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Abstract
Despite the rapid growth in cellular data traffic, we
know very little about the operational cellular data ser-
vice network (CDSN) infrastructure. For example, how
are the core IP network elements distributed over the
cellular network substrate such as basestations? Such
knowledge and understanding not only can provide crit-
ical insight into the evolution of the CDSN infrastruc-
ture, but can also guide the development of innova-
tive (e.g. location-aware) services and applications. In
this paper we propose and explore a novel approach for
mapping the CDSN infrastructure via explicit user geo-
intent. The intuition behind the proposed approach is
to exploit specific geo-locations (i.e. geo-intent) con-
tained in user queries to location-based services, and
correlate them with basestation id’s and gateway IP
addresses to geo-map the CDSN infrastructure. To in-
vestigate the validity of our approach, we employ data
(RADIUS/RADA data sessions and application sessions)
collected at the core IP network inside a CDSN. We de-
velop heuristics for identifying user geo-intent and for
geo-mapping the CDSN infrastructure — in particular,
the basestations and IP NAS gateways — and evaluate
their efficacy using a subset of basestations with ground-
truth GPS locations. Our findings not only shed useful
light on the CDSN infrastructure, but also have impli-
cations in the design of effective location-aware services
and applications.

1. INTRODUCTION
With wide adoption of smart phones and other mobile

devices, cellular data traffic has grown tremendously in
the past few years. This growth will be further precipi-
tated by the increasing popularity of newer generations
of smart-phones and mobile devices such as iPhones,
Android phones and iPads. As in the case of wireline
services, cellular data traffic will likely surpass the voice
traffic in the not-so-distant future. Despite this tremen-
dous growth, there have been relatively few studies on
the (operational) cellular data service network (CDSN)
infrastructure. Apart from various articles, papers and
documentations on the architectural design and com-

ponent engineering (e.g. 3G network standards), we
know little, for example, about the topology and geo-
graphical distribution of IP network elements over the
cellular network substrate such as basestations. The
challenges in conducting measurement-based mapping
of operational cellular data service networks (CDSNs)
can be attributed, in part, to the fact that these net-
works are generally “closed”, unlike most of the tradi-
tional Internet infrastructure. In other words, active
probing (e.g. traceroute) from outside typically elic-
its no response from the internal network elements of a
CDSN. Conducting active probing from mobile devices
in general does not help much either, as IP addresses
assigned to the end users’ devices are often private IP
addresses [3]: the only IP addresses visible to the out-
side world are the IP addresses of exit routers of the
CDSNs. With the rapid growth in cellular data traffic,
gaining a better understanding of the CDSN infrastruc-
ture — especially the geo-spatial relationships of the
IP network overlaid on top of the cellular (basestation)
network substrate — is imperative. Such understanding
can not only provide insights into the evolution and ex-
pansion of existing (and future) CDSNs, but also help
guide the development and deployment of innovative
location-aware services and applications that cater to
mobile users (see more discussion on this in a latter
part of this section).

In this paper we propose and explore a novel ap-
proach to map the CDSN infrastructure via (explicit)
user geo-intent. By geo-intent, we mean (explicit) geo-
location information specified by users while submitting
queries to certain services (e.g. weather or map ser-
vices), in which they explicitly seek information regard-
ing a specific location. Such geo-intent may be associ-
ated with the target of a user query, or the source (i.e.
the user’s own location). The basic intuition behind our
approach is two-fold: i) mobile users often explicitly ex-
press their geo-intent when performing certain location-
specific queries; and ii) their explicit geo-intent is often
local, namely related to a location in close vicinity of
their current location, e.g. a restaurant nearby or the lo-
cal weather. Such queries will occur more frequently as
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more users adopt GPS-enabled smart phone and utilize
location-based services or apps on their mobile devices.
By correlating the user geo-intent expressed in location-
specific queries with information regarding the CDSN
infrastructure, e.g. the basestation a mobile device is
currently associated with or the (first-hop) IP gateway
address (such information may be obtained from mobile
devices1), we can geo-map the CDSN infrastructure.

To investigate whether — and to what extent — our
proposed approach can help geo-map the CDSN in-
frastructure, we employ two sources of data collected
at a link inside the (wired) backbone IP network of
a CDSN. The first data source comprises of the RA-
DIUS/RADA packet data sessions which contain the
basestation id’s (BSIDs) and anonymized user id’s; the
second data source is collections of application sessions
which contain URLs extracted from HTTP headers and
(anonymized) user id’s. Two datasets (containing data
from both sources), collected roughly ten months apart,
are used for our study. For a subset of BSIDs, we also
have the ground-truth GPS locations. We start with
a list of geographical identifiers (e.g. zip-code, street,
city, state, GPS coordinates etc.) and mine the URL
datasets to extract location-specific services/apps in or-
der to identify user queries that likely express explicit
geo-intent. We find that the most prevalent type of geo-
intent queries in our datasets are zip-code containing
weather queries in which users seek weather informa-
tion for the location specified by a zip-code. In other
words, zip-codes in these queries represent explicit user
geo-intent (target locations of interest). Hence, in this
paper we focus our investigation on the efficacy of uti-
lizing zip-codes in weather queries for geo-mapping the
CDSN infrastructure.

While zip-code containing weather queries represent
a small percentage of all URLs, the collection of bases-
tations seeing such zip-code queries (i.e. around which
such queries originate) constitute more than 20% of the
total basestations contained in our datasets. Using the
basestation with ground-truth GPS locations which also
see zip-code queries, we evaluate the efficacy of geo-
mapping the CDSN infrastructure using zip-codes as
user geo-intent2. We find that we can geo-localize more
than 50% of these basestations within 3.9 km and more
than 75% of them within 6.1 km (alternatively, within

1For example, some smart phone mobile operating systems,
e.g. Window Mobile OS, provide certain APIs via which the
BSID of the basestation a mobile device is associated with,
the gateway IP address as well as the IP address assigned
to the mobile device can be obtained.
2Thus the accuracy and granularity of geo-mapping are
roughly at the level of zip-codes which is a considerable im-
provement over, for instance, some publicly available infor-
mation about basestations, e.g. the SID database [2] which
provides geo-location of base-stations at the granularity of
state(s) in the U.S.

one or a few neighboring zip-code areas). The accuracy
and coverage vary with the population density: within
large metropolitan areas in the US, we can improve the
accuracy to within 1.5−2 km for most basestations due
to smaller zip-code areas and more users; while for rural
areas (sparsely populated) or highway corridors (high
user mobility), the accuracy is poorer due to large zip-
code areas and/or noisy, non-local zip-codes queried for
by users. Based on these observations we develop effec-
tive heuristics which exploit user geo-intent as well as
user mobility for geo-mapping not only those basesta-
tions which see zip-code queries, but also those basesta-
tions which do not see any zip-code queries but instead
are associated with users who issue geo-intent queries at
a neighboring basestation within a short period of time.
Finally, we extract the IP addresses (of mobile devices,
NAS gateways, IP home-agents etc.) in the datasets
and study the geo-spatial distribution of IP network
elements within the CDSN infrastructure, using the in-
ferred (and ground-truth) locations of the basestations.
The results and their implications are discussed below.

