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Abstract—We explore the geometry of networks in terms
of an n-dimensional Euclidean embedding represented by
the Moore-Penrose pseudo-inverse of the graph Lapla-
cian (L+). The reciprocal of squared distance from each
node i to the origin in this n-dimensional space yields
a structural centrality index (C∗(i)) for the node; while
the harmonic sum of individual node structural centrality
indices,

P

i
1/C∗(i), i.e. the trace of L+, yields the well-

known Kirchoff index (K), an overall structural descriptor
for the network. In addition to its geometric interpreta-
tion, we provide alternative interpretation of the proposed
structural centrality index (C∗(i)) of each node in terms
of forced detour costs and recurrences in random walks
and electrical networks. Through empirical evaluation over
example and real world networks, we demonstrate how
structural centrality is better able to distinguish nodes
in terms of their structural roles in the network and,
along with Kirchoff index, is appropriately sensitive to
perturbations/rewirings in the network.

I. I NTRODUCTION

Unlike traditional studies on network robustness, that
typically treat networks as combinatoric objects and
rely primarily on classical graph-theoretic concepts (e.g.
minimum cuts) to characterize network robustness, we
explore a geometric approach which enables us to em-
ploy more advanced theories and techniques, quantify
and compare robustness of networks in terms of their
local and global structures.

In this work, we study a geometric embedding of
networks using the Moore-Penrose (pseudo) inverse of
the graph Laplacian for the network, denoted henceforth
by L

+. We show that the diagonal entries ofL+,
that represent the squared distance of each node to the
origin in the n − dimensional Euclidean space of the
network embedding, provide a robust structural centrality
measure(C∗(i) = 1/l+ii) for the nodes in the network. In
particular, closer a nodei is to the origin in this space,
more structurally central it is. Moreover, the trace ofL

+,
Tr(L+), also called theKirchoff index(K), provides a
structural robustness index for the network as a whole.
Once again, lower the value ofK for a network, more

compact the embedding, and more structurally robust the
overall network is.

In addition to the geometric interpretation of structural
centrality and Kirchoff index, as described above, we
provide two alternative, albeit related, interpretationsas
well. First, we equate structural centrality of a nodei,
i.e. C∗(i), to the (reciprocal of) average detour overhead
incurred when a random walk between any source des-
tination pair of nodes is forced to go through nodei.
Intuitively, the average overhead incurred in such detours
(measured in terms of the number of steps in the random
walk) will be higher for structurally peripheral nodes
(relatively lowerC∗(i) and higherl+ii ) as compared to
structurally central ones (relatively higherC∗(i) and
lower l+ii ). Secondly, we show howC∗(i) is related to
electrical voltages when the network is treated as an
equivalent electrical network (EEN). This, in turn, yields
an interpretation ofC∗(i) in terms of the probability with
which a random detour throughi returns to the source
node (also referred to as the phenomenon ofrecurrence
in random walk literature). More precisely, higherC∗(i)
means a random detour through nodei forces the random
walk to return to the source node with lower probability,
thereby incurring lower detour overhead.

Through numerical simulations using synthetic and
realistic network topologies, we demonstrate that our
new indices better characterize robustness of nodes in
network as compared to other existing metrics (e.g.
node centrality measured based on degree, shortest paths,
etc.). A rank-order of nodes in terms of their structural
centralities helps distinguish them in terms of their struc-
tural roles (such as core, gateway, etc.). Also, structural
centrality and the Kirchoff index, are both appropriately
sensitive to local perturbations in the network, a property
not displayed by other centralities in literature (as shown
later in this paper).

The rest of the paper is organized as follows: We
begin by providing a brief overview of the literature and
the several structural indices that have been proposed
in §II. §III describes a geometric embedding of the



network using the eigen-space ofL+ and introduce
structural centrality and Kirchoff index as measures of
robustness§IV demonstrates how structural centrality of
a node reflects the average detour overhead in random
walks through a particular node in question,§V presents
comparative empirical analysis and in§VI the paper is
concluded.

