
(:oP\ right © I F.-\(' Rohot (:Ollt rol
(~\lO(1I ';-':,-)), B.IJ'<clt HLI. Sp;lill, I ~I;-\:)

I'RO(;R .\\I \I I:\(; 01· ROI\<l 1 S
IROl·:\ IlI .\I\ U I

PROGRAMMING VISION SYSTEMS AND
INTEGRATING THEM WITH ROBOTS

G. Gini * and M. Gini **

::: /) i/I(I rli 1111'1110 ri, F II IIUJ/lle fJ I)u/i" 1111111, .\1 ,/" 1/11. 1111/\
·;···· f)'"/JlII/III1 ·/// "/ (."111/1//1,/ S'/,//l'. ('''/; 'II",/lI "/ .1/ /////1',,/0 . . 111. (·S.-\

ABSTRACT

I-Ie p r esent LIVIA, a language for writing
application programs for industrial vision
systems . LIVIA is a Pascal - like language
wi t h specific ins tr uctions fo r vision. The
objects are identified by the values of
their invariant features . Operations on the
objects can be done using the elementary
set theory . The r ecognit i on of objects in a
data base and the selection of any of their
features is easily programmed.

I NTRODUCTION

The impor t ance of p r oviding r obots with
more sophis ti cated vision sensors is widely
r ecognized . Visual feedback for
manipulation and assembly operations is
highly desi r able to increase reliability
and to r educe the constrain t s on the
positioning of par t s . Vi sual inspection of
manufactured p r oduc t s t o determine if they
meet their standa r ds p l ays an important
role in industrial automation [IJ , [5],
[1 2 J

The availability of i ndustr i al vision
systems and thei r in t egration in t o the
manufacturing process indicate a growing
interest by indus t ry in automat i c vision.

Flexibilitv, programmability, and
reliabili t y a r e the key issues for vision
svstems, although cost and processing time
are still important. Portability will
becof!1e mo re and more important as soon as
softwa r e packages become available for
various applications .

In our labo r atory we have developed a
vision machine for industrial applications
[9J, and we have provided it with a
lan guage , LIVIA [4 J . In LI VIA the user ca n
write pro g rams to recognize objects or to
locate parts .

The main assumptions in LI VI" are that the
user in an industrial setting is interested
in systems that can be easily programned
for specific applications. On the o ther
hand a single vision system will never be
applicable to all kinds of industrial tasks
and also be cost effective. ',le propose a
philosophY of design of vision s ys tems that
allows programmability at different levels .
~e provide the use r with a simple langua ge ,
and at the same time we allow the
reconfiguration of the whole software for
diffe r ent applicat i ons and exigencies.

In the followin g we discuss the role of

.-)11

vision and of vision p r ogramming in
industrial se t tings. Then we present the
language LIVIA .

\-le support our presentation with practical
examples of integrated systems. In
particula r we will refer to the system of
the Politecnico of ~Iilan [3J; we consider
also the system of the Stanford Artificial
Intelligence Laboratory [8J and some
commercially availab l e systems [2], [7J .

VISION PROGRAMM ING FOR UJDUSTRIAL
APPLICATIONS

The complexity of the visio n tasks requires
a decomposition of the problem into
manageable subuni t s [15J. The
identification of the function of each
subunit and of its r elationships with the
other subunit is not a trivial task . ~Iost

of the systems app l y a fixed sequence of
functions to the images . Each change in the
sequence r equi r es a r ewriting of a l arge
part of the system .

What is needed is a lang u age in which one
can specify the cont r ol structures that
relate the various functions to be
performed on the image as well as a
language in which one can specify models of
objects . A language an d a programming
environment specifically designed for
industrial vision systems will d r amatically
reduce the software costs, opening new
application areas .