Our findings not only confirm the validity of our pro-
posed approach for geo-mapping the CDSN infrastruc-
ture using user geo-intent, but also shed light on some
interesting aspects of the CDSN infrastructure, espe-
cially the geo-spatial relation between IP network el-
ements (NAS gateways and IP home-agents) and the
basestation substrate. In contrast to the number of
basestations (more than 80,000 in our datasets), the
number of NAS gateways and home-agents is far smaller
(less than 100). Further, each NAS gateway (or IP
home-agent) covers a large geographical region (typi-
cally spanning multiple states in US) and a large num-
ber of basestations (spanning multiple SIDs). Multi-
ple gateways or home-agents may also cover similar re-
gions, likely for load-balancing and reliability. Our ob-
servations have important implications. For example,
with the rapid increase in cellular data traffic (for in-
stance, compared with the first dataset, we see a multi-
fold increase in diurnal traffic volume in the second
dataset collected ten months later), IP networks within
the CDSN infrastructure are likely to — and need to
— undergo drastic expansion and evolution to meet the
growing user demand. Our results also provide a plausi-
ble explanation why attempting to geo-localize mobile
users/devices based on externally visible IP addresses
(of exit routers) does not yield reliable results (cf. [3]),
and may be futile apart from perhaps geo-localizing
within a large geographical region. In a similar vein, de-
ploying “location-aware” content distribution services
outside CDSNs, which attempt to reduce latency by dis-
tributing content locally, may not be very effective at
present. To better cater to mobile users in fine-grained
geography (e.g. within a state or metropolitan area),
such services may have to be deployed inside CDSNs.
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Last but not the least, we remark that one limita-
tion of our datasets is that it does not contain many
mobile users with GPS-enabled devices; thus we iden-
tify only a small set of geo-intent queries (for a couple
of location-based services) which contain GPS coordi-
nates coming from GPS-enabled mobile devices. Using
this small set of GPS coordinate geo-intent data, we
show that we can geo-map the associated basestations
with far finer granularity and better accuracy (within
a few hundred meters to 1 km). With the increasing
popularity of newer generations of GPS-enabled smart
phones and mobile devices, we expect our methodology
to yield better results than those reported here.

The remainder of the paper is organized as follows.
In §1.1 we will briefly discuss the related work. In §2 we
provide some background on the CDSN infrastructure
and describe the datasets. In §3 we present our method-
ology for identifying and extracting geo-intent, and in
§4 we investigate the efficacy of geo-localizing bases-
tations using zip-code geo-intent. We develop several
geo-mapping heuristics in §5. In §6 we study the geo-
spatial distributions of the IP network elements within
the CDSN infrastructure, and the paper is concluded in
§7.

1.1 Related Work
Much of the existing work on localization in cellu-

lar networks has focused primarily on geo-locating mo-
bile users or devices via signal strength based methods
(e.g. triangulation) using known locations of cell towers
(basestations). For a very recent study on this topic and
related work, see [9] and the references therein. In con-
trast, we attempt to address the problem the other way
around, namely, utilizing user geo-intent to map the
CDSN infrastructure. The notion of user geo-intent has
been proposed and studied recently in a different con-
text, web search, with the goal to return search results
that are more relevant to user queries. For instance,
in [4], the authors analyze search queries from users,
and classify them into explicit geo-intent and non-geo-
intent queries.

In [8], the authors go one step further to extract (im-
plicit) geographical information that can plausibly iden-
tify users’ locations. Our work adopts a similar notion
of (explicit) geo-intent and applies it to geo-map the
CDSN infrastructure.

Trestian et al [7] correlate user-location (at the gran-
ularity of basestations) and application interests over
time. In their analysis of user mobility patterns, they
find that many users tend to move around one or a few
location “hot-spots” (e.g. residence, office, or a coffee-
shop). This finding indicates that a majority of users’
geo-intent is likely local to their locations. The study
in [3] cited earlier collects the IP addresses assigned to
mobile devices as well as the IP addresses (likely those

of exit routers or NAS gateways) which appear as source
IP addresses in the queries sent to a web server under
the authors’ control, and uses them to locate mobile
devices by geo-localizing the IP addresses.; only to find
that the geo-mapping results using these IP addresses
are very coarse-grained and often unreliable. Our study
shows that the core IP network is “sparsely” distributed
over the dense and geographically dispersed (see fig.
1(a)) cellular network substrate, thus providing a plau-
sible explanation for their findings.

2. PRELIMINARIES AND DATASETS

2.1 CDSN Infrastructure
In the traditional layered network architecture terms,

a typical (3G) cellular data service network (CDSN) in-
frastructure consists of a (layer-1/layer-2) cellular net-
work substrate and an IP data core network overlaid on
top. The cellular network substrate comprises of a large
number of basestations and radio network controllers
(RNCs) geographically dispersed across the entire cov-
erage of a cellular service provider (CSP). Each basesta-
tion is uniquely identified by its Basestation Identifier
(BSID), which contains three parts: the System Iden-
tifier (SID), Network Identifier (NID), and Cell Iden-
tifier (CID). The BSID namespace is hierarchical and
has geo-physical significance. An SID spans a large ge-
ographical region (e.g. one or more states in the US),
and is composed of multiple NIDs, each representing
a smaller geo-physical area. An NID, in turn, con-
sists of many basestations, each covering a cell which
is uniquely identified by a CID. Fig. 1(b) and (c) re-
spectively illustrate the geo-physical clustering of five
sample SIDs (represented by different shaded clusters),
and five NIDs within a single SID.

SIDs are allocated to CSPs by the International Fo-
rum on ANSI-41 Standards Technology (IFAST) based
on territories. A database for SIDs, publicly available
on the Internet [2], provides ownership and geo-location
(coarse-grained) details. A typical record in this database
has five attributes: a decimal value representing the
SID, the city associated with the SID (usually the name
of the most populous city), the state in which the city
lies, name of the CSP to whom the SID has been allo-
cated, and the operational frequency band. Though
coarse-grained, the database serves as a good cross-
reference in our analysis.

The IP network of a CDSN typically consists of IP
gateways (usually referred to as network access servers
or NAS gateways) through which data from/to mo-
bile devices enters/leaves the IP network, (IP) home
agents (for user registration and mobile IP routing),
and other standard network elements such as routers,
DHCP servers, DNS servers, and so forth. The IP
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Figure 1: Illustration of geo-physical clustering of BSID’s at SID/SID-NID level (Ground-truth set).

Table 1: User and traffic volume statistics.
Dataset (time) Users Duration #Pkt.&App. Sess.

I (Oct 2008) 2 M 7 days 24 M & 110 M
II (Jul 2009) 1.7 M 1 day 13 M & 147 M

network also includes a number of RADIUS/RADA 3

servers for authenticating users, and for logging user
data access activities for billing and accounting pur-
poses.