II. RELATED WORK

Robustness of nodes to failures in complex networks is
dependent on their overallconnectednessin the network.
Several centralities, that characterizeconnectednessof
nodes in complex networks in varying ways, have there-
fore been proposed in literature. Perhaps the simplest
of all is degree — the number of edges incident on a
node. Except inscale freenetworks that displayrich
club connectivity[2], [7], [8], degree is essentially alocal
measure (a first oder/one-hop connectedness index) and
does not determine the overall connectedness of a node.
A similar metric based onjoint-degree, i.e. the product of
degrees of a pair of nodes that are directly connected to
each other in the network through an edge, is a second-
order measure of connectedness and is equally limited.

A more sophisticated measure of centrality is geodesic
closeness(GC) [10], [11]. It is defined as the (reciprocal
of) average shortest-path distance of a node from all
other nodes in the network. Clearly, geodesic closeness
is a pth-order measure wherep = {1, 2, ..., δ}, δ be-
ing the geodesic diameter of the graph, and is better
for characterizing global connectedness properties than
either degree or joint-degree of nodes. However, commu-
nication in networks is not always confined to shortest
paths alone and geodesic based indices, that ignore other
alternative paths between nodes, only partially capture
connectedness of nodes.

Recently, subgraph centrality(SC) — the number of
subgraphs of a graph that a node participates in — has
also been proposed [6]. In principle, a node with high
subgraph centrality, should be better connected to other
nodes in the network through redundant paths. Alas,
subgraph centrality is computationally intractable and the
proposed index in [6] approximates subgraph centrality
by the sum of lengths of allclosed walks, weighed
in inverse proportions by the factorial of their lengths;
which inevitably introduces local connectivity bias.

Our aim in this work, therefore, is to provide an
index for robustness of nodes in a given network, as a
comparative measure between any pair of nodes, as well
as one for the overall network that effectively reflect
global connectedness properties.

III. G EOMETRIC EMBEDDING OF NETWORKS USING

L
+ AND STRUCTURAL CENTRALITY

In studying thegeometryof networks, we first need
to embed a network (e.g. represented abstractly as a
graph) into an appropriate geometric space endowed with
a metric function (mathematically, a metric space). In
this section we describe an n-dimensional embedding of
the complex network using, the Moore-Penrose pseudo-
inverse of the combinatorial laplacian(L+). The squared
length of the position vector for a node in this space
yields a geometric measure of centrality for the node
while the sum of the squared lengths of the position
vectors of all nodes, or the trace ofL

+, yields an overall
robustness index for the graph. But first we need to
introduce some basic notations.

Given a complex network, its topology is in general
represented as a (weighted) graph,G = (V, E, W ),
where V (G) is the set of nodes representing, say,
switches, routers or end systems in the network;E =
{euv : u, v ∈ V } is the set of edges connecting pairs
of nodes representing, for example, the (physical or
logical) communication links between the pair of nodes;
and W = wuv ∈ ℜ+ : euv ∈ E(G) is a set of weights
assigned to each edge of the graph (hereℜ+ denotes
the set of nonnegative real numbers). These weights can
be used to represent, for example, the capacity, latency,
or geographical distance, or an (administrative) routing
cost associated with the edge (communication link)euv.
Note that ifwuv is simply0 or 1, we have a simple and
unweighted graph.

GivenG = (V, E, W ), we introduce ann×n affinity
matrix A = [aij ] associated withG, wheren = |V (G)|
is the number of nodes inG (theorderof G), andaij ≥ 0
is some function of the weightwij . For a simple graph
wherewij ∈ {0, 1}, settingaij = wij yields the standard
adjacency matrix of the graphG. In general, each entry
aij captures some measure of affinity between nodesi
and j: the largeraij is, nodesi and j are in a sense
closer or more strongly connected. Hence in general,
we refer toA as an affinity matrix associated withG.
We assume thataij = aji, i.e. A is symmetric. For
1 ≤ i ≤ n, defined(i) =

∑
j aij , and refer tod(i)

as the (generalized) degree of nodei. (Note that if G
is a simple unweighted graphj andA is its adjacency
matrix, thend(i) is the degree of nodei.)