For many aspects we can foresee the same
development for v isi on software we have
seen in l a n guages for con tr ol lin g robots .
From simple systems based on "teachin g by
training ", sophisticated programming
lan guages have been developed that !:lake it
easier to program robots for complex tasks .
rnfortunately not too manY langua g es a r e
available for vision [6J .

If we examine
producers of
ap pl i ca ti o ns
approaches:

the solutions
visi o n s ys tems
'",e can identif y

i::1ple men ted by
fo r industrial

two different

- The vision s ys tem is p r ogranmed through
menu s o r special functional ke ys ,
allowing t he u ser to select among a
p redefined set of basic functions . The
conmunication with an external computer
is provided to allow inte g rati on with
additional hardware and sof tware .

A programming lan g uage is provided to
let the user write his own application
p r og rams . Different solutions have been

542 G. Gini and ;"1. Gini

selected by different producers ranging
from the definition of highly
specialized languages for vision to the
definition of general purpose languages
with few instructions for vision.

We examine in more detail some of those
solutions.

The first example of industrial vision
systems, the VS-lOO of the Machine
Intelligence Corporation, is programmable
through menus and a light pen. It derives,
as most of the systems in industrial use,
from the SRI vision machine [I]. Object
images are analyzed during the teaching
phase to acquire their features and to
build a model. The model is a set of
features precisely describing the object.
In the operation phase the images are
analyzed to compare their features with the
models.

Unimation [2] has decided to extend its
language for robot programming, VAL, by
adding a few instructions to communicate
wi th the VS-lOO. In this case the robot
programming language takes advantage of the
communication protocol available in the
vision system. Similar solutions have been
adopted by Brown Boveri for its OMS system
[11] and by Control Automation for its
V-IOOO, just to mention a few examples.

The vision system of the Machine
Intelligence Corporation has been used in
the Stanford Hand-Eye project with the
language AL [8], [10]. The system is
composed by two Stanford Scheinman arms,
two PUMA 500 arms, a Grinnel Graphic
system, and a VS-lOO vision machine, all
interconnected. The software for
controlling and programming the whole
,ystem is developed and compiled on a POP
10, and runs on a devoted POP 11/45 plus
some LSI II's. The availability of the
language AL and of the POINTY programming
environment [10] allowed the creation of a
unified programming system for manipulation
and vision. The possibility of defining
procedures and macros in AL has been used
to define operations with the vision
system. Only one general procedure for
communication through the parallel
interface with the VS-lOO is needed to
handle the dialogue between the
manipulation and the vision activities. In
a similar way VAL instructions can be sent
from AL to the PUMA's.

We want to point out how in those cases the
vision system is essentially considered as
an intelligent peripheral of the robot. The
vision system executes always the same
recognition algorithm.

Moving to the second approach we consider
RAIL and AML/V.

RAIL [7],
Automatix as
its vision
Pascal like
use.

[16] has been designed
the programming language

and robot systems. It has
form and it is very easy

by
for

a
to

extension of
at the IBM to

the AML
control

AML / V [13] is an
language developed
robots. AML / V is a set of subroutines,

control and image
region analysis, and

AML/V is a highly

devoted to camera
acquisition, binary
image arithmetic.

programmable system which provides direct
access to image data. It is an "integrated
extension of a good general programming
language" and, as such, it is considered by
its designers as a very powerful language.
In fact in AML/V it is possible to program
new operations on images.

In our opinion a compound approach should
be used. We do agree with Automatix and
other companies on the need of a simple
programming language. We do agree also with
IBM when they point out the need for a
complete programming language. In fact
using the present industrial vision systems
the user can only write application
programs in which the vision processing is
based on the same fixed algorithm. Using
AML/V other algorithms can be programmed
(see for instance the thinning algorithm
presented in [13]), even though this
process requires a certain expertise.

We see two contraddictory requirements, the
first aiming at the ease in writing
applications programs, the second aiming at
the completeness of the programming system.
In the first case the final user can easily
interact with a system with fixed
capabilities; in the second case the system
is much more flexible at the cost of being
difficult to use. Both those points are
important and deserve the greatest
attention.

