superstate (transition
T2 in Figure 4). The same superstate may have
transitions ending at the border and at any
number of the inner states. The superstate may
be exited in two ways (transitions T3 and T4 in
Figure 4). Analogous to transitions into the
superstate, transitions out of the superstate may
originate from the border or from an inner state.

Resolution-Advisory

Descend

Climb

T1

T2

T3

T4

Figure 4. A Superstate Example.

AND Decomposition
One of the most important innovations

in Statecharts is what Harel calls the parallel

state1, which contains two or more state
machines separated by dashed borders (Figure
5). When the parallel state S is entered, each of
the state machines A, B, C, and D within it is
entered. All state machines are exited when
any transition is taken out of the parallel state.
The use of parallel states greatly reduces the
size of the specification.

S

A B

C D

Figure 5. The Parallel State.

Naturally, the TCAS II specification is
significantly more complex than the small
examples above. To illustrate, we have
included a part of the TCAS II specification.

Power_On

Fully_Operational

Own_Aircraft

Other_Aircraft, i:[1...30]

Mode_S_Ground_Station, i:[0...15]

Standby

C

Power_Off

TCAS_Controller

Figure 6. The Highest Level of TCAS.

The highest level TCAS state machine
is shown in Figure 6. At this level, TCAS is
either on or off; if it is on, it may be either fully
operational or in standby mode. In the case of
the TCAS logic, the states of three types of
process components are modeled: our own
aircraft, other aircraft, and mode-S ground
radar stations. Each of the three subcomponents
of TCAS is elaborated in more detailed RSML
models.

1 Parallel states are also known as “orthogonal products'”,
“product states'”, and “AND states'”.

5

Own_Aircraft

Own_Tracker_
SoftnessBroadcast_Cycle

Increase_Climb_
Inhibit

Increase_Descend_
InhibitDescend_Inhibit

Alerter_Value: Real {Range Unspecified} Alerter_Data_Available: {True, False}
Own_Alt_Radio: {-20 ... 2,720} Traffic_Display_Permitted: {True, False}
Ground_Level: Real {Range Unspecified} Aircraft_Altitude_Limit: Real (Range Unspecified)
Own_Alt_Barometric: {-1200 to limit of Altimeter} Mode_Selector: {TA/RA, Standby, TA_Only, 3, 4, 5, 6, 7}
Config_Climb_Inhibit: {True, False} Own_Corrected_Altitude: Real {Range Unspecified}
Altitude_Climb_Inhib_Active: {True, False} Radio_Altimeter_Status: {Valid, Not_Valid}
Increase_Climb_Inhibit_Discrete: {True, False} Own_Mode_S_Address: {1 ... (224 - 2)}
TCAS_Operational_Status: {Operational, Not_Operational} Own_Mode_A_Address: {0 ... (213 - 1)}
 Barometric_Altimeter_Status: {Fine, Coarse}
Mode_S_Version: {Pre_Version_7, Version_7, Future_Version_1, Future_Version_2}

RA_Mode
 (expanded in

 section 2.1.12)

Advisory_Status
 (expanded in

 section 2.1.11)

Alt_Layer Effective_SLAuto_SL

Altitude_AlerterClimb_Inhibit Own_Air_Status

Input:

Sound_Aural_Alarm: {True, False} Descend_RA: {No_Descend_RA, VSL2000, VSL1000,
Aural_Alarm_Inhibit: {True, False} VSL500, Negative, Positive}
Combined_Control_Out: {No Advisory, Corrective_Climb, Own_Goal_Alt_Rate: {-4,400 ... 4,400}
Corrective_Descend, Preventive, Clear_of_Conflict} Vertical_RAC: {None, Dont_Climb, Dont_Descend,
Vertical_Control_Out: {Other, Increase, Crossing, Dont_Climb_Dont_Descend}
Maintain, Reversal} Horizontal_RAC: {None, Dont_Turn_Left,
Climb_RA: {No_Climb_RA, VSL2000,VSL1000, Dont_Turn_Right, Dont_Turn_Left_Dont_Turn_Right}
VSL500, Negative, Positive} Crossing_Out: {True, False}