The combinatorial Laplacianof A (or the associated
graphG), is defined asL = D−A, whereD = [dii] =
d(i) is a diagonal matrix withd(i)’s on the diagonal.
The Laplacian is a positive semidefinite matrix, and thus
hasn non-negative Eigen valuesλi’s. For 1 ≤ i ≤ n,
let ui be the corresponding eigenvector ofλi such that
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||ui||
2
2 = u

′

iui. We assume that the eigenvaluesλi’s
are ordered such thatλ1 ≥ ... ≥ λn = 0. Then the
matrix formed by the corresponding eigenvectorsu

′

is,
U = [u1, ...,un], is orthogonal i.e.U′

U = I, the
identity matrix. More importantly,L admits an eigen
decompositionL = UΛU

′, where Λ is the diagonal
matrix Λ = [λii] = λi.

Like L, its Moore-Penrose (pseudo) inverseL+ is
also positive semi-definite, and admits an eigen decom-
position of the form,L+ = U

′Λ+
U, whereΛ

+ is a
diagonal matrix consisting ofλ−1 if λi > 0, and 0 if
λi = 0 (for simplicity of notation, in the following we
will use the conventionλ−1

i = 0 if λi = 0). Define
X = Λ+1/2

U. Hence,L+ = X
′
X which means that

the network can be embedded into the Euclidean space
ℜn where the coordinates of nodei are given byxi,
the ith column of X. As the centroid of the position
vectors lies at the origin in this n-dimensional space
[9], the squared distance of nodei from the origin
is exactly the corresponding diagonal entry ofL

+ i.e.
||xi||

2
2 = l+ii and the squared distance between two

nodesi, j ∈ V (G), ||xi − xj ||
2
2 = V ol(G)−1Cij where

V ol(G) =
∑n

i=1 d(i) is called thevolumeof the graph
(a constant for the graph) andCij is called thecommute
time defined as the expected length of commute in a
random walk betweeni andj in the network [4].

Based on the geometric embedding of the graph using
L

+ described above, we now put forth two new robust-
ness metrics. First, a rank order for individual nodes
in terms of their relative robustness properties called
structural centrality, defined as:

C∗(i) = 1/l+ii , ∀i ∈ V (G) (1)

Specifically, closer a node is to the origin in this n-
dimensional space, more structurally central it is and
vice versa. Next, a structural descriptor for the overall
robustness of the network calledKirchoff index, defined
as:

K(G) = Tr(L+) =
n∑

i=1

l+ii =
n∑

i=1

1/C∗(i) (2)

Geometrically, more compact the embedding is, or
equivalently lower the value ofK(G), more robust the
network G is. We can therefore use Kirchoff index to
compare the robustness of two graphs with the same
order and volume.

In what follows, we demonstrate how these two met-
rics indeed reflect robustness of nodes and the overall
graph respectively, first through rigorous mathematical
analysis and then with empirical evaluations.

IV. STRUCTURAL CENTRALITY, RANDOM DETOUR

COSTS ANDELECTRICAL VOLTAGES

To show that structural centrality(C∗) and Kirchoff
index (K) indeed provide a measures of robustness, we
relate them to the lengths of random walks on the graph.
In §IV-A, we demonstrate howC∗(k) for node captures
an overhead in randomdetours through nodek as a
transit vertex. Next in§IV-B, we provide an electrical
interpretation for the same.

A. Detours in Random Walks

A simple random walk(i → j), is a discrete stochastic
process that starts at a nodei, the source, visits other
nodes in the graphG and stops on reaching the desti-
nation j [12]. In contrast, we define arandom detour
as:

Definition 1: Random Detour(i → k → j): A
random walk starting from a source nodei, that must
visit a transit nodek, before it reaches the destinationj
and stops.
Effectively, such a random detour is a combination of
two simple random walks:(i → k) followed by(k → j).
We quantify the difference between the random detour
(i → k → j) and the simple random walk(i → j) in
terms of the number of steps required to complete each
of the two processes given by hitting time.