Our idea is to have different programming
levels for different users. We let the
system programmer free to modify any of the
programs in the vision machine and to
connect them together specifying various
sequences of operations. The final user
writes application programs in a
specialized programming language.

We have implemented this methodology in our
vision system. We provide programmability
at three different levels:

- user level. The final user of the
system is not interested in the
internal aspects; he wants a simple way
to communicate what he wants to do. A
programming language, LIVIA, is
available for writing application
programs. Even in the case in which
grey level processing is used, as in
[14], the user is concerned only with
recognition of objects, without having
to know how the processing is done;

- application level. Application
dependent packages can be written for
specific fields of applications as arc
welding, or manipulation of particular
types of objects;

- system level. An y of the basic
components of the system can be
modified either by changing some code
or by adding new functions. Since the
system is programmed in high level
language using well-defined interfaces
it is easy to put modules together to
make a system.

ARCHITECTURE OF THE VISION SYSTEM

The main task we had in mind in developing
our vision system
system that can
factory use in

be
was to develop a flexible

ready for effective
a short time, but that

allows the easy incorporation of

Programming Vision SYStems 543

extensions.

We have set up a general framework and some
tools, that allow us to configure the
system, to verify the module interfaces,
and to write application programs. We have
first developed a collection of modules to
form a skeleton system. We have
incorporated modules to handle several
applications and we are in the process of
adding more.

The main use is currently for
identification of objects to be assembled
by a robot. A large set of characteristics
is computed, scenes with many objects are
analyzed, objects inside objects are
detected. Even ups ide down parts can be
recognized.

From a logical point of view the system is
divided into two levels, a low level
process and a high level process. The low
level process, connected to the camera,
performs the basic computations on the
image. The high level process executes
application programs and communicates with
higher level processes. This organization
has been designed to take advantage of the
multiprocessing capabilities of MODIAC, a
multi-microprocessor system specifically
designed in Italy for industrial
automation.

Each process is composed of modules that
the user can assemble. Each module has a
well defined interface with a specification
of the input to the module, the output from
the module and the global variables used.
Modules with the same interface can be
freely interchanged.

The lower level process can be considered
as a vis ion machine. It includes threshold
selection, binarization, run-length coding,
sequential extraction of features,
recognition, teaching by showing,
management of a library of models, and
other modules for image preprocessing.
Other modules for screen display which are
dependent on the specific hardware have to
be provided. Modules that depend on
specific applications can be inserted here.

The user can interact through a terminal on
which a menu of commands is available to
start various programs. An operating system
allows him to reconfigure the system by
adding or changing any of the modules.
System level programming takes place mainly
at this level.

The communication with the high level
process is through a communication handler.
In the present implementation both the
processes run on the same computer. The
high level process has to wait for the
answer from the low level process before
proceeding. Eventually the two processes
will run asynchronously.

The higher level process is mainly used for
programming the vision machine (low level
process). It includes the compiler for the
LIVIA language, the interpreter of the
intermediate code, editor and general
purpose software.

Application dependent programs can be
added. If they require specific modules on
the low level system the user is
responsible for adding the appropriate

routines. A second terminal is available
for entering LIVIA programs.

Other processes can communicate with the
vision machine both directly by feeding
commands through the communication handler
or through the high level process by
sending commands in LIVIA to be compiled
and interpreted or by sending commands
already compiled to be interpreted.

The communication with the robot mainly
takes place by sending directly commands to
the communication handler or, for more
complex operations, through LIVIA programs.
In many cases the robot asks the vision
system directly to take a picture and to
return the identity, position, and
orientation of the object in view. The
responsibility of transforming the
coordinates of the vision system into the
coordinates of the robot is given to the
robot program.