Output:

Inhibited

Not_Inhibited

Inhibited

Not_Inhibited

Inhibited

Not_Inhibited

C Not_Available

Available

Airborne

On_Ground

Inhibited

Not_Inhibited

Own_Tracker

Switch_Own_Tracker
No_Switch

One_Report Two_Reports

Fine_Data_Tracker

100ft_Tracker

C

Layer_1

Layer_2

Layer_3

Layer_4

Layer_5

Layer_6

1

2

3

4

5

6

7

1

2

3

4

5

6

7

9

8

7

5

6

4

3

2

1

10

9

8

7

6

5

4

3

2

Figure 7. The Model of Own Aircraft

Figure 7 shows the expanded Own-
Aircraft portion of the TCAS model. The top
portion of the diagram lists variables that
represent inputs to TCAS from the sensors that
provide information about the state of Own-
Aircraft. The bottom portion of the diagram
lists variables that represent outputs to TCAS
actuators. The middle portion of the diagram
represents the parts of the derived Own-
Aircraft state necessary for the evaluation of
the TCAS control function. Again, for a
detailed discussion the reader is referred to [1].
Transition Definitions

Transition definitions in RSML contain
five parts: (1) the identification (the source and
destination of the transition), (2) the location,
(3) the triggering event, (4) the guarding
condition, and (5) the output action. The
identification, location, and triggering event are
the only required parts.

Transitions are taken upon the
occurrence of the trigger event, provided that
the guarding condition is true. The guarding
condition defines preconditions on the
transition and is specified using AND/OR tables,

described below. Output actions identify events
that are generated when the transition is taken.
These newly generated events may now trigger
transitions elsewhere in the state machine. This
event propagation mechanism is used to
sequence and synchronize the execution of the
parallel state machines in the model.
AND/OR Tables

Many state-based languages use
standard logic notation to describe the guarding
conditions on the transitions [6,8]. Our TCAS
external reviewers, however, did not find this
notation natural or reviewable. Instead, we
decided to use a tabular representation of
disjunctive normal form that we call AND/OR
tables (see Figure 8 for a transition from the
TCAS II requirements).

The far-left column (the wide column)
of the AND/OR table lists the logical phrases in
the condition. Each of the other columns
represents a conjunction of those phrases and
contains the logical values of the expressions (a
column denotes the logical AND of the phrases
in the wide column). A column evaluates to
true if all of its elements are true. A dot
denotes “don’t care”. The collection of columns
represents a disjunction (indicated by the OR
above the columns). Thus, if one of the
columns is true, then the guarding condition
(the table) evaluates to true.

Experience using RSML
We used this language to develop an

experimental specification of TCAS II. This
initial specification was well-liked by the
RTCA TCAS II Committee. The members felt
that adopting a formal approach would help to
accurately capture the requirements and enable
a shorter time to certification. The RSML
language has been subsequently formally
adopted for the official requirements
specification.

6

Location: Own_Aircrafts-40 � Auto_SLs-89
Trigger Event: Descend_Inhibit_Evaluated_Evente-682
Condition:

OR
Effective_SLs-97 in one of {1, 2} . . . T
Effective_SLs-97 in state 3 . . T .
Own_Alt_Radiov-43 ≤ 900 ft(ZSL3TO2) . . T .

AND Climb_Descend_Inhibitm-370 . T F .
Own_Air_Statuss-141 in state Airborne F T T T
Traffic_Display_Permittedv-50 T . . .
Radio_Altimeter_Statusv-46 = Valid . . T T
Own_Alt_Radiov-43 < 1,100 ft(ZSL2TO3) . . . T

Output Action: Auto_SL_Evaluated_Evente-682

Figure 8. A transition definition from TCAS II.

After SC-147 decided to adopt the
RSML specification, we received continual
feedback on our effort from the full SC-147 and
from a smaller ad-hoc Requirements Working
Group chartered with the development of the
requirements.

