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ABSTRACT
Smart-grids are made up of two interdependent constituents:
a power production and distribution network catering to a
geographic area and a communication network that helps
regulate and control the power-grid from which it derives
its electricity. Thus, failures in one of the two networks
can lead to failures in the other and in some cases cause a
cascade or domino effect, bringing down the entire system
completely. In this work, we present a theoretical frame-
work to model and study the structural properties of such
interdependent networks based on a topological interpreta-
tion [4] of the Moore-Penrose pseudo-inverse of the graph
Laplacians (L+). Using this framework, we study how the
way in which node pairs in two networks are coupled or
“glued” together (thereby introducing interdependence) af-
fects the overall robustness of the resulting interdependent
networks. Our study leads to some surprising (and some-
what counter-intuitive) results.

1. INTRODUCTION
Modern infrastructure networks are becoming increasingly

complex and dependent on one another. An example of such
an interdependence is that of an electrical power-grid net-
work regulated by a communication network which in turn
depends on the same power-grid for its electrical supply.
Due to such interdependence, failures of elements in one
network, e.g., a small fraction of nodes in a communication
network that is used to control and communicate elements in
a smart grid, can induce failures in the other, i.e. the power
grid network, which would in turn cause further failures in
the communication and control network, thus producing a
cascade of failures in the interdependent networks. In the
recent past, electrical blackouts, like the one in Italy on 28
September 2003 [5], have in fact been caused by such cas-
caded failures.

Clearly, the extent to which random failures or targeted
attacks can lead to a cascaded failure, of course, depends
on the structural properties of the constituent networks. In
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their seminal work, Buldyrev et al [2] have demonstrated
that interdependent networks can behave very differently
from each of their constituents. In particular, two robust
power-law networks when made interdependent via “random
coupling” may become more vulnerable to random failures.
Their work, and those of others, quantify the structural ro-
bustness of interdependent networks in terms of asymptotic
statistical properties such as the existence of giant connected
components under random failures. As in the case of ro-
bustness of single networks, while this complex network the-
ory characterization of network robustness provides valuable
insight into the general statistical properties of interdepen-
dences of classes of random graphs/networks, they are not
very useful in practice, as real networks are deterministic
and finite. In particular, engineered infrastructure networks
such as power-grids and communication networks, are de-
signed to perform certain specific functions. There topo-
logical structures reflect and are constrained by the func-
tional roles of various nodes as well as their geographical
locations that are dictated by, say, user population or other
resources. In other words, their structures may differ signifi-
cantly from (theoretically generated) random networks, and
the interdependencies between two networks (e.g., communi-
cation networks and power grids are not arbitrary, but often
are determined by geographical and other constraints).

In this work, we propose a theoretical framework for as-
sessing structural robustness of interdependent networks which
is not dependent on specific assumptions of structure like
a power-law degree distribution. In doing so, we address
the following important questions related to vulnerability
assessment and protection of interdependent networks: (a)
how can we characterize the robustness of the interdepen-
dent network on a whole? (b) how is the overall robustness
of two interdependent networks affected by the manner in
which the two networks are coupled (or “glued”) together?
(c) how do we judicially select an appropriate coupling func-
tion, namely, select an appropriate collection of coupled node
pairs to introduce“interdependence”(i.e., where the two net-
works are “glued” together) so that the resulting interdepen-
dent networks are more robust to random failures or targeted
attacks? The answer to the last question provides insights
as to how we can harden two interdependent networks.

In the following we demonstrate that these questions can
be answered – at least theoretically – by studying the topo-
logical properties captured by our “geometry of networks”
approach [3], namely, by using the Moore-Penrose pseudo-
inverse of the graph Laplacians (L+) for the individual net-
works and that of the interdependent network. Based on



the topological interpretations of L+ [4], in particular, the
structural centrality metrics and Kirchhoff index, we de-
velop a (deterministic) “finite-network” theory to study the
robustness of interdependence. This theory enables us to
mathematically quantify the structural centrality and roles
of coupled nodes (as well as uncoupled nodes) in the interde-
pendent networks as well as the robustness of interdependent
networks as a whole. More importantly, this theory allows us
to explicitly study how the way node pairs in two networks
are coupled or “glued” together (thereby introducing inter-
dependence) affects the overall robustness of the resulting
interdependent networks. Our study leads to some surpris-
ing (and somewhat counter-intuitive) results: i) simply “glu-
ing” together of structurally most central node pairs in the
two constituent networks (when considered independently)
does not always result in the most structurally robust in-
terdependent network ii) coupling a large number of struc-
turally least central node pairs in the two constituent net-
works often leads to more robust interdependent networks
than coupling the same number of structurally most central
node pairs. Intuitively, this result suggests that by diffusing
and distributing inter-dependencies among a large number of
(geographically dispersed) node pairs in the two constituent
networks produce more robust interdependent networks.