2.2 Datasets
Two datasets are used in our study, which are col-

lected at a link inside the core IP network of a large
North American cellular 3G service provider. The first
dataset (henceforth referred to as Dataset I) was col-
lected during a week-long period in October, 2008, and
the second dataset (Dataset II) was collected over a
single day in July, 2009. Table 1 summarizes overall
statistics regarding Datasets I and II. Both datasets are
anonymized packet traces. Each dataset consists of two
sources of data: RADIUS/RADA packet data sessions,
and application sessions. The RADIUS/RADA packet
data sessions contain records of user activities such as
the beginning and end times of a user’s data session,
the (anonymized) user id, the basestations (BSIDs) the
user’s mobile device is associated with during the data
session etc. The application sessions records are the
HTTP headers of users’ Internet activities. We corre-
late the records from the two data-sources on the basis
of the anonymized IP address in an HTTP application
session, and match the HTTP timestamp such that it
is between two consecutive RADA START and STOP
messages, in the RADIUS/RADA packet data sessions.
The URLs accessed in HTTP application sessions are
extracted for identifying geo-intent queries. The BSIDs
and (anonymized) user ids are extracted from the RA-
DIUS/RADA packet data sessions. We primarily ex-
ploit the HTTP URLs, BSIDs and (anonymized) user

3RADIUS stands for the Remote Authentication Dial In
User Service protocol [6, 5], and RADA stands for the Ra-
dius Authenticated Device Access protocol. Both are used
to provide centralized Authentication, Authorization, and
Accounting (AAA) management.

ids, for geo-mapping the CDSN infrastructure. To ver-
ify and validate our geo-intent based mapping approach,
we also utilize a collection of basestations for which
we have the ground-truth GPS locations. Recall from
fig. 1(a), the basestations in our ground-truth set are
widely distributed across the US mainland and provide
an extensive and representative set for verifying and
validating the results obtained in our study.

3. EXPLICIT GEO-INTENT OF USERS
This work explores whether we can exploit “explicit

geo-intent” of mobile users to learn the CDSN infras-
tructure, i.e. the physical locations of basestations and
the IP data network elements. We define explicit geo-
intent as location information contained in queries sub-
mitted by users to certain services (e.g. weather or map
services) in which they seek information regarding a
specific location. Such geo-intent in user queries may
either be associated with the current (source) location
of a user (e.g. locate-me type of features) or her target
location of user (e.g. weather lookups for a region of
interest).

One of the greatest challenges faced in this approach
is that the geo-intent expressed in a user’s query is en-
coded in a format meaningful for specific services and
therefore varies from one service to the other. To ad-
dress this issue, careful service-specific analysis is re-
quired to extract relevant explicit geo-intent from user
queries. In §3.1, we describe our heuristics for doing
this. Next, in §3.2, we focus on the most dominant type,
namely zip-codes contained in weather-related queries,
which are primarily associated with the target locations
of users’ geo-intent. Lastly, in §3.3, we discuss the rele-
vance of GPS-like information observed in our datasets
and identify the cases when it is relevant and useful.

3.1 Extracting Explicit Geo-intent
We employ a set of heuristics to identify and extract

geo-intent from the HTTP URLs in our datasets. Our
objective is to find a set of services seen in our URL
trace with a geo-intent format that can be automatically
extracted, giving us a mapping between URL and the
geo-intent expressed in that URL. Through a manual
process of identifying a set of location-specific keywords,
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Table 2: Web services and sample URLs with geo-physical identifiers in Dataset I.
Hostname Geo-physical identifiers in URL # of URLs

pv3.wirelessaccuweather.com zip=54940&city=Fremont&state=Wi&country code=US 510,170
mapserver.weather.com lat=43.45&long=–88.63 273,061
maps.google.com q=starbucks&near=Oconomowoc 9,631
addshuffle.com zip=53946&cntry=US 6,434
geo.yahoo.com lat=42.97&lon=–88.09 3,519

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6
x 10

5

Category #

 

 

GPS
Zip−code

94%

2%2%
2%

WEATHER

Others

ADS
MMS

−120 −110 −100 −90 −80 −70
20

25

30

35

40

45

50

(a) URL count per category (b) Combined count (%) per category (c) Zip-code geo-intent (weather)

Figure 2: Dominance and geo-physical expanse of weather (category 13) related queries in Dataset I.

such as street or state names, zip-codes, and “GPS-
like” coordinates 4, we create a set of rules to perform
such extraction. The output of this step are rules for
extracting the embedded geo-physical identifiers in the
URL string for each hostname (e.g. www.weather.com

or www.mapquest.com). Table 2 shows some examples
of services and the associated geo-identifier formats.
Through such rules (heuristics), we identify over a mil-
lion URLs with geo-identifiers from Dataset I and half
a million from Dataset II.

We further analyze the geo-identifier information con-
tained in the extracted URLs to understand the vari-
ety of geo-identifiers they contain. We find that zip-
codes and “GPS” coordinates dominate the set of URLs
with geo-identifiers (in ≈ 99% of the URLs we are able
to parse). Henceforth, we focus only on such URLs.
Furthermore, to understand better the services asso-
ciated with such URLs (with zip-code and GPS-like
geo-identifiers), we classify each service (based on host-
name) into 13 different categories: 1-Ads, 2-books, 3-
dating, 4-maps, 5-MMS, 6-music, 7-news, 8-photo, 9-
search, 10-toolbars, 11-trading, 12-video and 13-weather.
Fig. 2(a) shows the number of URLs in each application
category separately for two types of geo-identifiers: zip-
codes and GPS-like coordinates. We see that weather
services constitute the most dominant category account-
ing for about 94% URLs with either a zip-code or a pair
of GPS-like coordinates (see Fig. 2(b)).

In the following subsections we analyze the geo-identifiers
contained in the URLs in weather category to determine

4In this paper we refer to any pair of latitude-longitude co-
ordinates as “GPS” coordinates, although in fact many of
these may not be directly provided by the (satellite) global
position system (GPS) service. See §3.3 for a detailed dis-
cussion.

whether or not these URLs indeed reveal the user geo-
intent.

3.2 Zip-codes in Weather Queries
Weather queries are obvious candidates for finding

zip-code information due to the nature of online weather
services. Most phones feature a weather application al-
lowing users to enter the zip-codes for one or more lo-
cations of interest. Quite often, these queried locations
represent the user’s home or place of work. Therefore,
the zip-codes in weather queries provide a good, though
not precise, indication of the querying user’s location.
We later evaluate the usefulness and accuracy of such
zip-code information in our datasets for the purposes of
geo-mapping the CDSN infrastructure.

In this work, we convert the zip-codes contained in
geo-intent queries in terms of a GPS-like coordinate as
follows. The US census bureau [1] provides GPS-like co-
ordinates which delineate the approximate boundaries
of the zip-code tabulation area (ZCTA)5 encompassing
all the zip-codes in the US. Using such boundary coor-
dinates for a given zip-code, we compute the centroid
(a pair of GPS-like coordinates). In the remainder of
this paper the term zip-code will be used exclusively to
mean the corresponding centroid location calculated as
described here. Fig. 2(c) shows the geographical distri-
bution of the zip-codes (centroids) contained in all the
weather queries in our datasets. We see that the set
of zip-codes in the explicit geo-intent of users pervades
nearly all parts of the US mainland.