In March 1992, the document was
delivered to SC-147 for verification. The RSML
specification contained approximately 47 input
and output variables, 140 states, and 170
transitions. The specification has since then
undergone an extensive verification and
validation effort, and is currently being
maintained and extended by the Rannoch
Corporation.

Lessons Learned
During the course of the project we

learned several lessons, some of which are
summarized in this section. The lessons
generally fell into two categories (1) general
lessons regarding requirements specification and
(2) lessons related to the use of formal
specification languages.

General Lessons Learned
Keeping the design out is hard: Initially, we
had difficulty abstracting away from the design.
Even when we did not look at the pseudocode,
we found it difficult in the beginning to

eliminate functional decomposition and
flowchart-like logic, i.e., to specify the problem
without trying to solve it. With practice we
became better at omitting design information,
but the struggle never entirely abated. The very
low level of the pseudocode also made the
process of abstraction more difficult as many
purely implementation features, such as flags,
were used extensively in the pseudocode. After
the specification of the CAS logic was
completed, an independent verification and
validation was performed to compare the
pseudocode specification and the RSML
specification. The verifiers experienced the
same problems that we did, and a large number
of identified discrepancies between the
pseudocode and the RSML specification
resulted in no change to the RSML specification
because they merely represented design
peculiarities of the pseudocode and not
requirements.

Understanding intent is difficult: Although it
may be a function of the particular system we
were working on, we found it impossible to
derive the requirements specification strictly
from the pseudocode and an accompanying
English language description. Although the
basic information was all there, the intent was
missing. The rationale for the various system
design tradeoffs was never recorded. Therefore,
distinguishing between requirements and
artifacts of the implementation was not possible

7

in all cases. An audit trail of decisions and the
reasons why decisions were made is absolutely
essential. This was not done for TCAS over the
15 years of its development.

We should have started from scratch: The
final requirements specification model would
have been different and much simpler if we had
been starting from scratch. Because the TCAS
pseudocode specification had evolved over a
period of more than 15 years, the current version
contains more complexity than is necessary.
This is a common maintenance dilemma, and
TCAS was no exception. When changes are
made to design or code without backing up all
the way to requirements, such problems arise
and increase as time passes. For TCAS, the
highest-level specification was the pseudocode.

Because of the necessity of building a
requirements specification that matched the
TCAS systems actually in use (which were
certified against the pseudocode specification),
our resulting model was more complicated than
necessary, included more than the minimum
required behavior, and was harder to understand
than was strictly necessary. This was frustrating
as we first built a nice, simple model and found
that we had to complicate it for no better reason
than that it had to match some errors or poor
design decisions in the pseudocode. We believe
that if a blackbox behavioral model of our type
had been built originally, not only would the
final specification be simpler and more
understandable, but making changes without
introducing errors or unnecessarily complicating
the resulting requirements also would have been
simplified.

Language Lessons Learned
Formal requirements are feasible: One result
of this effort was a demonstration that formal
specifications can be applied to complex,
reactive systems and that such specifications can
be readable and reviewable by application
experts with a minimal knowledge of
mathematics and computer science. Formal
specifications are clearly usable if their design

takes into consideration the training and
backgrounds of those who are to read and
review the specification. Some engineers
working with us on the TCAS specification
reported that they liked the AND/OR table
description of the transition condition because it
resembles the logic tables that they are used to
using and that the state machines and logic
tables fit the way they think about systems.

Readability, simplicity, and usability are
extremely important: Reviews of our
document for correctness by users during
development made clear that specifications
should include graphical, symbolic, tabular and
textual notation, depending on the type of
information being conveyed. For example, the
graphical state machines were a great help
during reviews for finding certain types of errors
as were the tables for finding other errors. A
language that contains only graphics or only
tables or only symbolic strings is probably less
useful than one in which different notational
techniques are used to communicate different
types of information.