Definition 2: Hitting Time (Hij): The expected num-
ber of steps in a random walk starting at nodei before
it reaches nodej for the first time.
Clearly, Hik + Hkj is the expected number of steps in
the random detour(i → k → j). Therefore, the overhead
incurred is:

∆Hi→k→j = Hik + Hkj − Hij (3)

Intuitively, more peripheral transitk is, greater the over-
head in (3). The overall peripherality ofk is captured by
the following average:

∆H(k) =
1

n2 V ol(G)

n∑

i=1

n∑

j=1

∆Hi→k→j (4)

Alas, hitting time is not a Euclidean distance asHij 6=
Hji in general. An alternative is to use commute time
Cij = Hij + Hji = Cji, a metric, instead. More
importantly [14],

Cij = V ol(G)(l+ii + l+jj − l+ij − l+ji) (5)

and in the overhead form(3), (non-metric) hitting and
(metric) commute times are in fact equivalent (see propo-
sitions9 − 58 in [13] and Theorem1 in [18]):

∆Hi→k→j = (Cik + Ckj − Cij)/2 = ∆Hj→k→i (6)
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We now exploit this equivalence to equate the cumulative
detour overhead through transitk from (4) to l+kk in the
following theorem.

Theorem 1: ∆H(k) = l+kk

Proof: Using ∆Hi→k→j = (Cik + Ckj − Cij)/2:

∆H(k) =
1

2n2 V ol(G)

n∑

i=1

n∑

j=1

Cik + Ckj − Cij

ObservingCxy = V ol(G) (l+xx + l+yy − 2l+xy) [14] and
that L+ is doubly centered (all rows and columns sum
to 0) [9], we obtain the proof.
�

Therefore, a low value of∆H(k) implies higherC∗(k)
and more structurally central nodek is in the network.
Theorem 1 is interesting for several reasons. First and
foremost, note that:

n∑

j=1

Ckj = V ol(G) (n l+kk + Tr(L+)) (7)

As Tr(L+) is a constant for a given graph and an
invariant with respect to the setV (G), we obtain
l+kk ∝

∑n
j=1 Ckj ; lower l+kk or equivalently higherC∗(k),

implies shorter average commute times betweenk and
the rest of the nodes in the graph on an average. It is
well understood that lowCkj reflects greater number
of alternative (redundant) paths between nodesk andj;
which in turn shows better connectivity between the two
nodes [4]. Therefore, lower the value ofC∗(k), greater
the number of redundant paths between the nodek and
the rest of the network and consequently more immune
is nodek to random failures in the network. Moreover,

K(G) = Tr(L+) =

n∑

k=1

l+kk =
1

2nV ol(G)

n∑

k=1

n∑

j=1

Ckj

(8)
As K(G) reflects the average commute time between
any pair of nodes in the network, it is a measure of
overall structural robustness ofG. For two networks of
the same order(n) and volume(V ol(G)), the one with
lower K(G) has a greater number of redundant paths
between any pair of nodes in the network and hence is
more immune to random edge failures.

B. Recurrence, Voltage and Electrical Networks

Interestingly, the detour overhead in(3) is related to
recurrencein random walks — the expected number of
times a random walk(i → j) returns to the sourcei
[5]. We now explore how recurrence in detours related
to structural centrality of nodes. But first we need to
introduce some terminology.

1 0.5

2.5

5 4

111 0.4

1

111

0.2 0.25

2

V

1 A
1 A

Fig. 1. A simple graphG and its EEN.

The equivalent electrical network (EEN) [5] for
G(V, E, W ) is formed by replacing an edgeeij ∈ E(G)
with a resistance equal tow−1

ij (see Fig. 1). Theeffective
resistance(Ωij) is defined as the voltage developed
across a pair of terminalsi andj when a unit current is
injected ati and is extracted fromj, or vice versa. In
the EEN, letV ij

k be the voltage of nodek when a unit
current is injected ati and a unit current is extracted
from j. From [19],U ij

k = d(k)V ij
k . Substitutingk = i

we get,U ij
i = d(i)V ij

i ; the expected number of times
a random walk(i → j) returns to the sourcei. For a
finite graphG, U ij

i > 0. The following theorem connects
recurrence to the detour overhead.

Theorem 2:

∆Hi→k→j = V ik
i + V kj

i − V ij
i

=
V ol(G) (U ik

i + Ukj
i − U ij

i )

d(i)

Proof: From [19] we have, ∆Hi→k→j =
d(i)−1 V ol(G) U jk

i . The rest of this proof follows by
provingU jk

i = U ik
i + Ukj

i − U ij
i .