2. GEOMETRY OF NETWORKS AND
NETWORK ROBUSTNESS

In this section, we provide a brief overview of our “geom-
etry of networks” approach [3], namely, via the L+ embed-
ding, for studying the robustness of a single network. In
particular, we present the topological interpretations of L+

with respect to the bi-partitions of a network (see [4] for
details).

We model our network N as a simple graph G(V, E). Let
|V (G)| = n be the number of vertices/nodes, henceforth
called the order of the graph, and |E(G)| = m be the number
of edges/links in G. Let A ∈ R

n×n be the adjacency ma-
trix of G(V, E), with elements aij = aji = 1 if e(i, j) ∈ E(G)
and aij = aji = 0 otherwise. Let D be a diagonal matrix
with d(i) on the ith diagonal, where d(i) is the degree of
node i. The (unnormalized) graph Laplacian L is defined
as L = D − A. L is symmetric, doubly-centered and posi-
tive semi-definite. Let L+ = [l+ij ] denote the Moore-Penrose

pseudo inverse [1] of L. L+ is also symmetric, doubly-
centered and positive semi-definite, and admits an eigen-
decomposition L+ = ΦΛ+Φ′, where Φ is the matrix whose
columns are the mutually perpendicular eigen-vectors of L+

and Λ+ is a diagonal matrix with the eigen-values of L+ (i.e.
the reciprocals of the non-zero eigen-values of L). Moreover,
L+ = ΦΛ+Φ′ = X′X, where the ith column of the matrix
X represents the coordinates for node i in an n-dimensional
Euclidean space. The squared-length of the position vector,
i.e., the distance of node i from the origin, is given by l+ii .

In [3], we define the structural centrality of node i as
C∗(i) := 1/l+ii . The Kirchoff index of a network is therefore
given by K(G) =

Pn

i=1 l+ii =
Pn

i=1 1/C∗(i). Geometrically,
we see that closer a node i is to the origin, the higher its
structural centrality C∗(i) is. Likewise, the smaller K(G) is,
the more compact the embedding of the network is.

Previously in [3], we have provided two interpretations for
C∗(i) := 1/l+ii , in terms of random walks and electrical net-
works, and demonstrated that C∗(i) can be used to measure

the structural roles of nodes in a network, whereas K(G)
can be used to measure the overall robustness of a network.
In the following, we provide yet another interpretation – a
topological interpretation – of L+ in terms of (connected)
bi-partitions and spanning (sub-)trees.

Definition 1. A (connected) bi-partition P = (S,S′) of
a graph G consists of two sub-graphs, S and S′, where V (S)∩
V (S′) = φ and V (S) ∪ V (S′) = V (G), and each sub-graph
S (resp. S′) is connected.

Let E(S,S′) denote the sets of “cross-edges” of the partition
P = (S,S′), i.e., E(S, S′) := {(u, v) ∈ E, u ∈ S, v ∈ S′}.
We see that a partition P = (S, S′) represents a state of the
network in which E(S, S′) edges have failed, leaving the net-
work partitioned into two mutually exclusive sub-networks.
It is this view that provides a significant insight into the true
nature of structural centrality and Kirchoff index.

Let P(G) denote the set of all (connected) bi-partitions
of the graph, and given a bi-partition P = (S, S′) ∈ P(G),
let TS and TS′ represent the sets of spanning trees defined
over the nodes of S and S′, respectively (since S and S′ are
connected subgraphs of G, both TS and TS′ are non-empty).
It can be shown [4] that

l+ii ∝

X

P∈P(G),i∈V (S)

|T (S)||T (S′)||V (S′)|

X

P∈P(G)

|T (S)||T (S ′)||E(S, S′)|
(1)

and

K(G) =
n − 1

n

X

P∈P(G)

|T (S)||T (S ′)||V (S)||V (S′)|

X

P∈P(G)

|T (S)||T (S ′)||E(S, S′)|
(2)

From eq.(1), it is not too hard to see that if l+ii < l+jj (thus
C∗(i) > C∗(j)), then “on the average” node i is more likely
to lie in the larger of the remaining two sub-networks and
node j lies in the smaller of the two after a network partition.
Hence node i is in generally better connected (or structurally
more central) than node j. Similarly, from eq.(2), we see
that smaller K(G) implies that in general more edges (thus
larger |E(S, S′)|) have to be removed to partition G into two
connected sub-networks.

3. MODELING INTERDEPENDENT
NETWORKS

In this section we briefly describe the basic notations and
a simple graph model for interdependent networks. In par-
ticular, we introduce a coupling function, C = {[u, v], which
specifies how and where two constituent networks are cou-
pled or“glued”together to introduce inter-dependencies among
the two networks and form a single interdependent network.