Easy to be blind to the users needs: Although
formal specification languages obviously have
to be defined in an unambiguous and
mathematical way, the syntax itself does not
have to contain obscure mathematical symbols
that are familiar and comfortable to neither the
application expert nor the implementor of the
system. Currently, formal specification
languages are designed primarily by
mathematicians who use a notation with which
they are comfortable, but which is foreign to
those who must use the language. One solution
is to train hardware and software engineers to
think like mathematicians while our alternative
solution is to provide languages that allow the
user to think about the system in the way that
they have been trained in their discipline. We
hypothesize that providing a model of a system
that is closer to the mental model that the
reviewer and implementor have of the system
will aid in finding errors in the specification
itself and reduce the numbers of errors that are
introduced when implementing the

8

specification. This hypothesis, of course, still
needs to be experimentally validated, although
our experience provides some convincing
anecdotal support.

Summary and Recent Developments
This paper has discussed an approach to

specifying system requirements for real-time,
reactive systems, some criteria that should be
used in designing a language for such
requirements, and some lessons learned while
writing a system requirements specification for
an aircraft collision avoidance system.

 Since the completion of the project we
have made advances in many areas, two of
which are of particular interest to the practicing
engineer: (1) Specification and traceability of
intent and design rationale and (2) an improved
specification language and modeling
methodology.

Intent Specifications
Leveson has developed a new way of

structuring specifications called Intent
Specifications [8]. Instead of the usual
hierarchical abstraction based on what and how,
Intent Specifications abstract on intent or why.
Because each level of the specification is
mapped to the appropriate parts of the intent
levels above and below it, traceability of design
rationale and design decisions is provided from
system-level requirements and constraints down
to code (or physical form if the function is
implemented in hardware) and vice versa.

Intent specifications integrate formal and
informal aspects of system and software
development. The structure is designed to
facilitate the tracing of system level
requirements and constraints into the design and
assist in the assurance of various system
properties—such as safety, security, and
survivability—in the initial design as well as
reduce the costs of implementing changes and
reanalysis when the system is changed, as it
inevitably will be. Leveson has applied these

ideas to specifying control systems with shared
human and computer control and to assuring
safety in these systems. Leveson and Reese then
demonstrated the approach’s feasibility by
creating a complete (800-page) intent
specification (from high-level system goals
down through code) for TCAS II.

SpecTRM
After the completion of the TCAS II

project our method and language have evolved.
A commercial version of the approach is named
SpecTRM (pronounced “spectrum”) [8]. The
name stands for Specification Tools and
Requirements Methodology. The specification
language in the SpecTRM approach is called
SpecTRM-RL (RL for Requirement Language).

SpecTRM-RL is our new language based
on the lessons learned from the experiences
specifying TCAS as well as subsequent large
case studies. SpecTRM-RL improves on
usability, readability, and analyzability over
RSML. It supports a complete system
engineering methodology, is integrated with
intent specifications, and extensive tool support
will be commercially available shortly.

References
[1] N.G. Leveson, M.P.E. Heimdahl, H.Hildreth, and J.D. Reese.

Requirements specification for process-control systems. IEEE
Transactions on Software Engineering, vol-20, no-9,September
1994.

[2] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working
environment for the development of complex reactive systems.
IEEE Transactions on Software Engineering, vol-16, no-4, April
1990.

[3] D. Hatley and I. Pirbhai. Strategies for Real Time System
Specification. Dorset House Publishing, 1987.

[4] P. Ward and S. Mellor. Structured Development for Real-Time
Systems. Yourdon Press, 1985.

[5] M. Fitter and T.R.G. Green. When do diagrams make good computer
languages? International Journal on Man-Machine Studies, no-11,
1979.

[6] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231—274, 1987.

[7] C.L. Heitmeyer, R. Jeffords, and B.L. Labaw. Consistency checking
of SCR-style requirements specifications. ACM Transactions on
Software Engineering and Methodology, vol-5(3):231—261, July
1996.

[8] SpecTRM: A CAD System for Digital Automation. Proceedings of
the 17th Digital Avionics Systems Conference (DASC). Seattle, WA,
1998.