From thesuperposition principleof electrical current,
we haveV xz

x = V xz
y + V zx

y . Therefore,

V ik
i + V kj

i − V ij
i = V ik

j + V ki
j + V kj

i − V ij
k + V ji

k

= V ik
j + (V ki

j + V kj
i − V ij

k − V ji
k )

From thereciprocity principle, V xy
z = V zy

x . Therefore,
V ik

i + V kj
i − V ij

i = V jk
i . Multiplying by d(i) on both

sides we obtain the proof.
�

The term(U ik
i +Ukj

i )−U ij
i can be interpreted as the

expected extra number of times a random walk returns
to the sourcei in the random detour(i → k → j)
as compared to the simple random walk(i → j). Each
instance of the random process that returns to the source,
must effectively start all over again. Therefore, more
often the walk returns to the source greater the expected
number of steps required to complete the process and
less central the transitk is, with respect to the source-
destination pair(i, j).

Therefore,∆H(k), that is the average of∆Hi→k→j

over all source destination pairs, tells us the average
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increase in recurrence caused by nodek in random de-
tours between any source destination pair in the network.
Higher the increase in recurrence, i.e.(∆H(k)), less
structurally central the nodek is in the network.

V. EMPIRICAL EVALUATIONS

We now empirically study the properties of structural
centrality(C∗(i)) and Kirchoff index (we useK∗ = K−1

henceforth to maintainhigher is better). We first show in
§V-A, how structural centrality can capture the structural
roles played by nodes in the network and then in§V-B
demonstrate how it, along with Kirchoff index, is appro-
priately sensitivity to rewiring and local perturbations in
the network.

A. Identifying Structural Roles of Nodes

Consider the router level topology of the Abilene
network (Fig. 2(a)) [1]. At the core of this topology, is
a ring of11 POP’s, spread across mainland US, through
which several networks interconnect. Clearly, the con-
nectedness of such a network is dependent heavily on
the low degree nodes on the ring. For illustration, we
mimic the Abilene topology, with a simulated network
(Fig. 2(b)) which has a 4-node core{v1, ..., v4} that con-
nects10 networks through gateway nodes{v5, ..., v14}
(Fig.2(b)). Fig. 3 shows the (max-normalized) values
of GC, SC and C∗ for the core{v1, ..., v4}, gateway
{v5, ..., v14} and other nodes{v15, ..., v65} in topology
(Fig.2(b)). Notice thatv5 andv6 are the highest degree
nodes(d(v5) = d(v6) = 10) in the network whilev14

has the highest subgraph centrality(SC). In contrast,C∗

ranks the core nodes higher than the gateway nodes with
v1 at the top. The relative peripherality ofv5, v6 andv14

as compared to the core nodes requires no elaboration.
As far as geodesic centrality(GC) is concerned, it ranks
all the nodes in the subnetwork abstracted byv5, namely
v15−v23, as equally well connected even thoughv22 and
v23 have redundant connectivity to the network through
each other and are, ever so slightly, better connected than
the others.

We see similar characterization of structural roles of
nodes in two real world networks: western states power-
grid network [20] and a social network of co-authorships
[16], as shown through a color scheme based onC∗(i)
values in Fig. 4. Core-nodes connecting different sub-
communities of nodes in both these real world networks
are recognized effectively by structural centrality as
being more central (Red end of the spectrum) than
several higher degree peripheral nodes.

B. Sensitivity to Local Perturbations

An important property of centrality measures is their
sensitivity to perturbations in network structure. Tra-
ditionally, structural properties in real world networks
have been equated to average statistical properties like
power-law/scale-free degree distributions and rich club
connectivity [2], [7], [8]. However, the same degree
sequenceD = {d(1) ≥ d(2) ≥ ... ≥ d(n)}, can result
in graphs of significantly varying topologies. LetG(D)
be the set of all connected graphs with scaling sequence
D. The generalized Randic indexR1(G) [3], [17]:

R1(G) =
∑

eij∈E(G)

d(i)d(j) (9)

where G ∈ G(D), is considered to be a measure of
overall connectedness ofG as higherR1(G) suggests
rich club connectivity(RCC) inG [15]. Also, the average
of each centrality index (degree,GC, SC averaged over
the set of nodes), is in itself a global structural descriptor
for the graphG [6]. We now examine the sensitivity
of each index with respect to local perturbations in the
subnetwork abstracted by the core nodev1 and its two
gateway neighborsv5 andv6.