Our vision system is fully portable. This
aim has been achieved by using a high level
language for the implementation and by
using simple, clear interfaces between
modules. We have decided not to use any
special hardware. The final customer will
be able to decide whether to develop
specialized hardware to speed up some
operations. In this way we can keep our
development system independent of any
particular application.

We can easily integrate our vision system
into an industrial automation system. The
final implementation will be on the
multi-microprocessor system MODIAC. It will
be very important to be able to operate a
vision system that interfaces naturally
with the system that controls the
manufacturing process.

The present implementation is based on the
use of a GE TN-2200 solid state TV camera
with 128 x 128 pixels and 256 grey levels.
The camera is connected through a DMA
interface to a DEC MINC-ll computer with
28K words of memory and a LSI 11/23 cpu.
The same computer is used to supervise the
various robots available at the Robotics
Laboratory of the Politecnico of Milan. The
robots, the vision system, and a conveyor
belt can be controlled to cooperate for
assembly ad manipulation tasks. A video
terminal DEC VT 105 is used for interaction
with the user, and a color monitor ISC 8001
provides a graphic display of the image and
the results. The programs are written in
OMSI Pascal, except the camera acquisition
routine which is in MACRO-I!. RT-ll is the
standard operating system.

LIVIA: THE USER PROGRAMMING LANGUAGE

We have designed a language, LIVIA, for
programming vision tasks. LIVIA is a
Pascal-like language with special
instructions for vision [4]. We have
decided to base most of the operations on
the elementary set theory.

LIVIA has two data types, numbers and sets.
Numbers can be integer or real. Sets
represent groups of objects. Each object is
described by a set of feature values. Some
features are position dependent, some are
position independent. The last ones
characterize the objects and constitute

;i -H

what we call an object model.

The model is usually constructed with a
teaching-by-showing process by showing
various times the same object in different
positions and orientations. Data from CAD
data bases could be used to obtain the
model. Various libraries of models can be
stored on disks. Each library of models can
contain any number of elements.

The internal model of the sets is composed
by three component parts. The memory of
blobs contains all the objects identified
in the image with their feature values. The
memory of models contains all the models
that should be used. The correspondence
table is constructed connecting the blobs
with the models. The correspondence is
generated by a classification algorithm.
Each blob is connected to the nearest
model. The value of the distance considered
acceptable for recognition can be set by
the user.

Each time a picture is
constructs a set of the
camera. We call this
construct a set of all
can be found in any
libraries of models. We
All the other sets are
two set s •

taken the system
blobs seen by the
set TEL. We may
the elements that
of the available
call this set MEM.
created from those

Using the set operations we can intersect
the sets TEL and MEM, or find any subset
with specific features, as a certain number
of holes or a certain range of perimeter.

Operations available on sets include
elementary set operations (union,
intersection, and set difference),
selection of elements with specific
features, and extraction of single elements
from any set. Those single elements are
considered as sets wi th a single element,
so that the same operations can be applied
to them.

The operation INTER computes the
intersection of two sets, i.e. the set of
elements that are members of both the sets.
The correspondence table is used to figure
out what objects are in both the sets. The
operation UNION computes the union of two
sets, i.e. the set of elements that are
members of either one of the two sets. DIFF
computes the set difference, i.e. the set
of elements that are members of the first
set and not members of the second. Those
operations can be freely intermixed in the
same instruction.

Operators are available to select objects
with specific features. Selections can be
applied to any set to construct subsets of
elements satisfying the desired properties.

The control structures available in LIVIA
are the same as in Pascal (do •• while,
repeat •• until, if •• then, if •• then •• else, go
to). I / O is performed exactly as in Pascal.
Procedures are not yet available.

There are a few specific instructions for
vision operations.

TAKEAPICTURE takes a picture, computes all
the features of the objects and construct
the set TEL. The previous content of TEL
and of any set derived from it are cleared.

TAKEMEM (name) constructs the set MEM
inserting into it all the models present in
the named library. The previous content of
MEM is cleared.

