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Hitting and Commute Times in Random Walks

Given a directed graph G(V,E), where V (G) and E(G) respectively represent the set of vertices
and edges in the graph G, we define:

Hitting time (H(i, j)): The expected number of steps in a random walk that starts at vertex
i ∈ V (G) and stops when it reaches vertex j ∈ V (G).

Commute time (C(i, j)): The expected number of steps in a random walk that starts at vertex
i ∈ V (G) and stops when it reaches vertex i again having visited vertex j ∈ V (G) at least once.

Note, C(i, j) = H(i, j) + H(j, i).

A popular assumption: Vertices in the same cluster of the graph have small commute
distance, whereas two vertices in different clusters of the graph have a large commute distance
[3].

Question: But is this always true?

The von Luxburg Approximation for Undirected Graphs

Given a large undirected graph, the following approximations hold[3]:

H(i, j) ≈
V ol(G)

d(j)
(1)

and

C(i, j) = H(i, j) + H(j, i) ≈
V ol(G)

d(j)
+

V ol(G)

d(i)
(2)

where d(i) is the degree of vertex i ∈ V (G) and V ol(G) =
∑

i∈V (G)

d(i), is the so called volume

of the graph G.

Implication: Commute time is a meaningless distance function for many machine learning
tasks.

In Directed Graphs

Given a directed graph G(V,E), let π ∈ ℜn×1, represent the vector of steady state stationary
probabilities for the set of vertices in G. If the graph is strongly connected, π(i) > 0 for all
i ∈ V (G).

Modification: The modified von Luxburg approximation for G is stated below

H(i, j) ≈
1

π(j)
(3)

and

C(i, j) = H(i, j) + H(j, i) ≈
1

π(j)
+

1

π(i)
(4)

Observation: If G is undirected π(i) =
d(i)

V ol(G)
, which is a special case of the proposed

modification.

A Generalized Theoretical Framework

Let A be the adjacency matrix and D be diagonal matrix of out-degrees for the directed graph
G. Then, the transition probability matrix is given as:

P = D−1A (5)

From Perron-Frobenius theory [2] π
′P = π

′, i.e. π
′ is the left eigen vector of P for the eigen

value of 1.

The Fundamental Matrix

The so called fundamental matrix associated with the irreducible Markov chain representing the
strong digraph, is given as [1]:

Z = (I − P + 1π
′)−1 (6)

The hitting time between a pair of vertices i.e. source-destination pair, (i, j) can be expressed in
terms of the elements of Z as follows:

H(i, j) =
zjj − zij

π(j)
(7)

and

C(i, j) = H(i, j) + H(j, i) =
zjj − zij

π(j)
+

zii − zji

π(i)
(8)

A Modified Problem

Note that:

Z = (I − P + 1π
′)−1 = I +

∞∑

k=1

(P − 1π
′)k (9)

For the von Luxburg approximation to have low errors in the case of a strong directed graph,
zii − zij → 1, for all i ∈ V (G) i.e. Z → I, the identity matrix. In other words,

∞∑

k=1

(P − 1π
′)k → 0 (10)

Problem changes to mixing times of an irreducible Markov chain.

When is the Approximation Exact?

Does the approximation ever become exact?

The Complete Graph (Kn)

Kn is the densest graph of n vertices. As each vertex in Kn is connected to all the other n− 1
vertices;

• [(P− 1π
′)]ii =

−1

n

• [(P− 1π
′)]ij =

1

n(n − 1)

As n → ∞, (P − 1π
′) → 0, and the von Luxburg approximation is exact.

An Example: k-Regular Lattice
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• Even for a small directed graph (k-regular) with n = 1000 vertices, the error incurred seems
to decrease as k increases.

Discussion

• An extension of the von Luxburg approximation is possible for the case of directed graphs.

• Modifies the problem to that of mixing times in irreducible Markov chains.

• The proposed framework does not depend on the interplay of random walks and electrical
properties that apply to undirected graphs but do not have parallels in the case of directed
graphs.

• Need to further extend the results and assess possible implications.
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