First, we rewire edgese15,5 and e6,1 to e15,1 and
e6,5 respectively (PERT-I Fig. 2(c)). PERT-I is a degree
preserving rewiring which only alters local connectiv-
ities. Fig. 5(a) shows the altered values of centralities
(C∗, GC, SC) after PERT-I. Note, after PERT-I,v15 is
directly connected tov1 which makesC∗(v15) compara-
ble to other gateway nodes while the value ofSC(v15),
relative to the other gateway nodes, seems to be entirely
unaffected. Moreover, PERT-I also results inv6 losing its
direct link to the core, reflected in the decrease inC∗(v6)
and a corresponding increase inC∗(v5). C∗, however,
still ranks the core nodes higher thanv5 (whereasSC
does not) because PERT-I being a local perturbation
should not affect nodes outside the sub-network —v1

continues to abstract the same sub-networks from the
rest of the topology. We, therefore, observe thatC∗ is
appropriately sensitive to the changes in connectedness
of nodes in the event of local perturbations. But what
about the network on a whole? LetG and G1 be the
topologies before and after PERT-I.G1 is less well
connected overall thanG as the failure ofe5,1 in G1

disconnects19 nodes from the rest of the network as
compared to10 nodes inG. However,

∆R1(G → G1) =
R1(G1) − R1(G)

R1(G)
= 0.029

as the two highest degree nodes (v5 andv6) are directly
connected inG1 (see Tab. I for the sensitivity of other
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Fig. 2. Abilene Network and a simulated topology.
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Fig. 3. Max-normalized centralities for simulated topology.

TABLE I
SENSITIVITY OF STRUCTURAL DESCRIPTORS TO LOCAL

PERTURBATIONS.

# Structural Descriptor PERT-I PERT-II
1 K∗(G) (or

P

n

i
C∗(i)) ↓ ↑

3
P

n

i
d(i) ↔ ↔

3 R1(G) ↑ ↔

4
P

n

i
GC(i) ↓ ↑

5
P

n

i
SC(i) ↑ ↓

centrality based global structural descriptors). In con-

trast,∆K∗(G → G1) = −0.045, which rightly reflects
the depreciation in overall connectedness after PERT-I.

A subsequent degree preserving perturbation PERT-II
of G1, rewiring e22,23 and e24,25 to e22,25 and e23,24,
to obtain G2, creates two cycles inG2 that safeguard
against the failure of edgee5,6. This significantly im-
proves local connectivities in the sub-network. However,
∆R1(G1 → G2) = 0 (and averageSC decreases) while
∆K∗(G1 → G2) = 0.036 which once again shows
the efficacy of Kirchoff index as a measure of global
connectedness of networks.
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(a) The western-states power grid network [20] (b) A networkof co-authorships in network sciences [16]

Fig. 4. Real world networks:Red → Turqoise reducing order ofC∗
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Fig. 5. Max-normalized values of structural centrality, geodesic closeness and subgraph centrality for core, gatewayand some other nodes.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a geometric perspective on
robustness in complex networks. We proposed structural
centrality C∗(i) and Kirchoff indexK respectively as
measures of robustness of individual nodes and the over-
all network. Additionally, we provided interpretations
for these indices in terms of the overhead incurred in
random detours through a node in question as well
as in terms of the recurrence probabilities and voltage
distribution in the EEN corresponding to the network.
Both indices reflect, in some sense, the number of redun-
dant/alternative paths in the network thereby capturing
global connectedness. Through numerical analysis on
simulated and real world networks, we demonstrated
that C∗(i) captures structural roles played by nodes in
networks and, along with Kirchoff index, is suitably

sensitive to perturbations/rewirings in the network. In
future, we aim at investigating similar metrics for the
case of strongly connected weighted directed graphs to
further generalize our work.

VII. A CKNOWLEDGMENT

This work was supported in part by the NSF grants
CNS-0905037, CNS-1017647 and CNS-1017092 and the
DTRA grant HDTRA1-09-1-0050.

REFERENCES

[1] www.stanford.edu/services/internet2/abilene.html.
[2] R. Albert, H. Jeong, and A. L. Barábasi. Error and attack
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