5Some ZCTAs may span several zip-codes in less populous
regions. As our results later show, for our purpose the ZC-
TAs provide sufficient accuracy.
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3.3 GPS-like Coordinates in Weather and
Other Queries vs. True Geo-Intent

Next, we investigate the URLs containing GPS-like
(latitude-longitude) coordinates. As shown in Fig. 2,
the weather category also contains an (almost) equal
number of URLs with GPS-like, latitude-longitude co-
ordinates. A majority of these GPS-like coordinates
appear in the HTTP responses and not the HTTP re-
quests. Further inspection reveals that these coordi-
nates do not directly reflect the geo-intent of users, and
show significant variance (see table 3). However we
do observe a few services, e.g. GPSToday hosted by
www.geoterrestrial.com, where the GPS coordinates
contained in user queries submitted to these services do
reflect true geo-intent6. Unfortunately, it represents a
very small fraction of queries in our datasets. Hereafter
we refer to this small set of GPS coordinates as the GPS
geo-intent dataset.

For the remainder of the paper, we focus on zip-code
information, except where noted otherwise. We remark
that our geo-mapping methodology presented later is
also able to incorporate GPS coordinates and has the
potential to provided greater precision as more devices
and services, which use the capabilities of GPS-enabled
smart-phones, are deployed.

4. FROM USER GEO-INTENT TO GEO-
LOCATIONS IN THE CDSN

In this section we correlate the zip-codes extracted
from the weather queries with the basestation infras-
tructure of the CDSN to investigate whether, and to
what extent, users’ geo-intent can help geo-map the
CDSN infrastructure. For this purpose, we use a sub-
set of basestations for which we have known GPS loca-
tions (the ground-truth). In order to make our analysis
of (zip-code) geo-intent agnostic to diurnal and weekly
variations (weekdays vs weekends), we use Dataset I
exclusively in §4.1 through §4.3.

4.1 Spread of geo-intent in the basestation
infrastructure

To associate the geo-intent expressed in users’ queries
with the basestation infrastructure of the CDSN, we
first need to identify and extract relevant basestation
information (BSID associated with a user at the time

6For example, careful analysis of the service provider,
www.geoterrestrial.com and the queries submitted to this
service reveals that running on GPS-enabled mobile de-
vices, this service is associated with an application called
GeoToday which provides topographical (e.g. altitude) and
weather related information at the user’ current location.
Hence the GPS coordinates contained in user queries to this
service reflect explicit user geo-intent, in this case, the source
(user) location of the geo-intent. Similar analysis to a cou-
ple of other services also confirm that the GPS coordinates
contained in the user queries also reflect true geo-intent.

of query). Henceforth, we say that a basestation B,
sees a zip-code Z if at least one user queries for weather
information (or any information in general) for zip-code
Z while communicating with basestation B.

Table 4 shows some of the statistics obtained using
the process of correlating (zip-code) geo-intent queries
with their associated basestations. We see that although
the number of users expressing their explicit geo-intent
is a small fraction of the overall user-base (less than
2%), the number of basestations that see at least one
zip-code query is significantly large (≈ 23%). Moreover,
the set formed by such basestations covers a representa-
tive fraction of SID-NID pairs, and consequently SIDs,
in the network. Therefore, explicit geo-intent is perva-
sive not only in terms of geographic coverage (as seen in
§3.2) but also in the CDSN infrastructure. This is par-
ticularly important because if geo-intent of users indeed
captures their geo-location, we can possibly geo-map
a significant fraction of the basestation infrastructure
across wide geographies.

Fig. 3(a) and (b), respectively show the distributions
for the number of user queries containing zip-codes per
basestation and unique zip-codes per basestation for the
URLs in Dataset I. We observe that the 50th and 75th

percentiles for the number of queries (containing zip-
codes) seen per basestation are 16 and 50 respectively.
While a majority of basestations see a sizable number
of geo-intent queries, the 50th and 75th percentiles for
the number of unique zip-codes seen per basestation are
3 and 6 respectively. Fig. 3(c) shows the distribution of
the ratio of unique zip-codes over the total number of
zip-code geo-intent queries per basestation. Once again
we observe that the respective 50th and 75th percentiles
for the ratio are 0.2 and 0.4 respectively. This result
clearly indicates that when there are a number of zip-
code containing weather queries seen at a basestation,
many of them are associated with only a small number
of zip-codes. This observation has important implica-
tions in the process of geo-mapping of the basestation
infrastructure, as will be explored in the next subsec-
tion.

Further analysis shows that the spread of zip-code
containing geo-intent queries across the basestation in-
frastructure is somewhat uneven, where basestations
within urban metropolitan areas generally account for
a greater fraction of geo-intent queries than those in
rural areas. This can partly be explained by the differ-
ence in population densities as well as the percentages
of “smart” phones and data service plans adopted by
users in these areas. Due to space limitation, we do not
provide detailed results (area-wise statistics) here.

4.2 From Geo-intent to Geo-location
With about 23% of the basestations in our dataset

seeing zip-code containing weather queries, can we use
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Table 3: GPS coordinates in HTTP responses from web-host.
Type Geo-physical identifiers in URL Zoom-level

Req. zip=53108&city=Caledonia&state=Wi&country code=US -
Resp. mzip=53108&mcity=Caledonia&mstate=Wi &mx=–87.93&my=42.82 2
Resp. mzip=53108&mcity=Caledonia&mstate=Wi & mx=–99.76 &my=42.82 1
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Figure 3: Spread of geo-intent per basestation, Y-axis: # Basestations.

Table 4: Infrastructure coverage of zip-code geo-
intent in Dataset I.

# of Users BSID SID-NID SID

Overall 2 M 62, 534 506 237
Geo-Int. (Zip) 29 K 14, 224 356 219

the explicit geo-intent information contained therein to
geo-localize the basestations in question? We note that
the zip-codes contained in users’ weather queries are
most likely associated with the target regions of users’
interest; on the other hand, the basestations seeing the
queries are associated with the location of users at the
moment of querying. Hence the extent and accuracy of
using user (explicit) geo-intent to help geo-localize the
basestations will depend on how far the target location
of users’ interest (as specified by the zip-codes) are from
the basestations where the queries are issued (the source
location of users). To investigate this question, we uti-
lize the subset of basestations for which we have the
ground-truth (i.e. their GPS co-ordinates). Among the
basestations with ground-truth GPS locations, we find
that roughly 20% (in a similar percentage as zip-code
seeing basestations to the entire basestation set) also
see zip-code queries; moreover, they span 105 SID-NID
pairs across 81 SIDs. In the following we will refer to
the set of such basestations (≈ 2, 400 in all), with both
the ground-truth GPS locations and associated zip-code
queries, as the ground-truth-location-&-zip-code BSID
dataset.

To examine the relationship between the locations
of the basestations and users’ geo-intent (the zip-codes
associated with the basestations), we compute the geo-
physical distances between basestations and the zip-
codes as follows. Given a basestation B with known
GPS location denoted by LB = (latB, longB), let ZB =
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Figure 4: Distribution of δB
min and δB

max for bases-
tations in ground-truth-location-&-zip-code set.