SETAREA (val) sets the minimum area (in
pixels) that will be considered by the
system. In this way the user can decide to
do not consider objects that are too small
or that can be little spots.

SETTHRESHOLD (val) sets the threshold used
for binarization.

SETDISTANCE (val) sets the distance that is
considered acceptable by the classification
algorithm.

The function DISTANCE returns the distance
of the indicated blob from the
corresponding model. NEAREST returns a set
constituted by the model nearest to the
indicated blob. Using them the user can
write different classification algorithms.

The various elements of the set can be
selected by using INIT to start at the
beginning of the set, and NEXT to go to the
next element in the set. The predicate
ENDSET tells whether the set has been
completely examined. ELEM returns the
current element of the set.

Once a particular element of the set has
been identified it is possible to extract
each one of its feature values by means of
extraction operators. The extraction
operators are the same as the selectors.
When they are used as extractors they
return a numeric value.

Some examples of short programs are
illustrated.

The first program takes a picture, selects
objects with specific features, and
recognizes them using a library. The
intersection between TEL and MEM contains
the recognized objects. We use then two
different extractors for the same feature,
since we want to compare the value of the
blob with the value of the model. AREA
returns the area of the object and AREAMD
is the area from the corresponding model.
NAMEINT indicates the internal identifier
of an object and NAMEEXT is the
corresponding external name.

PROGRAM SELECT;
V AR NUM: NAM E, AR, ARM D ;

SET: BB;
BEGIN

END.

TAKEAPICTURE;
TAKEMEM ("GROUP/Il");
BB:= TEL INTER MEM;
INIT (BB);
NEXT (BB);
PRINTLN ("RECOGNIZED OBJECTS");
PRINTLN ("NAMES AREA OBJECTS",

AREA MODELS");
WHILE NOT ENDSET (BB) DO BEGIN

NAME:= NAMEINT (ELEM (BB));
PRINT (NAMEEXT (NAME));
AR:= AREA (ELEM (BB));
ARMD:= AREAMD (ELEM (BB));
PRINTLN ("

NEXT (BB);
END;

AR,
ARMD) ;

The next program is used to inspect parts.

Objects not recognized and without holes
are to be discarded. Their position is
printed so that a robot could be used to
remove them. The set UNKNOWN is constituted
by the objects that are not recognized and
that have no holes. In fact the
intersection between TEL and MEM is the set
of recognized objects. The difference
between TEL and the set of recognized
objects constitutes the set of non
recognized objects. Among this set the
objects that do not have holes are then
selected using the selector NHOLES. The
coordinates of their centers of gravity are
then printed.

PROGRAM INSPECTION;
VAR NUM: COORDX, COORDY;

SET: UNKNOWN;
BEGIN

END.

TAKEMEM ("KNOWN");
SETAREA (200);
TAKEAPICTURE;
UNKNOWN:= (TEL DIFF (TEL INTER MEM»

* NHOLES=O;
INIT (UNKNOWN);
NEXT (UNKNOWN);
WHILE NOT ENDS ET (UNKNOWN) DO BEGIN

COORDX:= XBAR (ELEM (UNKNOWN»;
COORDY:= YBAR (ELEM (UNKNOWN»;
PRINTLN ("DEFECTIVE PART IN ",

COORDX, " ",COORDY);
NEXT (UNKNOWN);
END;

The last program shows the use of the
functions DISTANCE and NEAREST. The set
OBJECTS is constituted by the objects seen
by the camera, that have at least one hole,
ad an area greater than 200 pixels. The
function NEAREST returns the model closest
to the indicated element and DISTANCE
returns the value of the distance. The
program print for each element seen by the
camera the name of the closest model and
the value of the distance. In this way it
is possible to program different
recognition strategies.

PROGRAM RECOGNIZE;
VAR NUM: NAME, DIST;

SET: OBJ;
BEGI!'l

END.

