Evaluating Your ASE Research

Jamie Andrews

Department of Computer Science
University of Western Ontario
London, Ontario, Canada
N6A 2T2
andrews@csd.uwo.ca

Plan of Talk

- The Drive for Evaluation
- Experiments
- Case Studies

Plan of Talk

- The Drive for Evaluation
- Experiments
- Case Studies

-	

You and Your Research

- You have done some work on automating software engineering tasks
- You think it's pretty good
- How to convince others?
- · An older way:
 - Show a small example
 - Contrast your methods with others
 - Make a persuasive argument

Problems with the Older Way

- Given techniques A and B, we can almost always find an example where A performs better than B
- How does this generalize?
- Your subjective opinion vs. referee's
- More persuasive writers win

The Drive for Evaluation

- Nowadays, good SE publication venues expect evaluation of research
 - TSE, TOSEM; ICSE, ASE, FSE, etc.
- Primary methods of evaluation:
 - Experiments
 - Case studies

Plan of Talk

- The Drive for Evaluation
- Experiments
- · Case Studies

Experiments

- Characteristics of experiments
- Objective measures
- Statistical analysis
- Threats to validity
- Experiment design

Characteristics of Experiments

- Subjects: things you are changing / using / acting on / treating / helping
 - Programmers, projects, programs, specs, test suites, ...
- Treatments: things you are doing associated with your research work
 - Tools used, processes followed, program analysis techniques, test case generation techniques, ...

3

Classic Experiments

- Classic experiments:
 - Subjects drawn from target population
 - Subjects selected randomly
- Examples:
 - Subjects = patients;treatments = different drugs
 - Subjects = trees; treatments = different fertilizers

SE Experiments with Human Subjects

- Experimental subjects often not drawn from target population
 - Targets: programmers in industry
 - Subjects: students
- Differences between subjects and targets unpredictable

SE Experiments with Human Subjects

- Challenges:
 - Ethics approval
 - Assigning subjects to treatment groups
 - Subjects learn, change
 - Subjects drop out

_				
-				
-				
-				
-				
_				
_				
-				
_				
_				
_				
_				
_				
_				
_				
_				
-				

SE Experiments with Non-Human Subjects

- Subjects often not randomly drawn from target population; rather chosen due to simple availability
 - Technically "pseudoexperiments"
- Main challenge: Subject preparation can be tedious, little reward

Objective Measures

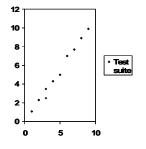
- Numerical measures not based on experimenter's opinion
- Examples:
 - Likert-scale ("on a scale of 1 to 7,...") answers from subjects
 - Cost: CPU time, clock time, effort, number of test cases, size of model
 - Effectiveness: Coverage, accuracy, precision / recall, number of bugs per KLOC

Statistical Analysis

- Visualizations
- Comparisons
- Correlations

Į	=
•	J

Visualizations


- Scatter plots, line plots, bar graphs, pie charts
 - Can be done by gnuplot or Excel
- Box plots, more complex visualizations: use a statistics package
 - SPSS, Minitab, R

Comparisons

- Comparing mean, standard deviation of data set A and data set B not enough
 - Must take into account number of data points
- Student's t test was the first to do this
 - Available on Excel
 - Paired vs. unpaired versions
 - If p value < 0.5, "statistically significant"
- Wilcoxon ("Mann-Whitney", "rank sum") also useful
 - Makes fewer assumptions about data

Correlations

- Pearson (standard) correlation
- Spearman correlation
- Kendall correlation
- "Correlation is not causation!"

Threats to Validity

- No experiment perfect
- Various possible ways that results of experiment may not generalize
 - Technical term for these ways: "threats to validity"
- Modern approach: openly discuss:
 - Threats to validity
 - Any measures taken to minimize them

Experiment Design

- An milligram of preparation is worth a kilogram of:
 - Having to re-run experiments
 - Having to justify weak results
- Books / courses on experiment design

Plan of Talk

- The Drive for Evaluation
- Experiments
- Case Studies

•		
-		
-		
-		
-		
_		
-		
-		
-		
_		
-		
-		
-		
-		
-		
-		
_		
-		

Experiments are Infeasible / Impractical When...

- · Research is at an initial stage
- Result uncertain and experiment would take a long time
- Subjects are inaccessible / too large
 e.g. product lines
- "Case study" may be an option

Examples vs. Case Studies

- All aspects under researcher's control
- Some aspects not under researcher's control
- Used to illustrate technique
- Used to evaluate technique in practice
- Post-hoc, ad-hoc, selective detail
- Preparation, detailed analysis of data

Elements of Case Studies

- Research questions
- Expectations
- Quantitative and qualitative data wanted
- Subject selection
- Data analysis

Example Case Study

- Research questions:
 - Was our tool useful and easy to use for software engineers?
 - In what ways did they find it helped?
 - What problems (if any) did they have with it?
- Expectations:
 - It was useful in understanding code design
 - There are some known usability problems

Example Case Study

- Quantitative and qualitative data wanted:
 - How often they needed to use the tool
 - How long it took them to do the tasks
 - Their reactions to the tool
- Subjects:
 - Two software engineers at company X, each with over 5 years of experience

Example Case Study

- Writeup includes:
 - Raw data on frequencies of use, amounts of time taken
 - Quotations, reactions from software engineers

-		
-		

References and Resources • Experiments: - Book: Claes Wohlin et al., Experimentation in Software Engineering: An Introduction, Springer, 2000 - Paper: Barbara Kitchenham et al., "Preliminary Guidelines for Empirical Research in Software Engineering", *IEEE Trans. Software Eng.*, 28(8): 721-734 (2002) - Example papers: most papers by those authors and by Basili, Briand, Harrold, Ostrand, Rothermel References and Resources · Case studies: - Classic text: Robert K. Yin, Case Study Research: Design and Methods, 3rd ed., Sage Publications, 2003 - Example: Baniassad et al., "Design Pattern Rationale Graphs: Linking Design to Source", ICSE 2003 Thanks to... • wpclipart.com for the open source images

You, the audienceQuestions?