{Z1, Z2, ...., Zk} be the set of zip-codes queried by the
users associated with B. Recall that we identify each
zip-code Zi with a pair of GPS-co-ordinates for its cen-
troid in the form of CZi

= (lati, longi). We denote the
distance between the basestation B and the zip-code Zi

by δB
i = dist(LB, CZi

), where the distance is computed
over the surface of the earth using the (angular) latitude
and longitude co-ordinates and is then mapped to the
metric distance in kilometers (km)7. In particular, we
define δB

min = min1≤i≤kδB
i and δB

max = max1≤i≤kδB
i .

Further, for basestations that are associated with mul-
tiple zip-codes (k ≥ 3), we also compute the median of
δB
i ’s, denoted by δB

med. In addition, we compute the
distance between each basestation and the most fre-
quently8 queried zip-code associated with it, and de-
note this distance as δB

∗ . The distributions for δB
min

and δB
max are shown in Fig. 4 using the ground-truth-

location-&-zip-code BSID dataset. For 50% of the bases-
tations in the ground-truth-location-&-zip-code set, the

7We use the avg. value computed through the haversine and
Vincenty formulas and assume a mean radius of 6,371 km
for the earth.
8If there are two or more such zip-codes, we randomly pick
one of them.
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Figure 5: Milwaukee city zip-code centroids (red-dots)

distance between basestation B and the closest queried
zip-code (δB

min) is within 3.5 km range, and for 75%
of them it is less within 5.5 km range. In particular,
about 25% of basestations lie within 1 km range of the
nearest zip-code they see. This promises possibly high
accuracy of geo-localizing a basestation on the basis of
geo-intent in some cases. In contrast, δB

max (distance be-
tween basestation B and the farthest zip-code it sees),
is within 12.5 km for 50% of basestations and within 20
km for 75% of them; much larger than corresponding
δB
min. Similarly, δB

med is within 3.8 km range for 50%
and within 6.9 km range for 75% of basestations while
δB
∗ is within 3.9 km range for 50% and within 6.1 km

range for 75% of the basestations. In short, we see that
while the distance between the true location of a bases-
tation and the farthest queried zip-code seen by it can
be in the range of 10’s km or more, that between the
basestation and the closest queried zip-code is usually
within 10 km (and often within 5 km or less). Moreover,
when multiple zip-codes are queried by the users, more
of them tend to be in the vicinity (around 7 km or less)
of the basestation. The frequently queried zip-codes are
often also the closest zip-code or a zip-code not much
farther away.

However, using the absolute distance (in km) to cor-
relate geo-intent (zip-codes) and geo-location (of bases-
tations) does not paint the full picture, as zip-code ar-
eas have varying sizes, depending upon population den-
sity and other factors. For instance, large metropolitan
cities tend to have more zip-code areas with smaller
geo-physical sizes, while rural areas have far fewer, and
larger, zip-code areas. To better understand the rela-
tionship between the location of basestation and the
zip-codes their users query, we use the centroid of each
zip-code and perform a Voronoi partition of the entire
US mainland 9. In other words, the US mainland is
represented as a contiguous collection of Voronoi cells,
where each zip-code centroid is exclusively contained in
a single Voronoi cell. From the Voronoi diagram repre-

9Instead of partitioning the US mainland in terms of
the ZCTA boundaries using data from the US census
site http://www.census.gov, we use the Voronoi partition for
ease of analysis and computation.

sentation of the US mainland, we construct the corre-
sponding Delaunay graph, in which the vertices are the
zip-codes, and an edge is introduced between two zip-
codes if and only if they are contained in neighboring
Voronoi cells. As an example, Fig. 5 shows a portion of
the Voronoi diagram (for the south-east part of Wiscon-
sin around the Milwaukee metropolitan area) and the
corresponding Delaunay (sub) graph.

We now introduce a new metric to measure the dis-
tances between basestations and zip-codes, in terms of
the Voronoi diagram and the Delaunay graph intro-
duced above, to better gauge the relationship between
user geo-intent and the geo-location of the associated
basestation. Given a basestation B with known GPS
location LB = (latB, longB), we first determine the
Voronoi cell in which it lies. We associate basestation
B with the zip-code contained in the same Voronoi cell,
say ẐB, and refer to this zip-code as the home zip-code
of B. Now for each zip-code Zi seen at basestation B,
we compute the (hop-count) distance between B and Zi

as the shortest path distance (in terms of hop-counts)

between ẐB and Zi in the Delaunay graph. We denote
this hop-count distance by hB

i .
In order to understand the distribution of hop-count

distances (hB
i ) between a basestation B and the zip-

codes Zi ∈ ZB, we define a multi-hop (l = 1, 2, 3, ...)
neighborhood relationship between the nodes of the De-
launay graph shown below:

Neighborl(ẐB, Zi) = 1 if hB
i ≤l (1)

= 0 otherwise. (2)

Then, the following ratio:

ρB
l =

k∑

i=1

Neighborl(ẐB, Zi)

k
(3)

where k is the number of zip-codes seen at B, provides
similar insight into the hop-count distance between the
home zip-code of B and the zip-codes seen at it, as
the δB functions defined for distances over the surface
of the earth. For example, ρB

1
tells us the fraction of

zip-codes seen at B that are at most 1 hop away from
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Figure 6: No. of basestations (Y-axis) with X (fraction) of assoc. zip-codes at most l hops away.

B in the Delaunay graph. Fig. 6 shows the distribu-
tion of ρl’s for l = 1, 2, 3. For example, in fig. 6, for
a given l, the value on the Y-axis (length of the bar)
corresponding to bin X = 0.5 on the X-axis represents
the number of basestations which have 50% of the as-
sociated zip-codes at most l hops away. Notice the con-
sistent increase in the Y-values corresponding to larger
X-values as we go from l = 1 to l = 3. In fact, over
90% of the basestations have more than 50% of their
associated zip-codes within l = 3 hops. We, therefore,
(in conjunction with the evidence from similar results
for absolute distances) conclude that for a large major-
ity of basestations, a significant percentage of zip-codes
queried are in and around the geo-physical neighbor-
hood of their home zip-codes.

4.3 Geo-intent, Geo-location and User
Behavior

In this section we analyze user behavior, particularly
in terms of user mobility, to gain further insight into the
observations obtained in the preceding sections. This
analysis provides a plausible explanation as to why zip-
codes in weather queries – despite being associated with
the target of geo-intent – can help geo-map the basesta-
tion infrastructure to a large extent with a reasonable
accuracy, namely, within the range of 3 km to 10 km or
1-3 neighboring zip-code areas for a large majority of
basestations.