TAKEMEM("PARTS");
TAKEAPICTURE;
OBJ:= (TEL * NHOLES>=l) * AREA>200;
INIT(OBJ) ;
NEXT(OBJ);
PRINTLN("NEAREST OBJECT DISTANCE");
WHILE NOT ENDSET(OBJ) DO BEGIN

NAME:= NAMEINT(NEAREST(ELEM(OBJ»);
DIST:= DISTANCE(ELEM(OBJ»;
PRINTLN(NAMEEXT(NAME)," ", DIST);
NEXT(OBJ);
END;

CO!'lCLUSIONS

I<e have
language
systems.

presented LIVIA, a high level
for programming industrial vision

We have given examples of use.

This work was partially supported by the
Progetto Finalizzato per l' Informatica,
Sottoprogetto P3, Obiettivo MODIAC of the
National Council of Research of Italy.

:l -Fi

REFERENCES

r. Agin, G. J., Computer vision systems
for industrial inspection and assembly,
Computer Magaz., pp 21-31, May 1980.

2. Carlisle, B., et aI, PUMA/VS-lOO robot
vision system, in A. Pugh (ed), Robot
Vision, IFS (Publications) Ltd. and
Springer-Verlag, 1983.

3. Cassinis, R., Mezzalira, L., A
multimicroprocessor system for the
control of an industrial robot, Proc.
~ International Symposium on
Industrial Robots, Tokyo, Japan, 1977.

4. Cividini, G., Gini, M., Villa, G.,
Programming a vision system, Proc. 13th
International Symposium on ~str1al
Robots, Chicago, Ill, 1983.

5. Dodd, G. G., Rossol, L., Computer
vision and sensor based robots, Plenum
Press, New ~19~

6. Duff, M.J.B., Levialdi, S. (Eds),
Languages ~ architectures ~ Image
Processing, Academic Press, 1981.

7. Franklin, J. W., VanderBrug, G. J.,
Programming vision and robotics systems
with RAIL, in K. Rathmill (ed), Robotic
Assembly, IFS (Publications) Ltd. and
Springer-Verlag, 1985.

8. Gini, G., Gini, M., The integration of
manipulation and vision for assembly
and quality control, International
Journal of Production Research, Vol 21,
N 2, 198~ pp 279-292.

9. Gini, G., Gini, M., A Software
Laboratory for Visual Inspection and
Recognition, Pattern Recognition, Vol
18, N I, pp 43-51, 1985.

10. Gini, G., Gini, M., Dealing with world
model based programs, ACM TOPLAS, Vol
7, N 2, 1985, pp 334-34r:-- ---

11.

12.

13.

14.

15.

16.

Hewkin, P. F., Fuchs, H.
system, in A. Pugh (ed),
IFS (Publications)
Springer-Verlag, 1983.

J ., OM S - vis ion
Robot Vision,
~ ---a-n-d

Kruger, R. P., Thompson, W. B., A
technical
computer
inspection
IEEE, Vol.
1981.

and economic assessment of
vision for industrial

and robotic assembly, Proc.
69, pp 1524-1538, December

La v in, M. A., Lie be r ma n L • I ., A..'1 L / V :
An industrial machine vision
programming system, The International
Journal of Robotics Research, Vol I, N.
3, Fall 1982.

Makhlin, A. G.. Tinsdale, G. E ••
Westinghouse grey scale vision system
for real time control and inspection,
in A. Pugh (ed), Robot Vision, IFS
(Publications) -r:td. and
Springer-Verlag, 1983.

Rosenfeld, A., Kak, A., Digital Picture
Processing, Academic Press, New York,
1976.

Villers. P •• Present industrial use of
vision sensors for robot guidance, in
A. Pugh (ed). Robot Vision, IFS
(Publications) ---Ltd.---- and
Springer-Verlag, 1983.