Given two networks, N1 and N2, we represent them in
terms of their respective graphs: G1(V1, E1) and G2(V2, E2).
Also, for the sake of simplicity, we assume that |V1| ≈ |V2|,
i.e., the two networks are of comparable sizes. Let C denote
a collection of node pairs [u, v], one from each constituent
network, i.e., C = {[u, v], u ∈ V1, v ∈ V2}. We refer to C as
a coupling function, and each node pair [u, v] in C a coupled
node pair. Intuitively, the coupled node pairs are where
an inter-dependency between two constituent networks are



introduced. The cardinality of C, k = |C|, represents the
number of inter-dependencies, i.e., the number of coupled
node pairs. Hence given a coupling function C, two networks,
N1 and N2, form as a whole a single interdependent network,
denoted as Gc(Vc, Ec).

As a graph, the interdependent network Gc(Vc, Ec) can be
defined as follows. Let [u, v], u ∈ V1 and v ∈ V2, be a cou-
pled node pair in C. When glued/coupled together, u and
v will result in a new node u ⊗ v in Gc such that each edge
e(u, x) ∈ E1 will now create an edge e(u ⊗ v, x) ∈ E(Gc),
if x is an uncoupled node in N1; it will create an edge
e(u⊗v, x⊗y) ∈ E(Gc) if x is also a node in another coupled
pair [x, y] ∈ C. Similarly, each edge e(v, y) ∈ E2 will create
an edge e(u ⊗ v, y) ∈ E(Gc), if y is an uncoupled node in
N2; it will create an edge e(u⊗ v, x⊗ y) ∈ E(Gc) if y is also
a node in another coupled pair [x, y] ∈ C. In other words,
where there were two vertices u and v in the individual net-
works, we create a macro-vertex u ⊗ v in the glued network
with a neighbor set that is a union of the neighbors of u
and v in the original networks. This representation clearly
captures the interdependent nature of the two vertices in
question, whereby the macro-vertex u ⊗ v fails if either u
or v fail in their individual networks. Similarly, the failure
of edge e(u, x) in G1, results in the failure of e(u ⊗ v, x) in
Gc. Uncoupled nodes and their associated edges (to other
uncoupled nodes) in each of the two individual networks
are transported to the coupled/interdependent Gc(Vc, Ec)
as is. Thus, if the number of couplings is κ, then |V (Gc)| =
|V (G1)|+ |V (G2)|−κ and |E(Gc)| = |E(G1)|+ |E(G2)|. So
the order of the glued network reduces by κ as compared
to the total of its constituents, but its volume (number of
edges) is the same.

Given this definition of an interdependent network Nc :=
Gc(Vc, Ec) formed by two constituent networks, N1 and N2,
via the coupling function C, we can directly apply the re-
sults in Section 2: using the Moore-Penrose pseudo-inverse
of the graph Laplacians (L+

c ) for the interdependent network
Gc(Vc, Ec), we define the corresponding structural centrality
metrics and the Kirchhoff index for the interdependent net-
work to measure the structural roles of individual (coupled
and uncoupled) nodes as well as the overall robustness of
the interdependent network.

4. EFFECT OF COUPLING FUNCTIONS ON
NETWORK ROBUSTNESS

Of particular importance, and one of the principal con-
tributions of our work, is that our theory enables us to in-
vestigate the effect of the coupling function C on the over-
all robustness of the resulting interdependent network. In
other words, it allows us to vary the manner in which we
select the node pairs from the two constituent networks to
be glued together, and study the “optimal” way of introduc-
ing interdependencies so as enhance or “harden” the overall
robustness of the resulting interdependent network.

For this purpose, we adopt a structural centrality based
ordering of the nodes for the selection process. First, we rank
the nodes in the networks N1 and N2 in terms of their struc-
tural centrality values in their respective networks. Having
obtained the ranks, we then define the following three ways
of gluing them together: (a) high-high i.e. the κ-highest
ranked nodes from G1 with the κ-highest ranked nodes from
G2, (b) low-low i.e. the κ-lowest ranked nodes from G1 with
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Figure 1: Coupling in stars and paths (n = 5).

the κ-lowest ranked nodes from G2 and (c) random i.e. κ
random pairs from G1 and G2. The overall robustness of the
coupled/interdependent network is then measured in terms
of its Kirchhoff index i.e. K(Gc). In the following, we first
use a simple example (networks with tree topologies) and
then a network with realistic network topology (the Italian
power grid) to illustrate the coupling process and the effect
of different coupling functions on the robustness of resulting
interdependence networks.