To study the user mobility behavior, we examine the
number of basestations accessed by those users who ex-
press their explicit geo-intent (i.e. issuing a weather
query containing a zip-code) at least once during the ob-
servation period. Using Dataset I which spans a week
long period, we observe that almost 50% of the users
are associated with exactly one basestation for the en-
tire duration, while 75% of the users communicate with
4 or fewer basestations10. Among those who are associ-
ated with multiple (but ≤ 4) basestations, we find from
the ground-truth set (when available) that such bases-
tations are generally not far apart. This is particularly
true for users within a metropolitan area. As an illus-

10For comparison, we also perform similar analysis for those
users who do not issue any geo-intent queries, and obtain
similar results.

trative example, Fig. 7(a) shows a metropolitan area in
the Midwest, where each black “·” indicates the location
of a basestation within the metropolitan area, and each
red “+” indicates the centroid of the most frequently
queried zip-code by users associated with this (sub) set
of basestations. We see that for a number of basesta-
tions (≈ 80), the most frequently queried zip-codes are
very few (≈ 20) and confined to a small geo-physical
region. In contrast, we find that basestations located in
places with high user mobility, e.g. along major inter-
state highways, frequently see relatively greater num-
bers of zip-code queries from different users, but such
zip-codes seem to be far more geographically dispersed
(see Fig. 7(b) for an example).

Besides user mobility patterns, we also examine user
query patterns. We find that among the users who ex-
press their explicit geo-intent at least once during the
observation period, 90% of them query just one zip-
code, while 96% query two or fewer zip-codes. In sum-
mary, our analysis shows that a majority of users tend
to have limited mobility (when they access mobile data
services) with respect to the basestation infrastructure
(especially in metropolitan/urban areas), and their data
access patterns are fairly stable with respect to the data
access points (basestations). As a consequence of such
user behavior and mobility patterns, namely, a major-
ity of users tend to move around one or a few spots
within a relatively limited radius and typically query for
a default zip-code (close to their places of residence or
work), their explicit geo-intent (in this case, the target
location of their interest) can indeed help geo-localize
the basestations they are associated with, albeit the ex-
tent and accuracy of the geo mapping hinges on the
type of the geo-intent information available.

5. GEO-MAPPING THE BASESTATION
INFRASTRUCTURE

Based on the analysis and observations made in the
previous section, we now present some heuristics to geo-
map the basestation infrastructure. In §5.1 we first de-
scribe two simple heuristics for geo-localize the basesta-
tions which see at least one user zip-code weather query.
We then extend the heuristics to geo-map those bases-
tations that do not see any explicit geo-intent queries

9
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Figure 8: Error incurred in direct geo-mapping compared to the ground-truth set.

but share the user base with those that do, by exploiting
user movement over short time intervals. The evalua-
tion results are presented in § 5.2. As a proof of concept,
we will also present some results obtained from simi-
lar analysis applied to the GPS co-ordinates related to
a particular service (www.geoterrestrial.com) from
Dataset II in §5.3.

5.1 Geo-Mapping Heuristics
Direct Geo-mapping via Geo-Intent. For those
basestations which see at least one zip-code containing
weather query, we directly geo-localize them using the
user explicit geo-intent by means of the following two
simple heuristics.

Given a basestation B, let ZB = {Z1, Z2, ..., Zk} be
the set of valid zip-codes queried by its users UB =
{U1, U2, ..., Ul}. The first heuristic, the Majority Vot-
ing (MV) scheme, selects the most probable location (or
locations) from all possible zip-code locations (Zi)’s as
follows: Each user Ui ∈ UB has one simple vote. Recall
that a given user Ui may query the same zip-code Zj

multiple times. In order to prevent such frequent voters
from skewing the vote count, we permit a user to vote
only once. Also, a given user Ui may possibly query
multiple zip-codes from the set ZB. In such cases, we
split the simple vote of Ui either equally or proportion-
ally among all the zip-codes s/he queries. For example,
if Ui queries zip-code Z1 thrice and Z2 twice, in equal
vote-splitting, both zip-codes receive 0.5 votes from Ui

while in proportional vote-splitting, Z1 receives 0.6 vote
and Z2 receives 0.4 vote from Ui. The winner of the elec-
tion, i.e. the zip-code receiving most votes, is chosen as
the most probable geo-location for the basestation B.
When there are multiple winners (ties), all of them are
chosen as probable locations (with equal probability).

The second heuristic, the Dense Neighborhood Clus-
tering (DNC) scheme, uses both the frequencies of zip-
codes queried as well as the neighborhood relationship
among the zip-codes. Given the Delaunay graph of the
US mainland, the zip-codes in ZB induce a subgraph,
denoted by GZ(B), with vertices Zi, 1 ≤ i ≤ k, and
there is an edge between Zi and Zj if and only if the
zip-code areas they represent border each other. Fur-
thermore, we assign each node Zi a weight wi equal
to the votes received by it during the Majority Vot-
ing scheme above. In general, the subgraph GZ(B)
consists of multiple connected components, C1, . . . , Cm,
where 1 ≤ m ≤ k (k = |ZB|), each a probable can-
didate for the location of B. For each Cp, we define
w(Cp) =

∑
Zi∈Cp

w(Zi). We select the component Cp

with the largest w(Cp) as the probable location (a con-
nected zip-code neighborhood) for the basestation B.
We note that in the special case where m = k, i.e.
GZ(B) consists of k disjoint vertices, this scheme re-
duces to Majority Voting. A further refinement of this
heuristic also filters out cases where the total weight
w(Cp) of the winner component is too small (below a
threshold) and GZ(B) consists of mostly disconnected
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vertices that are spread over a large geographical area.
In such cases, the heuristic simply labels the location of
B as “undecided” instead.
Indirect Geo-mapping based on User Mobility.
The direct geo-mapping via geo-intent helps geo-localize
around 20% of the basestations in our datasets. To
map other basestations, those not mapped during di-
rect geo-mapping due to lack of geo-intent queries, we
exploit user movement. To do so, we introduce the
basestation-user-mobility graph, GM , where the vertices
are the basestations (BSIDs) and an edge e = (Bi, Bj)
is introduced between two vertices Bi and Bj if at least
one user11 accesses both of them (regardless of order)
within a short interval of time ∆T (say 5 minutes).
Given GM thus defined, let Bmapped denote the set of
basestations geo-located via the two direct geo-mapping
heuristics described above, and Bunmapped be the set
of unmapped basestations. For each basestation B ∈
Bunmapped, if it is connected to some basestation B ∈
Bmapped via some paths, we define h(B, B) as the short-
est path distance (hop-count) from B to B. Then,
let h(B,Bmapped) = minB∈Bmapped

h(B, B). Note that

h(B,Bmapped) = ∞ if B is not connected to any B ∈
Bmapped.

In our datasets, we have about 22% basestations in
Bunmapped that are connected to at least one basestation
in Bmapped at a 1-hop distance (i.e. h(B,Bmapped) = 1).
Hence, we geo-localize them first by exploiting their
connectivities to the basestations in Bmapped. The chal-
lenge here is to map the connectivity in GM to geo-
locations or zip-code neighborhoods in the Delaunay
graph of US zip-codes. To control the mapping accuracy
of a basestation B ∈ Bunmapped, we introduce two pa-
rameters, the hop-count threshold d, and the (mapped)
neighborhood size s. For any B ∈ Bunmapped such that
h(B,Bmapped) ≤ d and it is connected to at least s

basestations in Bmapped that are at most d hops away
from B, we geo-localize B by constructing a connected
zip-code neighborhood in the Delaunay graph of zip-
codes. Let Nd(B) be the set of home zip-codes of the
(directly mapped) basestations B’s in Bmapped that are
at most d-hops away from B (note that |Nd(B)| ≥

s). Using the centroids of ẐB’s, we construct a con-

vex hull HB, covering all ẐB’s, as the most probable
geo-location for B. Alternatively, we construct a con-
nected zip-code neighborhood (subgraph), also denoted
by HB , which is formed by the zip-codes whose cen-
troids fall within the convex hull HB. We refer to HB

as the inferred zip-code neighborhood for basestation

11More generally, for each edge e = (Bi, Bj), we count the
number of users associated with both B1 and B2 within a
short time interval ∆T , and filter out edges that have a very
small common user count to prevent spurious connections
due to noisy data. If a lot of users access Bi and Bj within
a short interval they are likely close to each other

B.

5.2 Evaluation and Validation
To evaluate the efficacy of our heuristics for geo-

mapping the basestation infrastructure, we use the col-
lection of basestations with ground-truth GPS locations.
In particular, we use the basestations in the ground-
truth-&-zip-code set for Dataset II to evaluate the two
direct geo-mapping heuristics. Then, we use the other
basestations in the ground truth set, which do not see
zip-code queries by their users, in both Dataset I and
Dataset II to evaluate the indirect mapping heuristics.

Using the ground-truth-&-zip-code basestation dataset
from Dataset II, Fig. 8(a) shows the distribution of
geo-mapping errors, namely, the distance between the
inferred location and the ground-truth location, using
the Majority Voting heuristic. In case of multiple in-
ferred locations (zip-codes) available for a basestation,
we compute the error for each inferred location. We
observe that the 50th and 75th percentiles are around
3.9 and 6.1 km respectively (Dataset II), quite similar
to what we observed for δB

min in Dataset I ( see § 4.2).
For the Dense Neighborhood Clustering heuristic, we

measure the errors in terms of both absolute distance
and hop-count. For a basestation B, let C(B) be the
inferred zip-code neighborhood. We compute the cen-
troid of C(B) and use the distance (ground-truth GPS
location) between B and the centroid as the absolute
distance error. In terms of hop-count distance error,
we use the home zip-code ẐB of the basestation B, and
compute the (shortest distance) hop-count from ẐB to

C(B), namely, h(ẐB, CB) as defined in the indirect geo-
mapping heuristics. Figs. 8(b) and (c) respectively show
the distributions of absolute and hop-count errors. We
see that the errors in absolute distances are compara-
ble to those obtained for absolute distances in Majority
Voting for most basestations. This is not surprising as
most of the clusters in our dataset are of small sizes (
made of 4 or less zip-codes) and span relatively small
geo-graphical areas, especially in urban locations. We
also see that the 50th and 75th percentiles for the hop-
count distance are 2 and 3 respectively.

Next, we evaluate the heuristic for the indirect geo-
mapping of basestations in Bunmapped. To do so, we
fix the (mapped) neighborhood size s to 312, and vary
the hop-count threshold d from 1 to 5. We measure the
geo-mapping errors in terms of the absolute distance
(i.e. the distance from the ground-truth GPS location
of B to the centroid of the inferred convex hull HB)

and hop-counts (i.e. h(ẐB, HB)). Fig. 9(a) shows the
percentage of additional basestations that can be indi-
rectly geo-mapped as a function of d. Fig. 9(b) and (c)

12In our dataset, increasing s does not significantly improve
the accuracy of the geo-mapping while considerably reduces
the coverage

11



1 2 3 4 5
500

1000

1500

2000

Hop−counts (X)

 

 

# Indirectly inferred

F(X)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Distance from center of convex hull (X)

F(X)

0 1 2 3 4 5 6
0

200

400

600

800

Hop−count distance (X)

F(X)

(a) No. of unmapped BSID’s covered (b) Dist. Err. (DNC-scheme) (c) Hop-count Err. (DNC-scheme)
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Figure 10: Relationship between population and basestation density and error in geo-mapping.

show the distributions of absolute distance errors and
hop-count errors, respectively. We see that the errors
incurred go up in terms of distances, even though hop-
counts go up only by a few hops. The reason for this
is that the edges in user mobility graph cover long dis-
tances in highway areas. Add to it, the long distances
between the vertices of the convex hull HB in such ar-
eas due to far apart zip-codes. Even for small values
of d and s, the error incurred in such areas is high.
In contrast, in urban areas, users cannot travel very
long distances in short intervals of time. This means
shorter edges in the mobility graph. Also, zip-codes
in such areas are geo-physically close to each other. A
combination of the two results in relatively lower error
in urban areas for the indirect method both in terms
of hop-counts (usually 1 − 3) as well as absolute error
(5 − 10 km or less). This helps us realize our objective
of geo-localizing basestations in Bunmapped at city level
granularities.

To explore the effects of population density in a re-
gion, which determines both the size of zip-codes and
basestation densities, on the accuracy of geo-mapping,
we conduct a case study. We select three non-overlapping
regions - a metropolitan area (34 zip-codes, 235 bases-
tations), an urban area with a relatively lower popula-
tion density than a metropolitan area (20 zip-codes, 115
basestations), and a stretch of an interstate highway
connecting several urban centers along south-eastern
Wisconsin (6 towns, 130 basestations). In each case, we
identify high population density centers (7 most popu-
lous zip-codes in the metro, 5 in the urban area and the
centroids of the 6 towns in the case of the highway).
Fig. 10 shows the (absolute distance) errors incurred in

geo-mapping basestations via explicit geo-intent in all
the three cases as a function of distance between the
basestations and the nearest population center. We see
that the error varies almost linearly with the distance
from the population centers in the case of metropoli-
tan and the urban areas (average errors smaller for the
metropolitan area than the urban area). This seems to
show that users usually query for information in and
around themselves for some preferred target locations
(e.g. downtown, residential areas) represented by the
population centers. On the other hand, the errors in-
curred in the case of the highway are substantially high
even for relatively short distances from the nearest city
in the vicinity. This is possibly because people usually
query information related to the regions they are com-
ing from or, more likely, going towards, while on the
highway.

5.3 Geo-mapping using GPS Geo-intent
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Figure 11: CDF of the mean errors (km) in geo-
mapping using the small GPS geo-intent data.
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Figure 12: Geo-physical coverage of NAS gateways.

Lastly, we use the small GPS geo-intent dataset dis-
cussed in section §3.3 to illustrate the efficacy of our ap-
proach when GPS-based geo-intent (in particular, when
the GPS coordinates are associated with the source
(user) locations of the geo-intent. We extend the direct
geo-mapping heuristics from §5.1 to the case of GPS
coordinates, and apply tessellation and density estima-
tion to geo-localize basestations by computing a (small)
neighborhood area (rectangular cell) as their most prob-
able locations. Due to the space limitation, the details
are omitted. Fig. 11 shows the mean distance (error)
between the ground-truth and the inferred (centroid)
locations of the two dozen basestations in the small
GPS geo-intent dataset (and for which we have the
ground-truth locations). We see that the overall ac-
curacy is within 0.5 - 1 km. Hence we believe that with
the increasing popularity of newer generations of GPS-
enabled smart phones and location-aware services, geo-
mapping based on user geo-intent will yield more accu-
rate results than what can be obtained using zip-codes
alone.