4.1 When Both Networks are Trees
We consider a simple case to illustrate our theory, where

two constituent networks are both trees. We study the cou-
pling of two types of trees: stars and chains/paths of order
n, which represent the most well connected (compact) and
the least connected of all trees for any given n. More im-
portantly, in the context of power-grids (and to an extent in
communication networks), a star topology represents a pro-
duction/distribution center i.e. the root of the star, while
the pendants represent the consumers/first-hop relay-ers.
Similarly, a chain represents a linear sub-network formed
by a series of relay-ers to disseminate power or information.
Using eq.(1), we observe that for a star topology:

l+root =
n − 1

n2
, and l+pendant =

n2 − n − 1

n2
(3)

It is easy to see that for n > 2, the root of the star has
a lower l+ii value than the pendants and is therefore more
structurally central. Similarly, for a chain of order n, the l+ii
for the ith vertex from the end is given as:

l+ii =
6i2 − 6(n + 1)i + 2n2 + 3n + 1

6n
(4)

The form in (4) is parabolic in l+ii and i. Clearly, for a
given n, the minima is attained when i = ⌈n/2⌉, i.e. at
the middle node/s of the chain, and the maxima is attained
when i = 1 = n i.e. at the pendants. Thus, the structural
centrality of nodes in a chain decreases as we move from the
center of the chain towards the pendants on either side.

Next, we demonstrate the low−low and high−high gluing
strategies for a star and a chain respectively with another
star and chain of the same orders in Fig. 1, for increasing
values of κ : 1 ≤ κ ≤ n. Observe that for κ ≥ 2, the
low − low strategy produces multiple cycles in the interde-
pendent networks, thereby providing alternate connectivi-
ties between nodes and safeguarding against eventual edge
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Figure 2: K(Gc) for glued/coupled networks for the three different coupling functions.
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Figure 3: The Italian power grid network coupled
with itself: Red → Turquoise decreasing structural
centrality.

failures. It is well known that greater the number of cycles
in a graph, higher the count of spanning trees which signi-
fies better redundant connectivities between node pairs. In
contrast, the high − high strategy produces small loops be-
tween adjacent nodes and leaves the overall structure rather
tree like. Thus the low − low strategy results in more ro-
bust glued/coupled networks for κ ≥ 2 in both the star and
chain topologies.This effect is well captured in the values of
K(Gc) shown for 1 ≤ κ ≤ n in Fig. 2(a) and (b), where the
low − low strategy attains lowest values of K(Gc) for κ > 2
(note that smaller K(Gc) is, more robust the network is).
We see that when κ is small, pairing and coupling the most
structurally central nodes (in the constituent networks) pro-
duces more robust networks than other coupling strategies.
However, somewhat counter-intuitively, when κ increases
and becomes sufficiently large, pairing and coupling struc-
turally least central node pairs in the two constituent net-
works produces more robust interdependent networks. This
result suggests that distributing interdependencies amongst
(geographically) disparate nodes may result in more robust
interdependent networks. We explore this further with the
help of a real world power-grid network in the next section.

4.2 The Italian Power Grid Network Example
The Italian power grid network (see Fig. 3) is a network

of order n = 68 and m = 93. The nodes in fig. 3 have been
colored by their structural centralities. Notice how the struc-
tural centrality reduces as we move towards the periphery
of the network. We now glue the Italian power grid network
with an exact copy of itself, which represents a communi-
cation network (cf. [2]) using various coupling functions C
for increasing values of κ. Once again, (see fig. 2(c)) we ob-
tain the same surprising (and somewhat counter-intuitive)

results that only for small κ, pairing and coupling the most
structurally central nodes (in the constituent networks) pro-
duce more robust (i.e., smaller K(Gc)) networks than other
coupling strategies; for κ > 10, the low − low strategy
produces more robust interdependent network than other
strategies. We note that as κ increases, the low − low strat-
egy glues peripheral nodes thereby creating longer cycles in
the network as compared to the other two strategies. Such
longer cycles safeguard network wide connectivities against
random edge failures, thus resulting in more robust interde-
pendent network structures. We also observe similar results
for the western states power grid network in the US.

5. CONCLUSIONS
In this work, we presented a theoretical framework to as-

sess structural properties of interdependent networks, based
on the topological properties of the Moore-Penrose pseudo-
inverse of the graph Laplacians. We demonstrated that the
structural centrality of nodes can be used to select nodes
for gluing the two networks together and the robustness of
the interdependent network can be measured in terms of
its Kirchhoff index, given by the trace of the L+ of the
interdependent network. With the help of example tree
structures and the Italian power grid network, we presented
comparative results for three gluing strategies based on the
structural centralities of the nodes. Of the three strategies,
the low − low strategy eventually wins out, producing the
most robust coupled structures (interdependent networks).
Our results suggest that by diffusing and distributing inter-
dependencies among a large number of (geographically dis-
persed) node pairs in the two constituent networks produce
more robust interdependent networks.
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