6. IP INFRASTRUCTURE IN THE CDSN
In this section we examine the IP network infrastruc-

ture in the CDSN with the help of inferred (and ground-
truth) locations for the set of geo-mapped basestations.
Our goal is two-fold: i) to infer and understand the re-
lationship (e.g. the geo-spatial distribution) of the IP
network elements with the basestation substrate, and
ii) to investigate whether we can geo-map the network
elements in the CDSN to some degree. Here, we use
the packet data sessions to extract the relevant rela-
tionships. Recall, the RADIUS/RADA packets con-
tain basestation ids. In addition, they also contain four
types of IP addresses of interest to us13. They are:
framed IP addresses (assigned to end users’ devices);
the RADIUS/RADA server IP addresses (assigned to
servers responsible for authenticating a user’s session),
IP addresses of NAS gateways (gateway servers to the
IP data distribution backbone network in the CSDN)

13Note that since the data is collected through passive mea-
surement, we do not have IP addresses of IP routers, DNS
servers, etc., and we are unable to conduct active measure-
ments in the CDSN.

and IP addresses of home-agents (servers that maintain
certain user information e.g. user registration, creden-
tials, and current locations for mobile IP routing).

Not surprisingly, a predominant majority of the IP
addresses in the datasets are framed IP addresses. They
mostly come from the private address realm of the IP
space; this is consistent with the findings in [3] where
the authors collect and analyze the IP addresses seen
at the end users’ devices. The framed IP addresses
appear to be assigned randomly from the private ad-
dress ranges agnostic to the geo-location of the bases-
tations. The number of the other three IP addresses
are far smaller: both NAS gateways and home-agent
IP addresses number within 100, and RADIUS/RADA
servers below 10 – in stark contrast to the number of
basestations (in tens of thousands). As the NAS gate-
ways and home-agents are more likely to correlate with
user/basestation locations, in the following we explore
the geo-spatial distribution of these IP addresses and
their relation to the basestation infrastructure.

For each NAS gateway/home-agent IP address, we
extract all the BSIDs which appear in the same RA-
DIUS/RADA data packets containing the said IP ad-
dress – these basestations are where the user data ses-
sions originate. Hence each IP address (NAS gate-
way server or home-agent) is associated with a col-
lection of basestations. We study the geo-spatial dis-
tribution of these basestations to investigate whether
there is any significant geo-spatial correlation between
the NAS gateways/home agents and locations of the
basestations. We further analyze the relationships be-
tween NAS gateways by clustering them based on the
number of basestations they share in common, i.e. the
size of intersection between the basestation collections
associated with the two NAS gateway IP addresses.

As representative examples, Fig. 12 depicts the geo-
spatial distribution of the basestations associated with
three different NAS gateways. We observe that these
NAS gateways cover rather large geographical areas (span-
ning multiple states, and in terms of the basestation
infrastructure, multiple SIDs). These areas are typi-
cally contiguous (as in Figs. 12 (a) and (b)), but some-
times can be disparate too (as in Fig. 12(c)). Further-
more, two or more NAS gateways may share a large
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overlapping set of basestations; it appears that these
gateways serve the same large geographical region for
load-balancing. We also performed similar analysis for
home-agent IP addresses (where we also take into ac-
count the user activities to account for user mobility
and roaming). We find that each home-agent IP ad-
dress also covers a large geographical region, and multi-
ple home-agents may cover the same or similar regions
for load-balancing. Due to space limitation, we do not
provide these results here.

In summary, we find that in contrast to the basesta-
tion infrastructure, the numbers of NAS gateways and
home-agents are far smaller. While these gateways/home-
agents are geo-spatially distributed, each covers a large
geographical region spanning multiple states and corre-
sponds to a large collection of the basestations in the
CDSN substrate. Our findings point to several chal-
lenges in attempting to geo-map the CDSN infrastruc-
ture from the outside (cf. [3]), and in deploying location-
aware content distribution services outside the CDSN to
serve users inside the CDSN.

Last but not the least, we remark that comparing
the two datasets collected about 10 months apart, we
observe that the amount of cellular data activity and
traffic has grown tremendously: for instance, the num-
bers of data sessions and application sessions increased
over 3 and 10 times, respectively (see table 1). More-
over, the number of cellular data users have also in-
creased considerably. With the increasing popularity of
new generations of smart phones, the growth in cellular
data traffic will further spur expansion of the IP net-
works within cellular service provider networks, and we
may see more finer-grain geographic coverage to bet-
ter cater to the growing user demand within a CSDN
infrastructure.

7. CONCLUSION AND FUTURE WORK
In this paper we put forth a novel approach for map-

ping the CDSN infrastructure via (explicit) user geo-
intent, which circumvents the challenges plaguing con-
ventional approaches (e.g. active probing). The intu-
ition behind the proposed approach is to exploit spe-
cific geo-locations (i.e. geo-intent) contained in user
queries to location-based services, and correlate them
with basestation id’s and gateway IP addresses to geo-
map the CDSN infrastructure. To investigate whether
— and to what extent — our approach can help geo-
map the CDSN infrastructure, we employed the data
(RADIUS/RADA packet data sessions and HTTP ap-
plication sessions) collected at the core IP network in-
side a CDSN. We developed heuristics for identifying
user geo-intent to geo-map the CDSN infrastructure —
in particular, the basestations and IP NAS gateways —
and evaluated their efficacy using a subset of basesta-
tions with known ground-truth GPS locations. Using

zip-codes contained in user weather queries, we demon-
strated that a large portion of basestations can be geo-
mapped within a 3.9 − 6.1 km range in general and
within 1.5 − 2 km range in densely populated urban
areas. Furthermore, the geo-mapping accuracy is far
better (often within 1 km) in large metro-areas with
dense population and smaller zip-code areas. Using the
inferred and ground-truth GSP locations of the bases-
tations, we also examined the geo-spatial distribution
of IP network elements such as NAS gateways and IP
home-agents, and their relationship to the cellular net-
work substrate.

With growing popularity of newer generations of GPS-
enabled smart phones and increasing prevalence of location-
specific and location-aware services and apps, we ex-
pect our geo-intent based mapping approach to yield
more precise results, as was illustrated using a small set
of user geo-intent queries with GPS coordinates in our
datasets.

Given the unprecedented growth in cellular data traf-
fic, mapping the CDSN infrastructure is a critical step
in understanding how to best expand and evolve the
CDSN infrastructure to better meet growing user de-
mands, and to guide the development and deployment
of innovative location-aware services and applications
that cater to mobile users and devices. Our study is
only an initial step in this direction and much addi-
tional research is still sorely needed.
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